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A vestige of a prebiotic bonding
machine is functioning within the

contemporary ribosome
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Based on the presumed capability of a prebiotic pocket-like entity to accommodate substrates whose
stereochemistry enables the creation of chemical bonds, it is suggested that a universal symmetrical
region identified within all contemporary ribosomes originated from an entity that we term the
‘proto-ribosome’. This ‘proto-ribosome’ could have evolved from an earlier machine that was
capable of performing essential tasks in the RNA world, called here the ‘pre-proto-ribosome’,
which was adapted for producing proteins.
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1. INTRODUCTION
Ribosomes are the universal cellular molecular
machines that play the main role in the translation of
the genetic code into proteins. In this process, messen-
ger RNA (mRNA) carries the genetic information, and
tRNA molecules carry the amino acids. The ribosome
possesses a channel along which the mRNA chain pro-
gresses as well as three tRNA binding sites, designated
as A (aminoacyl), P (peptidyl) and E (exit). Among
those, decoding as well as peptide bond formation
are performed by the A- and P-tRNAs.

In all organisms, ribosomes consist of two subunits of
unequal size, each having defined tasks. The small ribo-
somal subunit is involved in the initiation of the
translation process, in selecting the translated frame, in
decoding the genetic message, and in controlling the fide-
lity of codon–anticodon interactions. The large subunit
catalyses the formation of the peptide bond, elongates
the newly synthesized proteins and gates the nascent
chains by channelling them through their dynamic exit
tunnel. The ribosomes are multi-component riboprotein
assemblies of molecular weights that span between
2.5 MDa (in prokaryotes) and 4 MDa (in eukaryotes).
Their main catalytic task is peptide bond formation.
The fact that peptide bonds can be made spontaneously
from activated amino acids, should not be overlooked.
The ribosome increases the pace of this reaction,
positions the substrates in the right stereochemistry
for peptide bond formation and substrate-mediated
catalysis, and ensures processivity.
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The L-shaped tRNA molecules are composed
primarily of double helices, with an anticodon stem
loop at one edge and a single-stranded universal
moiety composed of the three nucleotides cytosine,
cytosine, adenine (CCA) on their other edge (their 30

end). The CCA end of the A-site tRNA is aminoacy-
lated with the amino acid to be incorporated into the
nascent protein. Similarly, the newly formed polypep-
tide chains are bound chemically to the CCA end of
the P-site tRNA. The mRNA and the anticodon
loop of the tRNA molecules interact with the small
subunit, whereas the acceptor stem and the 30 end of
the tRNA molecules bind to the large subunit.
Hence, all three tRNA sites span the two subunits,
and each of the three tRNA molecules is located on
both subunits (figure 1a). During the elongation
cycle, the three tRNA molecules act in a concerted
manner and translocate from the A- to the P-site and
from there to the E-site. In conjunction with the
tRNA translocation, the mRNA progresses by
precisely one codon.

Analysis of the various high-resolution crystal
structures of bacterial ribosomal particles at various func-
tional states, as well as the slightly lower resolution
structure of the eukaryotic ribosome, which have
become available in the last decade [1–8], indicate that
despite the size difference the ribosomes’ functional
regions, namely the decoding centre and the site where
the peptide bonds are formed (called peptidyl transferase
centre, PTC), are composed solely of ribosomal RNA
(rRNA) and devoid of proteins. This is in accord with
the ribosomes’ composition, as they contain long RNA
chains alongside many different proteins with a ratio of
RNA to proteins being approximately 2 : 1, except for
in the mitochondria, where RNA : proteins is 1 : 1.
Sequence analysis has clearly shown that these sites are
This journal is q 2011 The Royal Society
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Figure 1. The ribosomal symmetrical region. In all panels, the ribosomal RNA is shown in grey. The blue and green ribbons
indicate the ribo-phosphate ester backbones of the rRNA of the A- and the P-regions of the symmetrical region. The red rod
indicates the position of the imaginary axis and the red dot indicates a section cut parallel to the direction of the symmetry axis.
(a) An overall representation of the ribosome with its three tRNA substrates and the location of the peptidyl transferase centre

(PTC). (b) The position of the symmetrical region within the entire ribosome, with A- and P-site tRNAs (cyan and brown,
respectively), and the intersubunit bridge that connects between the rims of the cavity leading to the PTC and the decoding
centre. (c) The universality of the symmetrical region is indicated by the superposition of the pocket suggested to represent the
remnant of the proto-ribosome as in the large subunits from the eubacteria Deinococcus radiodurans, D50S (PDB accession
code 1NJP), the archaeon Haloarcula marismortui, H50S (PDB accession code 1VQN) and the entire ribosome from Escher-
ichia coli E70S (PDB accession code 2AVY). (d) Two views (i) and (ii) of the symmetrical region and its non-symmetrical
extensions (in cyan) within the contemporary ribosome, which connect all ribosomal functional regions.
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highly conserved across all kingdoms of life, including
mitochondria. Hence, all ribosomes are RNA enzymes,
namely ribozymes. Importantly, compared with all
known ribozymes, which are rather inefficient catalysts,
the ribosomes perform remarkably well. Thus, a typical
prokaryotic ribosome makes 15–20 peptide bonds per
second with a fidelity rate of over 1 : 10 000. The efficient
operation of the ribosomes seems to be achieved by the
incorporation of the uniquely shaped ribosomal proteins,
which contain long C- and N-terminal tails and/or
elongated internal loops, into the rRNA intricate
structure, thus maintaining its accurate shape and its
controlled dynamics. This ingenious design turned
the typical slow RNA ribozyme to an efficient
polymerase [9].
2. THE RIBOSOMAL SYMMETRICAL REGION
The high-resolution structures of the bacterial
ribosomes from Deinococcus radiodurans, Haloarcula
Phil. Trans. R. Soc. B (2011)
marismortui and Escherichia coli [1–7] indicated that
in the contemporary ribosome the PTC is situated in
the centre of a universal conserved structural element.
This region is arranged in a semi-symmetrical manner
[10,11], an extremely unusual feature within the
otherwise asymmetric ribosome. An almost identical
symmetrical region exists in all known ribosome struc-
tures (figure 1) from prokaryotes [1–7] and
eukaryotes [8]. Even the lower resolution structure
of mitochondrial ribosomes [12] contains such a
region. The structure preservation and the exception-
ally high sequence conservation (over 95%) indicate
that the existence of this region is beyond evolutionary
stresses, and thus point to its ancient origin [13–17].
This symmetry related region is composed of 180
nucleotides, with an inner core of 120 nucleotides. Its
outer 60-nucleotide shell contains the A- and P-loops,
which is where the ribosome accommodates the
tRNA 30 ends. This symmetrical region connects all
ribosomal functional regions (figure 1d), hence
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Figure 2. Substrate location in the pocket suggested to represent the remnant of the proto-ribosome and the proposed reaction
transition state. In all panels, the A- and P-sub-regions of the symmetrical region as well as the A-site and P-site tRNAs are
shown in blue and green, respectively, and the ribosome components are shown in grey. The red rod indicates the position of
the imaginary symmetry axis and the red dot indicates a section cut parallel to its direction. (a) A cartoon representing the
translocation of the A-site tRNA into the P-site. The main motion of the tRNA helical region is represented by the horizontal

arrow and rotatory motion of the A-site tRNA 30 end is represented by the curved arrow. The so-derived position of the 30 end
of the P-site tRNA is also shown (in green). The ribosome scaffold that guides the motion is represented by the grey ‘ribs’.
(b) The volume consumed by the motion is shown as a net, obtained by snapshots of the rotatory motion of the A-site 30

end (every 158 around the imaginary rotation axis (not shown here)). The transition state analogue that is formed during
the rotary motion, just before reaching the P-site [18] is shown in orange. (c) The RNA backbone of the pocket suggested

to represent the remnant of the proto-ribosome with the tRNAs 30 ends, highlighting the connections between the two
halves (by the red stars). The A-site substrate (blue) was obtained by cutting out (computationally) the acceptor stem from
the crystal structure of complexes of the tRNA acceptor stem and the 30 end mimic with D50S [10]. The P-site substrate
was derived from the A-site amino acid by applying the rotatory motion. The box shows a GNRA tetra loop that contains

the A-minor motif (the bases involved are shown in magenta and yellow). (d) The symmetrical region superposed on the inter-
face surface of the large ribosomal subunits, with its inner core of 120 nucleotides shown in full line, and the shell containing
the A- and P-loops shown in broken lines.
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can provide the machinery for signal transmission
between them.

Careful structural analysis of this pseudo-symmetri-
cal region revealed that it might have been a remnant
of a prebiotic machine for chemical bonding, which
is still functioning within all of the contemporary
ribosomes. Importantly, this twofold rotational sym-
metry operation relates the backbone and the
nucleotide orientations of its two sub-regions, but
not the RNA sequences. The existence of the sym-
metrical fold, regardless of the non-symmetrical
sequence, indicates the superiority of function over
sequence preservation.

The striking architecture of the symmetrical region
positions the ribosome’s tRNA substrates in a favour-
able stereochemistry for peptide bond formation, for
Phil. Trans. R. Soc. B (2011)
nascent protein elongation, for substrate-mediated
catalysis and for directing the newly formed protein
into its exit tunnel. It also confines the void required
for the motions involved in substrate translocation
within the PTC, a key component of nascent protein
elongation, namely the ribosome’s polymerase activity.
In particular, examination of the mode of binding of a
tRNA mimic showed that the bond connecting its 30

end with the tRNA acceptor stem coincides with the
imaginary rotation axis of the symmetrical region.
Hence, the tRNA translocation involves two correlated
motions: mRNA/tRNA shift and a rotation of the tRNA
single-stranded aminoacylated-30 end (figure 2a). This
rotatory motion is navigated and guided by the riboso-
mal architecture, which provide the scaffold of a pattern
composed of essential nucleotides [19].
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This motion results in stereochemistry optimal for
peptide bond formation and in geometry ensuring that
nascent proteins entrance into their exit tunnel. The
rotatory passage of the A-site tRNA 30 end into
the P-site allows the creation of the reaction transition
state (figure 2b) [18], vacates the space at the A-site for
the entrance of the next aminoacylated tRNA and results
in the entrance of the 30 end of the A-site tRNA into the
P-site, thus assisting the release of the P-site leaving
group and ensuring the processivity of protein biosyn-
thesis. It is worth noting that the rotatory motion
positions the proximal 20-hydroxyl of P-site tRNA A76,
which is involved in substrate-mediated acceleration
[20], in the same position and orientation found in crys-
tals of the entire ribosome with mRNA and tRNAs, as
determined independently in two laboratories [6,7].
3. AN RNA APPARATUS FOR CHEMICAL
BONDING
Within the contemporary ribosome, this entity has a
pocket-like structure, with a shape that seems to be
capable of maintaining stable conformation as an inde-
pendent chemical entity with ribozyme catalytic
capabilities (figures 1c and 2c). Hence it appears to
be a relic of an ancient ribozyme that was capable of
catalysing various RNA-involved reactions, which
was adopted by the amino acids once they appeared
and invaded the RNA world. Then it could have
evolved into a molecular machine for peptide bond
formation and non-coded amino acid polymerization,
which was later optimized to become a pocket in
which each half hosts a slightly different substrate.

The backbone fold of each half of this semi-
symmetrical region resembles motifs identified in
various ‘ancient’ as well as ‘modern’ natural RNA
molecules of comparable size, consisting mainly of
stem-elbow-stem motifs. Examples are tRNA, gene
regulators, riboswitches, RNA polymerases, ribozymes
catalysing phosphodiester cleavage, RNA processing
and RNA modification. Many of these ribozymes are
also believed to be remnants from the prebiotic world,
which are supposed to be sufficiently stable to survive
environmental alterations and evolutionary stresses.

It was shown recently that certain RNA bases could
have been produced under prebiotic conditions [21].
Additionally, it was shown that RNA can replicate
itself [22–24] and ribozyme-catalysed transcription of
an active ribozyme from an RNA template has been
demonstrated [25]. Hence, a dimeric RNA pocket
could have been formed from two self-folded RNA
chains of identical, similar or different sequences,
either spontaneously or by gene duplication or gene
fusion. Dimerization in a pseudo-symmetrical manner
could have occurred spontaneously, by using surface
complementarity obtained by tertiary interactions
(e.g. the common GNRA tetra loop (where G is
guanine, N is any nucleotide, R is any purine and A is
adenine) and the abundant and ubiquitous ‘A-minor’
structural motif), or assisted by other molecules
acting as small chaperones that offer stabilization.
According to our hypothesis, this may have been the
way the ancient bonding machine was formed. Thus,
the suggested proto-ribosome could have been
Phil. Trans. R. Soc. B (2011)
constructed from the two symmetry related ribosomal
core units, each composed of about 60–90 nucleotides
forming two helices connected via an elbow, namely a
single-stranded region.

Activated amino acids could be the suitable sub-
strates of the ancient machine. These could be
formed by their attachment to nucleotides, exploiting
rather common reactions that were shown to occur
by diverse processes [26–29]. Hence mono, di- and
tri-nucleotides could carry the amino acids to the
bonding pocket-like entity. Previous studies indicated
that the suggested pocket-like entity (namely the
proto-ribosome) could have accommodated amino
acids bound to up to three nucleotides [13–17].

Conceptually, the initial dipeptides could be elongated
and form oligopeptides via the same reaction principles.
The existence of well-performing polypeptides, catalys-
ing fundamental reactions and/or stabilizing the
machine producing them, may have led to the emergence
of the genetic code. It is conceivable that initially short
oligopeptides were produced accidentally. Among
them, those that could provide additional structural sup-
port for the synthetic apparatus that produced them
could attach to it and form structural arrangements
similar to protein–RNA interactions of the contem-
porary ribosome. According to this suggestion, the
proto-ribosome produced peptides with amino acid
composition that was sufficiently biased for fulfilling
simple tasks, giving a selective advantage.

We are assessing the feasibility of the existence of a
dimeric proto-ribosome capable of the formation of
chemical bonds according to the following scheme.
First, we are assessing the tendency of various RNA
chains to dimerize and form a pocket-like entity
(figures 1c and 2c). Pocket formation by dimerization is
supported by the finding that mutations in the regions
involved in A/P interaction (figure 2c) within the
contemporary ribosome prevented dimerization. A note-
worthy example is the segment introduced by us into the
construct that is composed of the GNRA tetra loop con-
taining an A-minor interaction (A-minor interactions
involve adenine and the minor groove of an RNA
double helix) that seems to stabilize the pocket.

Among the various RNA segments that have been
synthesized in vitro, several, albeit not all chains with
sequences resembling those observed in the contempor-
ary ribosome, formed dimers that may adopt a
‘pocket-like’ structure. So far, a marked preference for
dimerization was detected for sequences resembling
the P-region of the PTC, including those that underwent
so-called ‘mutational’ alterations by in vitro mutagen-
esis, introduced in the regions that connect the two
symmetrical halves of our constructs (figure 2c).
Remarkably, P-loop incorporation (figure 2d) into the
RNA constructs did not prevent dimerization. These
dimers are tested for their ability to bind small mol-
ecules, nucleotides and amino acids conjugated with
short nucleotides. Preliminary results indicated detect-
able binding of several compounds representing RNA
world components.

So far, particularly noticeable preference to dimerize
was observed for sequences identical to or resembling
the P-region of the PTC, contrary to those that are simi-
lar to the A-site region. This unexpected observation
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Figure 3. The similarities and differences between the A- and the P-sites. In all panels, the A-site and P-site tRNAs are shown
in blue and green, respectively. (a) View into the symmetrical region as appears within the contemporary ribosome. (b) View
from a direction similar to that shown in (a) of the predicted structure of a construct made of two P-regions. One of them is in
its native position, and the second superposed on the native position of the A-region, thus mimicking the suggested ‘all
P-region proto-ribosome’. (c) Superposition of the A- and P-regions in the contemporary ribosome, highlighting the

differences between them, which may have resulted from evolving optimization.
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may indicate that the precursor of the ancient ‘pre-
proto-ribosome’ machine was built mainly by the dimer-
ization of the P-portion of the symmetrical region. The
reasons for this preference are still to be clarified. It
may result from a higher structural, chemical or func-
tional stability. This preference may indicate that the
proto-ribosome (or the pre-proto-ribosome) was com-
posed of a dimer of the P-region (figure 3a,b), which is
in accord with the contemporary accommodation of
the initial tRNA at the P-site of the PTC. Similar
preference was observed for semi-random-sequence
constructs of size and base pair composition with poten-
tial to self-fold into conformations resembling the
ribosome symmetrical region, presumably owing to the
above considerations [13–17]. The non-uniform ten-
dency to dimerize of selected RNA sequences over
very similar, though not identical, ones indicates that
survival of the fittest and natural selection seemed to
play a major role in the prebiotic world, although these
properties are commonly related to the evolution of
species. Regardless of the reason, the above findings
point to gene duplication as the preferred pathway of
the natural production of the proto-ribosome.

The emergence of coded translation that includes
the growing complexity of the ribosome into the size
and shape allowing programmed translation could
have occurred as a consequence of the survival of
those oligopeptides that were produced accidentally,
but became useful in the RNA world. Their existence
could have been the driving force for the production
of some kind of replication machinery. Coevolution
of the proto-ribosome into the modern complex
Phil. Trans. R. Soc. B (2011)
molecular machine may have led to the small, albeit
significant, differences between the A- and the
P- regions (figure 3c) dictating the involvement of car-
riers that could decode while bound to the cognate
amino acid, namely the tRNA molecules, similar to
the opinion discussed by Di Mauro [30]. This sugges-
tion is in accord with the results of the analysis of the
intra-RNA interactions within the ribosome [31] as
well as with the conclusion of a study in which the
ribosome was examined from the opposite direction,
namely from the surface into the core [32]. Further
support for the existence of a proto-ribosome as a
pocket-like bonding machine that can host two sub-
strates required for peptide bond formation (that
later evolved into the aminoacylated and peptidyl-
ated tRNAs) is provided by the finding that, in
contrast to the very high conservation of the A- and
P-sites, variability in the shape and the environment
of the site of the exiting tRNA molecule (E-site)
have been observed [33].
4. CONCLUSIONS
Here, we suggest that a vestige of an RNA apparatus
with ribozyme capabilities is embedded and functions
within the modern ribosome. We advocate the existence
of a chemical prebiotic machine, originating from
an oligonucleotide and proceeding via a self-folded
unit into a self-assembled dimer, thus producing a
chemical pocket that could turn into an apparatus for
peptide bonds formation. Internal interactions could
have stabilized it. Hence, it could have survived
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and functioned on its own. However, additional
interactions, e.g. with its own products, non-coded
oligopeptides, could have contributed to its stability.
This hypothesis requires the existence of self-replicating
RNA molecules that can fold and create a pocket with
catalytic capabilities.

In short, the ribosome’s architecture hints at its
evolutionary pathway. Thus, it seems that the proto-
ribosome was originally an RNA dimeric machine for
performing RNA needs prior to the appearance of
amino acids. The amino acids snatched it and turned
it into an efficient machine producing proteins.
Originally, small oligopeptides were formed. Those
found to be useful have survived and led to the creation
of a mechanism for duplicating themselves. This
suggests that the more fit proto-ribosome products
guided the appearance of the genetic code, namely the
genetic code was created according to its products.
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3.5 Å resolution. Science 310, 827–834. (doi:10.1126/
science.1117230)

6 Korostelev, A., Trakhanov, S., Laurberg, M. & Noller,
H. F. 2006 Crystal structure of a 70S ribosome-tRNA

complex reveals functional interactions and rearrange-
ments. Cell 126, 1065–1077. (doi:10.1016/j.cell.2006.
08.032)

7 Selmer, M., Dunham, C. M., Murphy IV, F. V., Weixl-
baumer, A., Petry, S., Kelley, A. C., Weir, J. R. &

Ramakrishnan, V. 2006 Structure of the 70S ribosome
complexed with mRNA and tRNA. Science 313, 1935–
1942. (doi:10.1126/science.1131127)

8 Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M.
2010 Crystal structure of the eukaryotic ribosome.

Science 330, 1203–1209. (doi:10.1126/science.1194294)
9 Katunin, V. I., Savelsbergh, A., Rodnina, M. V. &

Wintermeyer, W. 2002 Coupling of GTP hydrolysis by
elongation factor G to translocation and factor recycling

on the ribosome. Biochemistry 41, 12 806–12 812.
(doi:10.1021/bi0264871)
Phil. Trans. R. Soc. B (2011)
10 Bashan, A. et al. 2003 Structural basis of the ribosomal
machinery for peptide bond formation, translocation,
and nascent chain progression. Mol. Cell 11, 91–102.

(doi:10.1016/S1097-2765(03)00009-1)
11 Agmon, I., Bashan, A., Zarivach, R. & Yonath, A. 2005

Symmetry at the active site of the ribosome: structural
and functional implications. Biol. Chem. 386, 833–844.
(doi:10.1515/BC.2005.098)

12 Sharma, M. R., Koc, E. C., Datta, P. P., Booth, T. M.,
Spremulli, L. L. & Agrawal, R. K. 2003 Structure of the
mammalian mitochondrial ribosome reveals an expanded
functional role for its component proteins. Cell 115,

97–108. (doi:10.1016/S0092-8674(03)00762-1)
13 Agmon, I., Bashan, A. & Yonath, A. 2006 On ribosome

conservation and evolution. Isr. J. Ecol. Evol. 52,
359–379. (doi:10.1560/IJEE_52_3-4_359)

14 Davidovich, C., Belousoff, M., Bashan, A. & Yonath, A.

2009 The evolving ribosome: from non-coded peptide
bond formation to sophisticated translation machinery.
Res. Microbiol. 160, 487–492. (doi:10.1016/j.resmic.
2009.07.004)

15 Bashan, A., Belousoff, M. J., Davidovich, C. & Yonath, A.

2010 Linking the RNA world to modern life: the proto-
ribosome conception. Orig. Life Evol. Biosph. 40, 425–429.

16 Davidovich, C., Belousoff, M., Wekselman, I., Shapira,
T., Krupkin, M., Zimmerman, E., Bashan, A. &
Yonath, A. 2010 The proto-ribosome: an ancient nano-

machine for peptide bond formation. Isr. J. Chem. 50,
29–35. (doi:10.1002/ijch.201000012)

17 Belousoff, M. J. et al. 2010 Ancient machinery
embedded in the contemporary ribosome. Biochem.
Soc. Trans. 38, 422–427. (doi:10.1042/BST0380422)

18 Gindulyte, A., Bashan, A., Agmon, I., Massa, L.,
Yonath, A. & Karle, J. 2006 The transition state for for-
mation of the peptide bond in the ribosome. Proc. Natl
Acad. Sci. USA 103, 13 327–13 332. (doi:10.1073/

pnas.0606027103)
19 Sato, N. S., Hirabayashi, N., Agmon, I., Yonath, A. &

Suzuki, T. 2006 Comprehensive genetic selection
revealed essential bases in the peptidyl-transferase
center. Proc. Natl Acad. Sci. USA 103, 15 386–15 391.

(doi:10.1073/pnas.0605970103)
20 Weinger, J. S. & Strobel, S. A. 2006 Participation of

the tRNA A76 hydroxyl groups throughout translation.
Biochemistry 45, 5939–5948. (doi:10.1021/bi060183n)

21 Powner, M. W., Gerland, B. & Sutherland, J. D. 2009

Synthesis of activated pyrimidine ribonucleotides in pre-
biotically plausible conditions. Nature 459, 239–242.
(doi:10.1038/nature08013)

22 Pino, S., Ciciriello, F., Costanzo, G. & Di Mauro, E. 2008

Nonenzymatic RNA ligation in water. J. Biol. Chem. 283,
36 494–36 503. (doi:10.1074/jbc.M805333200)

23 Costanzo, G., Pino, S., Ciciriello, F. & Di Mauro, E.
2009 Generation of long RNA chains in water. J. Biol.
Chem. 284, 33 206–33 216. (doi:10.1074/jbc.M109.

041905)
24 Lincoln, T. A. & Joyce, G. F. 2009 Self-sustained repli-

cation of an RNA enzyme. Science 323, 1229–1232.
(doi:10.1126/science.1167856)

25 Wochner, A., Attwater, J., Coulson, A. & Holliger, P.

2011 Ribozyme-catalyzed transcription of an active ribo-
zyme. Science 332, 209–211. (doi:10.1126/science.
1200752)

26 Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M.
1995 Aminoacyl-RNA synthesis catalyzed by an RNA.

Science 267, 643–647. (doi:10.1126/science.7530860)
27 Giel-Pietraszuk, M. & Barciszewski, J. 2006 Charging of

tRNA with non-natural amino acids at high pressure.
FEBS J. 273, 3014–3023. (doi:10.1111/j.1742-4658.
2006.05312.x)

http://dx.doi.org/10.1126/science.289.5481.905
http://dx.doi.org/10.1016/S0092-8674(00)00084-2
http://dx.doi.org/10.1038/35030006
http://dx.doi.org/10.1038/35030006
http://dx.doi.org/10.1016/S0092-8674(01)00546-3
http://dx.doi.org/10.1126/science.1117230
http://dx.doi.org/10.1126/science.1117230
http://dx.doi.org/10.1016/j.cell.2006.08.032
http://dx.doi.org/10.1016/j.cell.2006.08.032
http://dx.doi.org/10.1126/science.1131127
http://dx.doi.org/10.1126/science.1194294
http://dx.doi.org/10.1021/bi0264871
http://dx.doi.org/10.1016/S1097-2765(03)00009-1
http://dx.doi.org/10.1515/BC.2005.098
http://dx.doi.org/10.1016/S0092-8674(03)00762-1
http://dx.doi.org/10.1560/IJEE_52_3-4_359
http://dx.doi.org/10.1016/j.resmic.2009.07.004
http://dx.doi.org/10.1016/j.resmic.2009.07.004
http://dx.doi.org/10.1002/ijch.201000012
http://dx.doi.org/10.1042/BST0380422
http://dx.doi.org/10.1073/pnas.0606027103
http://dx.doi.org/10.1073/pnas.0606027103
http://dx.doi.org/10.1073/pnas.0605970103
http://dx.doi.org/10.1021/bi060183n
http://dx.doi.org/10.1038/nature08013
http://dx.doi.org/10.1074/jbc.M805333200
http://dx.doi.org/10.1074/jbc.M109.041905
http://dx.doi.org/10.1074/jbc.M109.041905
http://dx.doi.org/10.1126/science.1167856
http://dx.doi.org/10.1126/science.1200752
http://dx.doi.org/10.1126/science.1200752
http://dx.doi.org/10.1126/science.7530860
http://dx.doi.org/10.1111/j.1742-4658.2006.05312.x
http://dx.doi.org/10.1111/j.1742-4658.2006.05312.x


2978 M. Krupkin et al. The proto-ribosome
28 Lehmann, J., Reichel, A., Buguin, A. & Libchaber, A.
2007 Efficiency of a self-aminoacylating ribozyme:
effect of the length and base-composition of its 30 exten-

sion. RNA 13, 1191–1197. (doi:10.1261/rna.500907)
29 Turk, R. M., Chumachenko, N. V. & Yarus, M. 2010

Multiple translational products from a five-nucleotide
ribozyme. Proc. Natl Acad. Sci. USA 107, 4585–4589.
(doi:10.1073/pnas.0912895107)

30 Di Mauro, E. 2010 On the emergence of pre-genetic
information. J. Cosmol. 10, 3381–3387.
Phil. Trans. R. Soc. B (2011)
31 Bokov, K. & Steinberg, S. V. 2009 A hierarchical model
for evolution of 23S ribosomal RNA. Nature 457,
977–980. (doi:10.1038/nature07749)

32 Hsiao, C., Mohan, S., Kalahar, B. K. & Williams, L. D.
2009 Peeling the onion: ribosomes are ancient molecular
fossils. Mol. Biol. Evol. 26, 2415–2425. (doi:10.1093/
molbev/msp163)

33 Fox, G. 2010 Origin and evolution of the ribosome. Cold
Spring Harb. Perspect Biol. 2, a003483. (doi:10.1101/
cshperspect.a003483)

http://dx.doi.org/10.1261/rna.500907
http://dx.doi.org/10.1073/pnas.0912895107
http://dx.doi.org/10.1038/nature07749
http://dx.doi.org/10.1093/molbev/msp163
http://dx.doi.org/10.1093/molbev/msp163
http://dx.doi.org/10.1101/cshperspect.a003483
http://dx.doi.org/10.1101/cshperspect.a003483

	A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome
	Introduction
	The ribosomal symmetrical region
	AN RNA APPARATUS FOR CHEMICAL BONDING
	Conclusions
	We thank the ribosome group at the Weizmann Institute for participating in the experiments reported and for useful discussions and comments. This work was supported by National Institutes of Health grant GM34360 and by the Kimmelman Centre for Macromolecular Assemblies. A.Y. holds the Martin and Helen Kimmel Professorial Chair.
	REFERENCES


