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Abstract

Background: Large-scale genome sequencing poses enormous problems to the logistics of laboratory work and data
handling. When numerous fragments of different genomes are PCR amplified and sequenced in a laboratory, there is a high
immanent risk of sample confusion. For genetic markers, such as mitochondrial DNA (mtDNA), which are free of natural
recombination, single instances of sample mix-up involving different branches of the mtDNA phylogeny would give rise to
reticulate patterns and should therefore be detectable.

Methodology/Principal Findings: We have developed a strategy for comparing new complete mtDNA genomes, one by
one, to a current skeleton of the worldwide mtDNA phylogeny. The mutations distinguishing the reference sequence from a
putative recombinant sequence can then be allocated to two or more different branches of this phylogenetic skeleton.
Thus, one would search for two (or three) near-matches in the total mtDNA database that together best explain the
variation seen in the recombinants. The evolutionary pathway from the mtDNA tree connecting this pair together with the
recombinant then generate a grid-like median network, from which one can read off the exchanged segments.

Conclusions: We have applied this procedure to a large collection of complete human mtDNA sequences, where several
recombinants could be distilled by our method. All these recombinant sequences were subsequently corrected by de novo
experiments – fully concordant with the predictions from our data-analytical approach.
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Introduction

With the progress of large-scale genome sequencing in recent

years, researchers are now beginning to explore the possibilities of

detecting errors and improving the overall quality of sequencing

results. For instance, numerous discrepancies between reported

mRNA sequences and the July 2003 human genome sequence (for

the 22 autosomes and two sex chromosomes) have been discovered

[1], although an estimated upper bound of approximately four

discrepancies for every 10,000 bases might not seem dramatic at

first sight. Improvement on a program (base caller) that turns the

fluorescent signal intensities detected by an automated sequencer

into a DNA sequence could, for example, lower the error rate

considerably [2]. The human genome project originally sought to

attain an overall error rate of less than one error per 10,000 base

pairs. If this error rate applied to the sequencing of the entire

human mitochondrial genome comprising about 16,570 base

pairs, then the majority of complete mtDNA sequences in a

database would carry one or more incorrect bases – which was

typically attained by the earliest sequencing attempts of the past,

but most recent clinical mtDNA studies do not fare better and

sometimes much worse [3–5]. Stipulating that two complete human

mtDNA sequences sampled in some geographic region could

typically differ in approximately 30 bases, then about 10% of the

mismatches would be due to artefacts, under an error rate of

1:10,000. Such an amount of errors, however, would be far too high

for most medical and forensic studies of human mtDNA. For

instance, in investigating whether specific mtDNA variation is

associated with certain complex diseases [6], systematic sequencing

errors can lead to spurious positive associations with the trait or

erroneous speculations about the role of the mtDNA variants in the

expression of the disease. In the forensic context, even a single error

could be crucial in a case where the whole potential of the mtDNA

genome would be explored [7]. There is some hope that complete

mtDNA sequencing could reach a much higher quality level (by

perhaps two orders of magnitude) when stringent lab routines are

followed and overlapping sequencing of both strands is applied, such

as may have been achieved with the data produced by [8].

After a phase of pioneering work of complete sequencing of the

human mitochondrial genome in the past decade, new sequencing
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results, whether complete or partial, would no longer arrive in

empty data space. Thus, every single datum can be compared to

an analyzed database covering a good portion of the worldwide

mtDNA variation. Since homoplasy in the coding region reaches

only moderate levels for human mtDNA, estimation of an mtDNA

phylogeny does in general not pose serious problems, quite in

contrast to the situation with the limited information from the three

hypervariable segments (HVS-I, HVS-II, and HVS-III) of the

control region. In particular, the major branches (‘‘limbs’’) of the

East Asian mtDNA phylogeny were already well documented a few

years ago [9,10], together carrying .95% of the major East Asian

mtDNA haplogroups. Some deep branches that are quite rare and

numerous younger branches (‘‘twigs’’) of the phylogeny are only

beginning to emerge with more extensive sampling [11–14].

In principle, one can foresee three kinds of errors that may occur

in virtually every mtDNA database: (1) sample mix-up or

contamination (incurred during sample handling [4,15–18]; (2)

phantom mutations (arising through the sequencing process itself

[19–23]; and (3) clerical errors and oversights of mutations

(constituting a documentation problem [3,24]. For a more detailed

classification scheme of error patterns in mtDNA data, see [24–27].

The original coding-region data published by [28] constituted a

prime example of mtDNA data affected by a considerable number of

phantom mutations; see [29] for an announcement of correction.

Sample mix-up seems to be the most insidious source of error,

which e.g. is mainly responsible for the dramatic situation with

studies on seeming mtDNA instability in tumorigenesis [4] and in

single-cell analysis [30]. To give another example, the SWGDAM

forensic database [31], sponsored by the Federal Bureau of

Investigation (FBI), comprising 4,839 combined HVS-I/HVS-II

sequences, suffered from both clerical errors and artificial

recombination [16,17]. This database has been revised in a

piecemeal fashion [32,33], but documentation errors and artificial

recombinants still persist [26]. Once sample mix-up affected a data

set, mere re-reading of electropherograms would not be sufficient,

but considerable efforts (including re-amplification and re-

sequencing) are needed to cleanse the data from all potential

artificial recombinants.

There are several strategies to detect anomalies in large data

sets. Artificial recombinants of separate segments from different

samples or other systematic errors could e.g. be discovered by the

strongest reticulate signals in the data set through quartet-window

analysis [34]. This method essentially is a character-based 4-taxon

approach, where all quartets of taxa (haplotypes) are screened for

incompatibilities between the parsimoniously informative sites

relative to each quartet under investigation. A box network can

visualize the thus distilled variation. The biggest boxes, reflecting

the most extreme instances of mutual incompatibilities, can be

expanded to more complex networks by comparing all haplotypes

with respect to the same distilled set of sites that participated in the

quartet box; see Fig. 11 of [35] and Fig. 6 of [34] for pertinent

examples. The location of the haplotypes within the network may

then suggest that an aberrant haplotype was generated through

systematic errors such as sample mix-up rather than through

natural homoplasy.

In a situation where sufficient data for comparison are available,

a simple classificatory approach can help to detect a mosaic

compound sequence stemming from different samples. In fact,

idiosyncrasies of new data will mainly be manifest on the terminal

branches connecting the new sequences to the mtDNA tree (for

details, see below). Elson and Lightowlers proposed ‘‘to identify

genomes with suspect combinations of markers that potentially

indicate mtDNA recombination’’ [36]. First, the presence of

certain characteristic mutations in a sequence suggests its

approximate location in an mtDNA tree. Second, those mutations

which are then seemingly private but do not ‘fit’ as they also occur

en bloque in other parts of the mtDNA tree would suggest an

alternative affiliation. If these ‘homoplasious’ mutations clustering

on a single branch of the mtDNA tree are located within one or

two amplicons, then we get a clear indication of artificial

recombination. This can, for instance, be observed in Fig. 1A of

[37]: the extremely long terminal branch of sample ND168 (from

the haplogroup slot ‘‘M7a2’’) exclusively carries recurrent

mutations, six of which (all from the region 12406–14002) are

also found along the pathway between sample TC20 (slot ‘‘F1a1’’)

and the tree root in Fig. 2 of [37].

There is, however, a limitation to this approach when applied to

a tree that is built upon existing data as well as a particular data set

that comes under scrutiny. The inclusion of recombined sequences

would slightly transform a tree, especially in the vicinity of

multifurcation nodes. Any missed basal mutation could lead to a

deeper branching and thereby distort the real temporal order of

mutations without necessarily creating artificial homoplasy.

Furthermore, if an ‘‘exchanged’’ mutation from the recombined

segment stemming from another branch of the mtDNA phylogeny

showed up on a terminal branch, the alarm bells would not ring

because single recurrent mutations are frequently observed along

terminal branches of any human mtDNA tree. Another difficulty is

that exchanged fragments may stem from different continental

samples which are used in different studies. A most recent

discovery, concerning our own data, could identify a laboratory

exchange of one segment (carrying two mutations, A4732G and

G5147A) between the Ojibwa mtDNA sequence described in

Table 3 of [38] and the Yakutian mtDNA sequence (GenBank

Acc. No. DQ272125) [11]. Anyway, most laboratories have large

sample collections from which only a subset is drawn for complete

sequencing, so that an exchanged fragment may stem from a

stored sample that was not targeted in the study.

To address such problems, we propose a formal strategy that can

be carried out manually when reading freshly obtained sequences

against a worldwide or continental mtDNA classification tree. For

the sake of illustration, we apply this method to the mtDNA genome

data reported by [37] which comprise 672 complete mtDNA

genomes that were generated in a two-step PCR approach (the first

PCR generated six long fragments, from which in a second PCR ten

short overlapping segments were amplified each). The recombina-

tion instances we detected are reported here in the form of grid-like

median networks [35], which are each generated by the recombinant

sequence and the evolutionary pathway between the closest relatives

of the two constituents of the sample mix-up approximated from the

total database. Subsequent independent experiments finally con-

firmed that all the distilled recombinants are really artificial, further

substantiating the validity of our approach.

Methods

Prerequisites
Classification tree and nomenclature. Any approach for

allocating novel sequences to the hierarchical scheme of mtDNA

haplogroups would start from a robust classification tree which

focuses on the most basal branches and is estimated from previous

data for the same geographic area or ethnic population under

consideration. The nodes of such a classification tree T comprise

reconstructed ancestral haplotypes inferred from a body of

published complete mtDNA sequences. These haplotypes then

constitute (typically unsampled) branching nodes of the total

mtDNA tree, most of which are here referred to by letter-number

strings (such as M7b1), designating the haplogroup with that
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particular root. Every mutation recorded in T is supported by at

least two samples, so that private mutations of single sequences are

disregarded. As usual, variation in human mtDNA is recorded

relative to the revised Cambridge reference sequence (rCRS) [39].

We employed the updated nomenclature for East Asian mtDNAs

provided by [11].

Since we wished to demonstrate how preliminary phylogenetic

knowledge can assist in detecting recombinants in a large mtDNA

data set, we took the classification tree derived from Fig. 1 of [10]

prior to the publication of Tanaka et al.’s data, with three further

corrections: first, the branch ‘‘C6’’ in that figure should be deleted

as it is part of the Native American branch C1 and thus constitutes

a misnomer; second, the 8027 transition needs to be added to the

Native American branch A2 [38]; third, the 9180 transition is in

fact shared by both branches (D5a and D5b) of D5 (as this

mutation was missed in the originally recorded YN289). We are

thus well aware of the omnipresent risk of inadvertent sample and

data handling. Therefore the employed classification trees must be

under permanent control since novel data sets could, in theory,

challenge the reconstruction of the mutational history of previously

sequenced samples.

Scoring. For every sequence from the classification tree T and

any novel sequence under examination the shared mutations are

evaluated. Counting mutations would be somewhat too simplistic

because some mutations at certain positions may be very unstable

(because of a site-specific mutation rate that is well above average)

and therefore provide little evidence in favor of an artificial cause

rather than natural evolution. We therefore adopt a coarse weighting

scheme for mutations using scores 0, K, 1, 2, and 3, according to

Table 4 of [40], which is reproduced here as Table 1. The highest

score, 3, is assigned to transversions in the coding region (577–16023)

except for the relatively frequent event G13928C and to indels

(insertions and deletions) except for C indels scored at position 965

and for indels hitting spacer regions between mtDNA genes. The

lowest score, 0, is assigned to length polymorphisms of the two well-

known C runs and the CA repeats located in the three hypervariable

segments of the control region. The vast majority of substitutions in

the control region have score 1 and transitions in the coding region

have score 2, whereas a minority of ‘speedy’ transitions each receive

half that weight. Some rare contiguous indels that are more complex

may require ad hoc scoring as one or two character changes.

Determination of Constituents in a Sample Mix-Up. The

rationale for the multiple allocation procedure is that certain

blocks of mutations express potential affinities of a mosaic

sequence to different parts of the known mtDNA phylogeny.

Since the quality of complete sequencing results is not known in

advance and thus can vary across studies, we cannot stipulate that

sequences under examination have always been well read and

documented, so that multiple omissions of mutations, for whatever

reason, should be anticipated (see e.g. [3]). Such systematic

oversights would act as a virtual crossover with the rCRS in the

reading and documentation process. Further, we cannot know in

advance how many constituents a mosaic sequence possesses.

Therefore, in a first round, we recognize the broad haplogroup

status of a sequence under scrutiny and then determine its primary

constituent that could cover/explain most (weighted) mutations. In

a second round, we then exclusively consider the mutations not yet

covered, some of which (in conjunction) could point to a different

haplogroup affiliation and thus serve as positive evidence for the

existence of a secondary constituent. In a third round, we seek for

evidence that blocks of specific mutations of the primary

constituent are missed, given its affiliation in the tree.

The allocation process then has two (or more) iterations. In the

first iteration, one seeks a best allocation of the novel sequence to a

node of the classification tree T that explains most of the

(weighted) mutations relative to rCRS and subsequently searches

Table 1. Preliminary weighting scheme for mtDNA mutations [40]

Weight Region Type of Mutation Mutation/Site/Fragment

0 HVS-I C run length polymorphism 16182C, 16183C, C indels scored at 16193

HVS-II C run length polymorphism C indels scored at 309 and 315

HVS-III Dinucleotide repeat AC indels in 515–524 (alias CA indels in 514–523)

C run length polymorphism C indels scored at 573

K HVS-I & 16519 Transition 16051 16078 16086 16092 16093 16111 16114 16124 16126 16129 16140 16145 16147 16148 16150
16163 16172 16173 16176 16186 16187 16189 16192 16193 16209 16212 16213 16214 16216 16217
16223 16227 16231 16232 16234 16235 16239 16240 16241 16242 16245 16249 16255 16256 16257
16258 16260 16261 16263 16264 16265 16266 16270 16274 16278 16284 16287 16288 16290 16291
16292 16293 16294 16295 16296 16298 16300 16301 16304 16309 16311 16316 16319 16320 16325
16327 16335 16352 16354 16355 16356 16357 16360 16362 16390 16519

Transversion 16111A 16188A 16265C

Indel 16166del

HVS-II Transition 93 146 150 151 152 182 183 185 189 194 195 198 199 200 204 207 228

HVS-III Transition 499

Coding Transition, indel 709, C indels scored at 965

1 Control Any All remaining mutations (not listed above)

Coding Transition 1438 1598 1719 1888 3010 3394 5147 5231 5460 5821 6182 6221 7055 8251 8790 9545 9554 9950 10398
11914 12007 12172 12501 13105 13359 13368 13708 13966 14110 15110 15217 15514 15924 15930

Transversion 13928C

2 Coding Transition All remaining transitions (not listed above)

Spacer indel Indels within 3305–3306 4401 5577–5586 5656 5892–5903 7517 8270–8294 8365 14743–14746 15954

3 Coding Transversion/indel All remaining transversions/indels (not listed above)

doi:10.1371/journal.pone.0003016.t001
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for a closest representative beyond this ancestral sequence in the

total database (including the new data under examination). This,

in the case of a recombinant event, will determine the primary

constituent of the potential sample mix-up as represented by a

closely related sequence that is available in the total database.

Then, in the second iteration, one searches for another node in the

tree T which covers most of the remaining ‘‘private’’ mutations in

the novel sequence not yet covered by the first putative

constituent. This will point to the second constituent of the

potential mix-up. If necessary, one could continue the search for a

third constituent covering part of the yet unexplained variation

relative to the reference sequence, but the recombination events

we have encountered so far seem to involve only two clearly

discernible constituents.

Primary Classification. For every novel sequence s under

examination we search the relevant classification tree T for

(ancestral) sequences represented by nodes that cover the

maximum score of mutations of s relative to rCRS. Among

those ancestral nodes attaining the maximum score we select one,

t, that determines a path to the rCRS minimal with respect to

inclusion. If more than one minimal choice was possible, the

alternative(s) would be stored and explored as well. Then we

search the total complete mtDNA genome database for any

further sequence(s) u, for which the evolutionary pathway

connecting u to the rCRS would pass through t so that

additional mutations (if present) seen in s could be covered by u.

Secondary Classification. The mutations of s which are not

yet covered by the first companion u are screened in the classification

tree as in the preceding step. Hence we determine another ancestral

node t’ from the classification tree that captures the maximum score

of those remaining mutations of s and determines a minimal path to

the rCRS. Then, as before, we screen the total database for any

further sequence(s) u’ beyond t’, for which the evolutionary pathway

connecting u’ to the rCRS would pass through t’ so that as many of

the ‘‘private’’ mutations finally left in s as possible are covered by u’.

The remaining unmatched mutations would then indicate private

variants (generally assigned to the major constituent), unless a

tertiary classification would capture a good share of the variants not

yet covered.

Thresholds. Since homoplasy may confound the classifica-

tion of novel sequences, we apply a moderate threshold for

allocation to nodes of the classification tree in order to avoid

hypersensitivity of the method. The threshold has to be adjusted to

the task in question and may be chosen dependent on the structure

of the tree in the vicinity of each node. Here we propose a score 2

threshold for the first round of the secondary classification. This

implies, in particular, that the presence of a single homoplasious

transition in the control region would not be enough to pursue the

search. That is, we scan the database beyond a particular node

from the classification tree only when score 2 is reached for the

mutations covered that far. After scanning, we then require that

the secondary constituent of a potential recombination instance

cover mutations of total score 3 or higher. Thus, a single coding-

region transition would not suffice at this stage. For internal lab

routines executed on batches of freshly obtained sequences, one

may of course handle a lower threshold in order to increase the

sensitivity of this kind of a posterior control (at the expense of

‘unsuccessful’ re-reading and re-sequencing efforts).

The strength of a recombination instance is finally expressed by

the minimum of the total scores of ‘false’ nucleotide variants

relative to the primary and secondary constituents. For a clear-cut

recombination instance we would require a total score at least 6.

This score can be read off from the graphical display (see below) by

adding up the scores of mutations (that do not cancel each other)

along the vertical links – provided that the dominant constituent is

scored by the mutations along the links drawn horizontally.

Graphical Display
Pathway between constituents. We reconstruct the pathway

P between the two approximate constituents u and u’ according to

the total tree, capturing all intermediate branching nodes from the

tree. The role of the branching points is to interrupt the otherwise

arbitrary order of mutational events separating the two constituents;

mutations attached to a single link, however, remain unordered; for

convenience, they are listed in the natural order. In a diagram we

label each node by the code of the haplogroup for which the

corresponding sequence is the most recent common ancestor. The

point to which the rCRS has to be attached is highlighted.

Median network. For any set S of aligned binary sequences,

the median network comprises as nodes all sequences that can be

successively generated from S by taking majority consensus, so that

the links constitute the minimum spanning network for the total

node set [35,41]. The links are labeled by the mutational events. In

the case of the evolutionary path P between the approximate

constituents u and u’ of a putative recombinant s, the set S is

formed by s and all nodes of P. Since the mutations labeling the

links of P are reconstructed events, any recurrent mutations are

formally treated as mutations hitting different sites [41]. The

median network generated by this particular set S has a simple

two-dimensional structure: namely, it is a ‘‘half-grid’’ for which the

mutations on the horizontal line segments correspond to the

mutations of the recombinant s covered by the primary constituent

u, whereas the mutations along the vertical links are those covered

by the secondary constituent u’. Private mutations for u, u’, or s are

allocated to the corresponding terminal links.

Reconstruction of the Recombination Event. Before we

may infer that artificial recombination acted upon the sample under

examination, it is desirable to find a simple explanation for the

apparently false mutations. First, the mutations must be allocated to

the (overlapping) fragments/segments of the particular sequencing

procedure. For a two-step PCR approach (as used by [37]), we would

highlight only the long fragments of the first PCR analysis provided

that the exchange of whole fragments testifies to some sample mix-up

and would thus explain the recombinant pattern. Segments of the

second PCR analysis (especially covering overlap regions of two

fragments) are highlighted whenever they show a pattern deviating

from the remainder of the involved fragments/segments. Such

exceptions would then require some explanation. Especially for the

cases (obtained in the second round) where the evidence for potential

sample mix-up is dominated by the missed mutations, we need a

convincing exchange pattern that characterizes this case as a

recombination instance and distinguishes it from mere oversight of

mutations due to poor base calling or inadvertent documentation.

Finally, following a parsimonious principle, we would aim at

merging two recombination instances into one crossover instance

whenever possible (by substituting potential constituents yielding

nearly the same score – if necessary).

Results

Phantom Mutations versus Recombination
To give an example of a median network generated from a single

sequence together with an evolutionary pathway between two other

sequences, take the mtDNA sequence #171 and the pathway

between sequences #066 and #247 from the uncorrected data set of

[28]. These sequences can still (as of December 2007) be found in the

mtDB database (http://www.genpat.uu.se/mtDB/) by searching for

the mutations C13782A (#66), T14463G (#171), and G7702A

Distilling mtDNA Recombinants
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(#241), and then by downloading the corresponding sequences

directly via GenBank (#66 = EF657754, #171 = EF657311, and

#247 = EF657395). Sequence #066 is a member of the West

Eurasian haplogroup K1a1a [42], whereas sequence #247 belongs

to a subhaplogroup of the Native American haplogroup A2

characterized by three mutations (at positions 1598, 1888, and

12811). Figure 1a displays, in particular, the evolutionary pathway

between #66 and #247, which descends through a nested array of

ancestral haplotypes (marked in the figure by the corresponding

haplogroup names) from the K1a1a type down to the root of

haplogroup N and then ascends to the particular A2 haplotype.

Sequence #171 is closely related to sequence #247 but shares the

transversion pair C7927G and C7985G with the unrelated sequence

#066. This leads to ladder-like reticulation that runs through the

entire non-private part of the evolutionary path.

With respect to our scoring scheme, the vertical part of the

network of Fig. 1a weighs 6 units, thus indicating a conspicuous

reticulate signal. Nonetheless, this instance would not pass through

the first stage of our primary classification procedure because no

West Eurasian mtDNA classification tree whatsoever would offer a

link labeled by C7927G and C7985G. This is well and good, because

this case would not constitute a recombination instance but rather

document the action of a phantom mutation process, where artificial

mutations were repeatedly inflicted on phylogenetically unrelated

sequences. In the revised data [29], these and other mutations

disappeared; see also Table 1 of [40] for the fate of six C to G

phantom transversions that were frequent in the original data

set. However, the old data still survive not only in the author’s

web repository (http://mtsnp.tmig.or.jp/mtsnp/search_mtDNA_

sequence_e.html) and in recent publications (e.g. [42]), but also

persist in the mtDB database and the very recent GenBank version

(EF657231 to EF657790; submitted in June 2007).

Nonetheless, if we would use an elaborate West Eurasian

classification tree which improves upon the one given by [43] by

incorporating, for instance, a (corrected) version of the haplogroup

K tree from [42], then, most astonishingly, we get a candidate for

the secondary classification from haplogroup K1a8: this hap-

logroup has the two characteristic mutations C295A and C7927G!

This secondary constituent then yields score 6.0 and would thus

support a seeming recombination instance; see Fig. 1b. In reality,

of course, we are seeing here the effect of an almost unbelievable

coincidence: on the one hand, C7927G is a confirmed phantom

mutation that has affected several sequences from [28], and on the

other hand, it acts as a real mutation defining a minor

subhaplogroup of haplogroup K1a.

A Paradigmatic Case of Sample Crossover
The 672 complete mtDNA sequences of [37], as downloaded

from the website http://www.giib.or.jp/mtsnp/search_mtDNA_

sequence_e.html on November 25, 2004 and now also available in

GenBank, were subjected to a thorough a posteriori quality

checking. We refer to all samples by their original names listed

on the website. We took care that obvious editing errors such as

seeming insertions of the kind 16569+G and 16569+GATCACAG

do not enter our analyses. Based on our classificatory approach

(see Methods), a total of nine recombinants with score at least 6.0

could be identified (Table 2), two of which can be regarded as

partners in a sample mix-up.

Figure 1. Two alternative networks displaying a reticulate pattern in the data of ref. 28 involving sequences #066 (GenBank Acc.
No. EFF657754), #171 (EF657311), #247 (EF657395): network (a) displays the most plausible evolutionary pathways, whereas (b)
would formally be obtained via the method described in this article applied to an up-to-date West Eurasian mtDNA classification
tree. Note that only coding region data are in general available for this dataset, and therefore variation in the control region (such as the transition
C295T diagnostic for K1a8) is not displayed in this network. The problematic haplotype (#171) and the two phantom mutations (C7927G and
C7985G) are highlighted in italics. Solid nodes indicate the ancestral types of haplogroups along reconstructed evolutionary pathways; rCRS refers to
the revised Cambridge reference sequence [39]. Mutations are prefixed and suffixed as usual [40].
doi:10.1371/journal.pone.0003016.g001
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As shown in Fig. 2, the primary constituent of NDsq0168

comprises most of the mutations characteristic of haplogroup

M7a2 (except C12705T and G12771A), whereas the secondary

constituent of the sample encompasses five seemingly ‘‘private’’

variants (viz. G12406A, C12882T, G13759A, G13928C, and

A14002G) which clearly point to haplogroup F1a1b. The

relatively high score (viz. 9.0) of the secondary constituent coupled

with the fact that the involved five F1a1b specific mutations are all

located within one fragment (viz. fragment E, with readable region

11204–14141 [44]) generated at the first PCR stage, constitute a

salient signature that the reported fragment E in NDsq0168 was

accidentally taken from some haplogroup F1a1b sample. This

exchange of fragments also well explains the absence of the

expected mutations C12705T and G12771A in the haplogroup

M7a2 sample. Coincidentally, an exactly opposite pattern is

observed in sample NDsq0167 – the predecessor of NDsq0168 in

the ND series. Namely, the primary constituent of NDsq0167

encompasses most of the mutations characteristic of haplogroup

F1a1b (with the exception of G12406A, C12882T, G13759A,

G13928C, and A14002G), whereas the secondary constituent of

the sample consists of two ‘‘homoplasious’’ mutations, C12705T

and G12771A (score 4.0), which occur on the pathway to

haplogroup M7a.

The total scores of all false mutations are then 13.0 and 15.0 for

NDsq0167 and NDsq0168, respectively. These scores differ

because the transition at 6455 is missing in NDsq0168 but is not

present in NDsq0167 either. Nonetheless, the evidence is most

compelling that fragment E was interchanged between samples

NDsq0167 and NDsq0168, thus constituting a clean case of

sample crossover.

Table 2. Recombinants detected in published complete mtDNA genome data

Recombinant
(GenBank Acc. No.)

Haplogroup/Closest
Relative

Fragment or Segment
Involved

Deviant
Segment

False
Variants

Primary Secondary 1st PCR 2nd or Direct PCR Count Score

NDsq0167 (AP008798) F1a/NDsq0015 M7a/NDsq0178 E (11204-14141) 7 13.0

NDsq0168 (AP008799) M7a/NDsq0178 F1a/NDsq0015 E (11204-14141) 8 15.0

NDsq0181 (AP008803) M8a2a/Kong#WH6958 D4b2b1/HNsq0221 A (121-3036) 3 6.0

NDsq0116 (AP008776) D4e2/JDsq0080 D5b/TCsq0030 D (8366-11330) 5 10.0

NDsq0117 (AP008777) D5b/TCsq0030 D4l/JDsq0100 D (8366-11330) 5 10.0

ONsq0025 (AP008552) B5a2/NDsq0126 D4g1a/ONsq0035 E (11204-14141) 4 8.0

GCsq0033 (AP008259) D5a2a/PDsq0097 A/TCsq0048 57-60 (15717-355) 14 8.5

TCsq0010 (AP008269) M7a1b/TCsq0007 B4c1c/ONsq0039 A (121-3036), B (2885-5782),
C (5623-8482), E (11204-14141)

30 16* 28.0*

TCsq0019 (AP008278) D4j/NDsq0124 M7b2/NDsq0165 B (2885-5782) 11,18 6 11.0

Young#BJ109 (N.A.) D4b2b/Macaulay#2 M10a1/Kong#YN163 No. 6, 18, 19, 22 according to [45] 21 10 18.0

Note: The first nine cases are drawn from [37] and the last one from [46]. The samples employed for comparison are from [37], except two from [10,13]. The readable
regions of the segments mentioned for the first nine cases are as follows [44]: 11 (2885-3284), 18 (4848-5247), 21 (5623-6022), 30 (8083-8482), 57 (15717-16116), 58
(15969-16368), 59 (16221-51), and 60 (16525-355). False mutations are rated with respect to the primary classification except when the secondary classification gave a
smaller score (indicated by an asterisk). N.A. = not available.
doi:10.1371/journal.pone.0003016.t002

Figure 2. Network documenting sample crossover between NDsq0167 and NDsq0168. The diagram below the network indicates the
readable regions of fragments A–F [37]; the bar is colored and labeled by those haplogroups with which the variation observed is consistent.
doi:10.1371/journal.pone.0003016.g002
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‘Data Mining’ of Artificial Recombinants
For most of the putative recombinants detected in the 672

complete mtDNA sequences reported by [37], the corresponding

secondary constituents each involved the exchange of a single

fragment generated at the first PCR stage (Table 2), such as

fragment A in NDsq0181 (Fig. 3a), fragment D in NDsq0116

(Fig. 3b) or NDsq0117 (Fig. 3c), fragment E in ONsq0025 (Fig. 3d),

or the part of fragment F covering HVS-I and HVS-II in

GCsq0033 (Fig. 3e). The exception is TCsq0010 (Fig. 4), in which

several fragments have been exchanged. As indicated by its

primary constituent, TCsq0010 belongs to haplogroup B4c1c,

although two B4c1c diagnostic mutations (viz. at sites 1119 and

3497) are missing. The secondary constituent, consisting of 11

mutations mainly located in fragments A, B, and E, clearly

suggests M7a status. The extremely high score (viz. 28.0) of the

involved mutations strongly supports the notion that the current

fragments A, B, and E in TCsq0010 were interchanged from an

M7a1 sample, which then resulted in the loss of mutations

T1119C and C3497T characteristic of haplogroup B4c1.

The situation in TCsq0019 seems to be more complicated. As

shown in Fig. 5, the primary constituent of this sample supports

haplogroup D4j status [37], but its secondary constituent harbors

five additional mutations at sites 4048, 4071, 4164, 5351, and

5460 (with total score 9.0) which are all specific to haplogroup

M7b. According to the preceding strategy, it seems obvious that

fragment B (readable region: 2885–5782), which covers the

aforementioned five sites, must have been exchanged from an

M7b sample. This well explains the absence of mutation C4883T

in the sample but not the presence of mutations G3010A and

C5178A in the same fragment, which are diagnostic for

haplogroup D4. Since C5178A is a very rare mutational event,

it is rather implausible that the two occurrences of the variant

Figure 3. Networks for six recombinant sequences in which only one fragment or segment each was exchanged with some other
(unknown) sample: (a) NDsq0181, (b) NDsq0116, (c) NDsq0117, (d) ONsq0025, and (e) GCsq0033.
doi:10.1371/journal.pone.0003016.g003
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nucleotide in the sample could simply be attributed to natural

parallelism. According to [44], fragment B was re-amplified into

ten shorter overlapping segments (viz. 11–20) at the second PCR

stage, the five M7b mutations are then mainly located in segments

13, 14, 15, 17, 19, and 20, whereas the two D4 mutations are in

segments 11 and 18. This exceptional pattern reflects the minimal

correction procedure that was originally carried out: some

segments (e.g. 11 and 18) or much shorter ones were regenerated

after the complete sequencing was carried out because of (1) an

obvious conflict between the absence of some well-known

haplogroup-diagnostic mutation (such as C5178A) and a certain

familiar HVS-I sequence motif, or (2) the conflicting information

at the same position (e.g. 3010 covered by both fragments A and

B) in the overlapping region of neighboring fragments. Direct re-

amplification of a single short segment would then have

constituted the most straightforward strategy for reconciling such

conflicting results. This explanation could also apply to the

presence of 8281–8289del in the haplogroup B4c1c sample

TCsq0010, for which fragment C otherwise perfectly conforms

to haplogroup M7a1b status.

Recombination in a 24-Segment Amplification Set-up
Any inadvertent exchange of a large fragment of more than

3.0 kb stands a very good chance to leave a trace manifest as a

reticulate signal. However, with segments of 0.5 to 1.0 kb that are

directly amplified and sequenced there is a considerably lower

chance that recombination leaves a well detectable fingerprint.

The popular set of 24 primer pairs proposed by [45] is of this kind.

Nevertheless, under favorable circumstances, e.g. when several

characteristic mutations cluster in one segment, clear evidence for

Figure 4. Network for the recombinant sequence TCsq0010 in which multiple fragments were exchanged as indicated along the bar.
doi:10.1371/journal.pone.0003016.g004

Figure 5. Network for the recombinant sequence TCsq0019 where one deviant segment from the exchanged fragment had likely
been sequenced independently.
doi:10.1371/journal.pone.0003016.g005
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recombination may show up in an a posteriori analysis. This is the

case with sample BJ109 sequenced by [46]. This mtDNA sequence

predominantly has haplogroup D4b2 status, but a secondary signal

for haplogroup M10a1 is quite pronounced (Table 2 and Fig. 6).

In this case, evidently more than one segment had been taken from

a sample with haplogroup M10a1 status, which thus reinforces the

inference of sample mix-up [5].

The Rieder et al. ’s primer pairs were also employed by [47] at

the time. Fig. 1 of [40] displays these data in a tree with mutational

events reconstructed. Since recurrent mutations are highlighted

there, one can also visually inspect the tree for repeated

combinations of mutations. This leads one to suspect that one

Biaka sequence from haplogroup L1c1a had its back mutations of

transversion T4454A (designating L1c1a status) and transition

A3843G (designating L1c1 status) inherited from the haplogroup

L1b or haplogroup L1c2a sample of the same data set. In fact,

sample confusion involving segment 6 (Table 1 of [45]) could

explain the simultaneous loss of those two mutations, without

creating any further false mutation. Using our scoring system this

potential recombinant would yield score 5.0. Another potential

recombinant with score 4.0 could be the Saami sequence from

haplogroup V in that data set, for which segment 21 might have

been exchanged with the Papua New Guinea (coast) sequence

from haplogroup P1a: such an exchange could explain the back

mutation at site 14766 and the parallel mutation at site 14097.

However, one cannot firmly exclude the possibility in this case that

this event could be due to natural homoplasy.

Substantiation of the Artificial Recombination Events
To substantiate the reconstructed artificial recombination events

and thus the validity of our data-analytical approach, independent

experiments (including PCR re-amplification and DNA re-sequenc-

ing following the same protocol as in [37]) were eventually applied to

all the suspicious fragments/segments of the 9 recombinants distilled

from the 672 complete mtDNAs [37]. Table S1 (Supplementary

Material) summarizes the novel sequencing results, where the

corrected variation of the involved fragments/segments is contrasted

with the previously reported variation. The re-sequencing analysis

demonstrated that all the suspicious fragments/segments were the

product of artificial recombination events – exactly as predicted by

our data-analytical approach.

All of the candidate recombinant sequences from that data set with

score 6.0 or higher had thus a plausible explanation by exchange of at

least one fragment. Since some fragments would not strongly

discriminate between different samples, one cannot expect that the

total score of exchanged mutations always reaches 6.0. We thus have

to count with further, nearly silent recombination events that have

affected the data from [37]. We suspected that samples GCsq0016,

TCsq0049, TCsq0047, and NDsq0178 were also affected by sample

mix-up in view of some signals of recombination, which are though

not sufficiently conclusive on their own. Unfortunately, DNA from

the former two samples is no longer available, so that we must content

ourselves with analyzing the latter two cases.

Sample TCsq0047 lacks two mutations with total score 4.0

(C12633T and C12882T) characteristic of haplogroup F1b, which

are located in the same amplicon (viz. segment 46, with readable

region 12623–13022 [44]). However, an oversight of these

mutations due to reading difficulties could equally have generated

such a pattern. Re-sequencing of fragment E for this sample

eventually revealed that C12633T and C12882T were indeed

missed and A12358G was erroneous, so that some sample mix-up

is now plausible (say, involving PDsq0139) under the hypothesis

that the well-known haplogroup F1 marker G12406A had been

established beforehand.

Sample NDsq0178 constitutes an almost perfect haplogroup M7a2

sequence – if there were not the haplogroup M7 mutation T9824C

absent and the haplogroup D4a1 marker T10410C present, which

together yield total score 4.0. However, re-sequencing of fragment D

(8366–11330) gave a surprising result: not only were the two

mutations conjectured as false confirmed as real but in addition were

the mutations C8414T (characteristic of haplogroup D4) and

T8473C (characteristic of haplogroup D4a) detected as well. This

Figure 6. Network featuring the recombinant type BJ109 from [46]. The diagram below the network visualizes the sequencing ranges of the
employed 24-segment amplification setup ([45]; Table 1); the bar is labeled by the haplogroups D4b2 and M10a1 with which the variation recorded for
BJ109 is consistent. The two mtDNA samples for comparison are from [10,13], respectively. The pathogenic mutation A1555G is highlighted in italics.
doi:10.1371/journal.pone.0003016.g006
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brings the total score of false mutations up to 8.0. Since the latter two

mutations are normally also covered by fragment C (5623–8482),

they were apparently not reported originally. We are thus faced with

the unanticipated situation that five fragments (A, B, C, E, and F) of

NDsq0178 came from the wrong sample. This could be confirmed by

subsequent re-sequencing of the entire mtDNA genome of

NDsq0178: the sample was finally proven to belong to haplogroup

D4a1 as originally indicated only by fragment D (Table S1).

The most likely source of the five exchanged fragments of

NDsq0178 might come from NDsq0168 (sharing several highly

specific mutations with NDsq0178), which was itself involved in

sample mix-up. The only two differences in the haplogroup M7a2

portions of the originally published sequences NDsq0168 and

NDsq0178 constitute the lengths of the elongated C run from

position 956 beyond 965 and the transition at position 6455. The

former difference is insignificant because both length variants

(965+2C and 965+4C) can coexist because of pronounced hetero-

plasmy. The latter difference could be resolved: it now turned out

that C6455T is well present in sample NDsq0168. Therefore the

complex sample interchange can now be elucidated as follows: the

true sample NDsq0178 was a haplogroup D4a1 sequence that was

predominantly confused with the true haplogroup M7a2 sample

NDsq0168. The latter sequence was originally corrupted by an

unknown sample belonging to haplogroup F1a1b. Then the

sequence NDsq0167 (mainly reflecting haplogroup F1a1b member-

ship) received a fragment from the true sample NDsq0168.

Discussion

The search for artificial recombination constitutes a necessary

step before the utilization of mtDNA data, but its detection is not a

trivial task. With the manual procedure proposed in the present

study, some artificial recombination events could be distilled

effectively by using a given classification tree, a scoring system for

mutations, and the median network tool. To facilitate the analysis

of large-scale genomic mtDNA data sets, we are developing a

corresponding automatic tool (which will be elaborated on in a

subsequent paper). However, it is worth noting that the ability to

detect errors in complete genome data sets by using this

phylogenetic methodology will be limited, to some extent, by the

currently available data and the resolution of the mtDNA

phylogeny. To give an example, suppose that we were given the

most recent detailed East Asian classification tree from [11] and

would now, with hindsight, compare the originally published

haplogroup M10a1 sequence YN163 (Fig. 1 of [10]; GenBank

Acc. No. AY255178.1) to this mtDNA tree. Then, very clearly, we

would allocate this sequence to the correct haplogroup but observe

that transitions G13135A and A13152G were missing. Now, when

searching for a potential secondary constituent we would get

absolutely no signal because the seeming private mutations (at

positions 4181, 13269, and 14533) are not present in this East

Asian classification tree. However, a thorough search in the same

data set [10] reveals a sequence from haplogroup R11, namely

QD8168 (GenBank Acc. No. AY255163), bearing the private

variant at 13269. Employing this R11 sequence as a secondary

constituent would then yield score 6.0 for this recombination

instance. Thus the price for having a robust method for inference

of recombination that does not heavily rely on single entries in the

total database is that some recombination instances may slip

through the sieve of secondary classification.

Another limiting factor in a direct multi-segment amplification

set-up is the low number of mutations that a single segment may

carry. For example, the sample crossover described in the

Introduction between the haplogroup X2a sequence (sampled from

the Ojibwa) and the haplogroup F1a1 sequence (from the Yakut)

led to a displacement of two transitions (A4732G and G5147A) of

total score 3.0 from the latter to the former sequence. It is thus

profitable to investigate any potential recombination instance

where the score reaches a lower threshold, say, 3.0 – half of the

threshold we have applied to the data of [37].

Nowadays, complete mtDNA genome sequencing has become a

popular approach in human evolution, medical and forensic genetics

studies. Numerous problems detected in some of the reported

genome data sets (cf. [4,11,43,48,49]; this study) indicate that the

normal lab routines and standard data analyses are far from

sufficient to guarantee fully reliable sequencing results. There are

several reasons why complete sequencing of the mitochondrial

genome could give erroneous results. First, insufficient reading and

documentation of the sequencing results could induce numerous

oversights, so that typically mutations are missed, as in the case of the

data from [50,51]; for more details see [43,48], respectively. Second,

the sequencing process itself could introduce phantom mutations in a

considerable number of mtDNAs [23,28,29]. Third, inadvertent

editing of the sequences would lead to some obvious errors, such as

16569+G and 16569+GATCACAG in [37]. Fourth, due to

contamination or sample mix-up, the assignment of amplified

fragment/segments to a compound complete sequence could

produce artificial recombinants. Unfortunately, the latter source of

error persists in recent complete sequencing studies of human

mtDNA, especially in the medical field [3–5], which would then

fatally devaluate a huge amount of invested work. Note that data

obtained using the human MitoChip [52] also had the above-

mentioned problems [15], although in theory the possibility of

sample crossover – but not of contamination – should be lower, as

only one sample is screened by one chip.

Therefore, very strict lab routines need to be implemented in order

to make sample confusion highly unlikely. In particular, strategies of

long-length overlapping sequencing of fragments have to be employed

by means of direct PCR [53]. It goes without saying that any

experimental study that claims to have detected mtDNA recombina-

tion has to report the set of employed primer pairs alongside with the

results – but unfortunately, this minimal requirement is not always

met by high-rank journals (as in the case of the extraordinary claims

by [54]). The analysis of mtDNA data also has to incorporate the up-

to-date knowledge of the worldwide mtDNA phylogeny so that every

single new sequence can be compared to its closest mtDNA relatives.

In this spirit, our strategy of a posteriori analysis of mtDNA data, which

pinpoints the potential recombinants by visualizing a reticulate

pattern, will be useful in detecting the artificial recombination events

and thus helps minimizing errors that could otherwise lead to

undesirable consequences.

For the time being, one has to anticipate an omnipresent thin layer

of artificial variation incurred by sample mix-up. For the entire

database encompassing more than 2,900 complete and 900 semi-

complete (coding) human mtDNA sequences we would propose a

conservative estimate of 1% of recombined sequences where at least

one segment was exchanged. More pessimistically, one could hold

the view that the recombination rate (per sequence) was as large as

3%, say. There is no reason to assume that other databases, e.g. for

animal mtDNA, are less prone to sample mix-up. Since the total

number of entire mtDNA genome sequences per species is much

lower than for humans, inadvertent sample mix-up or contamination

would be more difficult to spot in the laboratory by comparison with

the body of existing data, and consequently, the artificial

recombination rate may even be higher. It is then certainly

discomforting when studies that promulgate widespread recombi-

nation of animal mtDNA do not take the most natural source of

seeming recombination, laboratory artifacts, into consideration [55].
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Supporting Information

Table S1 Correction of erroneous sequences from ref. [37] by

re-sequencing or re-reading.

Found at: doi:10.1371/journal.pone.0003016.s001 (0.05 MB

DOC)
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47. Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome
variation and the origin of modern humans. Nature 408: 708–713.

48. Sun C, Kong Q-P, Palanichamy Mg, Agrawal S, Bandelt H-J, et al. (2006) The

dazzling array of basal branches in the mtDNA macrohaplogroup M from India
as inferred from complete genomes. Mol Biol Evol 23: 683–690.

49. Thangaraj K, Chaubey G, Singh VK, Vanniarajan A, Thanseem I, et al. (2006)
In situ origin of deep rooting lineages of mitochondrial Macrohaplogroup ‘M’ in

India. BMC Genomics 7: 151.
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