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ARTICLE

Identifying vaccine escape sites via statistical
comparisons of short-term molecular dynamics
Madhusudan Rajendran,1,* Maureen C. Ferran,1 and Gregory A. Babbitt1,*
1Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
ABSTRACT The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay
between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact map-
ping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein
sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of
Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical
comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutral-
izing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico
all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization
assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding
domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the
antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mu-
tations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts
in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational
method to monitor hotspots of functional evolution in antibody binding footprints.
WHY IT MATTERS Critical to public health is understanding how the rapid evolution of viruses allows them tomutate and
subsequently escape our vaccines. Recently, high-throughput “wet bench” mutational scanning has demonstrated that
vaccine escape is mitigated mostly by changes to just a few single sites on viral proteins that have large consequential
effects on antibody binding. While some complicated and potentially biased scoring and machine learning approaches
have been proposed for finding sites that support the “lock and key” relation between functional antibodies and their viral
protein targets, we introduce a novel approach that relies upon a simple statistical comparison between the computer
simulated motions or “molecular dynamics” of the target protein in both its antibody-bound versus its unbound state.
INTRODUCTION

In current attempts to prevent the spread of the corona-
virus disease 2019 (COVID-19) pandemic, caused by
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), clinicians and scientists have focused
their efforts on the development of vaccines that are
hoped to induce broad, long-lasting, neutralizing anti-
bodies. However, the selective pressures imposed by
the presence of the neutralizing antibodies in the host
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population can also drive the evolution of viruses to-
ward adaptations that allow them to escape neutraliza-
tion. For example, in the case of influenza viruses,
immunity is provided by antibodies that target the hem-
agglutinin (HA), responsible for viral attachment and
viral fusion to the host cell. However, these antibodies
drive selection for amino acid substitutions in the HA,
causing the influenza virus to rapidly evolve every
year (1). Similarly, the antibody selection by the host
immune system can also drive the emergence of new
SARS-CoV-2 variants. Therefore, when developing vac-
cines that elicit antibodies against a broad range of
strains, research efforts should also be aimed at iden-
tifying potential mutations that can facilitate viral
escape from the neutralization effects of specific anti-
bodies (2,3).
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The traditional approach to identifying these muta-
tions is by passaging the virus in the presence of anti-
bodies in a directed selection experiment, followed by
validation of the variants that arise with neutralization
assays. For example, in influenza viruses, escape
mutant selection using a panel of monoclonal anti-
bodies (mAbs) was used to identify the five major anti-
genic regions, Sa, Sb, Ca1, Ca2, and Cb (4–6). However,
a significant drawback of this approach is that the
directed selection typically only favors one of the
many potential mutations that can escape a given anti-
body. Another approach is to test antibody binding to a
panel of viral variants. In a typical 500-residue viral pro-
tein, there are about 104 potential single amino acid
mutants (7). Creating all individual mutants and then
testing the mutants against the antibodies is an impos-
sible task, thus causing researchers to limit themselves
to exploring only a small portion of protein space (e.g.,
examining only mutations to alanine) (8,9). Such
studies cannot give a complete picture of the muta-
tional spectra that can allow a virus to escape neutral-
ization by a given antibody (10).

Functional evolutionary studies of viral vaccine
escape are often supplemented with protein structural
determination via x-ray crystallography or cryogenic
electron microscopy and subsequent contact mapping
of heavy atoms within a specific cutoff distance. While
structural information regarding the details of antibody
binding are often considered the gold standard in
defining epitopes, particularly for patent application, it
has also been understood that structure alone cannot
completely define the individual sites or “hotspots” that
drive interactionswithin given protein-protein interaction
(PPI) binding interfaces (11). To better identify sites that
control PPI, a host of computational methods have been
developed. These include coevolutionary rate compari-
son to identify functional pairings of sites across the
PPI interface (12), complex scoring methods to predict
PPI specificity (13,14), and,more recently, graph network
andmachine learning (ML)methodsaimedat easing this
PPI scoring challenge (15,16). So, while structural
biology can provide a static image to verify that an anti-
body physically contacts a viral protein, it often cannot
provide complete information regarding which amino
acid sites are more prone to single replacement muta-
tions that may drive sudden evolutionary changes
affecting vaccine efficacy (i.e., hotspot sites or resi-
dues). Although binding can be observed and verified in
structure, a much richer picture of the functional sites
of binding may be determined by the study of changes
to their motion (i.e., molecular dynamics [MD]) upon
the formation of the PPI interface.

We propose here that a supplementation of structural
analysis with a proper comparative statistical study of a
bound versus unbound protein's short-term dynamics
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may help to directly resolve these hotspots of PPI spec-
ificity in any givenPPI interfacewithout imparting the po-
tential biases of scoring functions and/or ML training
data sets. The prediction of hotspot residues is crucial
as these sites on the antibody-antigen complex have a
strong propensity to disrupt binding interactions within
the antibody-antigen interface (17,18). Recently, it has
been demonstrated, via site-directed selection experi-
ments and neutralization assays, that these hotspot re-
gions share a common biophysical feature. They all
tend to harbor single amino acid sites that have signifi-
cant large affects upon binding interactions in the anti-
body-antigen interface (19). Given this common
feature of hotspot residues, we further hypothesize an
important role for comparative MD simulations of the
antibody-antigen interface to help predict potential vac-
cine escape mutations before they happen, allowing
for important functional context to real-time sequence-
based surveillance of current and future pandemics.

Here, we utilize a relatively simple method of compar-
ative statistical analysis ofMD simulations developed by
our lab (DROIDS—detecting relative outlier impacts in dy-
namic simulation or DROIDS 4.0) that employs a site-
wise Kullback-Leibler (KL) divergencemetric and amulti-
ple test-corrected two-sampleKolmogorov-Smirnov (KS)
test to successfully validate previously known sites of
antibodyescape in the influenzaHA(19–23).We thenuti-
lized our site-wise comparative MD approach to identify
potential sites prone to antibody escape in the spike pro-
tein of SARS-CoV-2. Specifically, in the Omicron variant
we were able to identify sites in the receptor binding
domain (RBD) that support the binding efficiency to two
general neutralizing antibodies and its competitive bind-
ing to the natural receptor, human angiotensin-convert-
ing enzyme 2 (hACE2). We also compare our dynamics-
based method to a more traditional structure-based
method of counting heavy atom contacts using distance
cutoffs within the antibody-viral binding interface. In
summary, we present a method to accurately identify
hotspot residues that are prone to single pointmutations
with large functional effects upon the antibody-antigen
binding interface and thus are likely preadapted to allow
for vaccine escape. Identifying such residues in silicowill
be essential for prescreening the antigenic conse-
quences of viral genetic variations and designing better
vaccines that induce long-term and broadly neutralizing
antibodies against viral pathogens.
METHODS

PDB structure, glycosylation, and model preparation

The protein structures used for the primary models for analyzing the
MD of antibody interactions with HA and the SARS-CoV-2-RBD are
listed in Fig. 1 A (24–29). Any crystallographic reflections were
removed along with any other small molecules used in crystallization.



FIGURE 1 Description of PDB files and antibodies used in this study, and the comparison between KL divergence and average fraction of var-
iants surviving.
(A) Table summarizing the protein structure used for primary models for analyzing the MD of antibody interactions with the influenza HA and
SARS-CoV-2 RBD, and ACE2 interactions with wild-type and mutated SARS-CoV-2 RBD (includes VOC mutations). The table includes amino acid
positions and the corresponding �KL divergence value denoting atomic fluctuations dampening for antibody-antigen/protein 1-protein 2 MD
simulations. D value and the level of significance for the corresponding amino acid position are also given. (B) S139/1 (green), FI6v3 (blue),
and C179 (red) epitopes are mapped onto the HA trimer, shown in gray (PDB: 1RVX). Overlapping epitopes between FI6v3 and C179 are shown
in cyan. Next to the HA trimer is a phylogenetic tree of HA subtypes. Circles denote reported antibody binding or neutralization against that sub-
type. (C) Box and whisker plots showing the KL divergence values within 2 sd for amino acid sites that had significant average fraction of var-
iants surviving and nonsignificant average fraction of variants in the presence of monoclonal antibody S139/1 (19). Only sites K156, G158, and
N193 of the HA head domain had significant average fraction surviving viral particles.
Hydrogens were added, and crystallographic waters were removed
using pdb4amber (AmberTools18) (30). Glycosylation was deleted
using the swapaa function in UCSF Chimera 1.14 (31). Predicted
glycosylation was rebuilt for the Amber force field using the glycopro-
tein builder on the glycam.org webserver and the GLYCAM06j-1 force
field (32,33). Any missing loop structure in the files was inferred via
homology modeling using the “refine loop” command to Modeler
within UCSF Chimera (34,35). The globular head domain of the influ-
enza HA is stable in its monomeric form. However, the stalk domain
needs to be in a trimer to be stable (36). Therefore, MD simulations of
PDB: 4GMS was performed using a trimmed (residues 57–270)
monomeric form of the head domain. For MD simulations of the
PDB: 3ZTJ and PDB: 4HLZ, the trimeric form of the stalk domain
was used. The antibodies were trimmed, and only the heavy and light
chains of the fragment antigen binding (Fab) were used. Finally, for
the Omicron (B.1.1.529) variant simulations, we used the swapaa
function to model the 15 RBD mutations onto PDB: 7OR9 (Fig. 4 B).
MD simulation protocols

All comparative MD analysis via our DROIDS pipeline was based upon
100 replicate sets of 1 ns accelerated MD runs (i.e., 100 � 1 ns MD
runs in each comparative state, e.g., unbound versus bound). MD sim-
ulations were conducted using the particle mesh Ewald method via
accelerated MD (pmemd.cuda) in Amber18 and the ff14SB protein
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and GLYCAM06j-1 (32)) force fields and implemented on two RTX
2080 Ti graphics processor units controlled via a Linux Mint 19 oper-
ating system (32,37–41). These replicate sets were preceded by en-
ergy minimization, 300 ps of heating to 300 K, and 10 ns of
equilibration, followed by random equilibration intervals for each
replicate ranging from 0 to 0.5 ns. All protein systems were prepared
via tLeAP (Ambertools18) and explicitly solvated, and charge neutral-
ized with Naþ and Cl– ions in a Tip3P octahedral water box set to
12 nm beyond the surface of each protein with periodic boundaries
(30,42). All simulations were regulated using the Anderson thermo-
stat at 300 K and one atmospheric pressure (43). Root mean-square
atom fluctuations and atom correlations were conducted in
CPPTRAJ using the atomicfluct and atomicorr commands (44).
Comparative protein dynamics analyses with
DROIDS 4.0 and statistical analyses

Comparative signatures of dampened atom fluctuation during anti-
body binding were presented as protein site-wise divergence in
atom fluctuation in the antibody-bound versus unbound states for
each viral target protein (both influenza HA and SARS-CoV-2 RBD). Di-
vergences were calculated using the signed symmetric KL diver-
gence calculation in DROIDS 4.0. This divergence or relative
entropy (45) is taken between the homologous distributions of
atom fluctuation (i.e., root mean-square fluctuation or rmsf taken
from 0.01-ns time slices of total MD simulation time) comparing
the MD of antibody-bound and unbound spike proteins averaged
over the four protein backbone atoms, achieving individual amino
acid resolution. The rmsf value is thus
rmsf ¼ 1

4
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i ¼ N;C;Ca;O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n

Xn

j ¼ 1

��
vjx � wx

�2 þ �
vjy � wy

�2 þ �
vjz � wz

�2�
vuut ; (1)
where v represents the set of XYZ atom coordinates for i backbone
atoms (C, N, O, or Ca) for a given amino acid residue over j time points
and w represents the average coordinate structure for each MD pro-
duction run in a given ensemble. The KL divergence (i.e., relative en-
tropy) or similarity between the rmsf of two homologous protein sites
representing a functional binding interaction (i.e., where 0 ¼ unbound
state and 1 ¼ antibody-bound state) can then be described by
KLdivergence ¼
XT

t ¼ 10ps

��
rmsf0 � log rmsf0

rmsf1

	
þ
�
rmsf1 � log rmsf1

rmsf0

	
�
T ; (2)
where rmsf represents the average root mean-square deviation of a
given atom over time. More specifically, the rmsf is a directionless
root mean-square fluctuation sampled over an ensemble of MD runs
with similar time slice intervals. Since mutational events at the protein
level are typically amino acid replacements, this calculation is useful if
applied to resolution of single amino acids rather than single atoms.
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Note that amino acid side chain dynamics are ignored because only
the backbone atoms (N, Ca, C, and O) are homologous between resi-
dues. However, because the sidechain atoms always attach to this
backbone, rmsf still indirectly samples the dynamic effect of amino
acid sidechain as they are still present in the simulation. The reference
state of the protein is always unbound while the query state is bound.
Therefore, the pairwise comparison represents the functional impact
of binding on the unbound protein's normal motion in its solvated state.
Thus, binding contact dampens the fluctuation of atoms at the sites of
binding to the degree to which they are involved in the binding interac-
tion.Multiple test-corrected two-sample KS tests are used to determine
the statistical significance of local site-wise differences in the rmsf dis-
tributions. As the analysis is site-wiseand a statistical hypothesis test is
conducted for each site, theBenjamini-Hochbergmethod (46)wasused
to adjust p values for the false discovery rate generated by the higher
probability of false positive results generated by the analysis of themul-
tiple sites of a given protein structure. Therefore, all significance tests
and p values for these site-wise differences were calculated in
DROIDS 4.0 using two-sample KS tests with the Benjamini-Hochberg
multiple test correction in DROIDS 4.0. Further mathematical details
of DROIDS 4.0 site-wise comparative protein dynamics analysis were
published previously by our group and can be found here (21,22). This
code is available at our GitHub web landing: https://gbabbitt.github.
io/DROIDS-4.0-comparative-protein-dynamics/, and is also available at
our GitHub repository https://github.com/gbabbitt/DROIDS-4.
0-comparative-protein-dynamics.

We also use this method to compare the mutational impacts on the
bound SARS-CoV-2 RBD/angiotensin-converting enzyme 2 (ACE2)
interface for all current variants of concern (VOC) mutations. Thus,
rather than determining the effect of binding on the viral protein dy-
namics, we instead determine the effect of the mutations on the viral
protein dynamics when it is bound to its human target receptor ACE2.

Epitope map identification

Previously published articles were surveyed to identify the epitope
mapping of the HA and SARS-CoV-2 RBD antibodies (Table 1). In
brief, the identified epitopes were highlighted on the amino acid
back bone of the corresponding antigen. These studies utilized
some combination of experimental methods for epitope mapping
that included structural determination, site-directed mutagenesis,
pepscan analysis, hydrogen deuterium exchange, and cross-linking
coupled with mass spectrometry.

https://gbabbitt.github.io/DROIDS-4.0-comparative-protein-dynamics/
https://gbabbitt.github.io/DROIDS-4.0-comparative-protein-dynamics/
https://github.com/gbabbitt/DROIDS-4.0-comparative-protein-dynamics
https://github.com/gbabbitt/DROIDS-4.0-comparative-protein-dynamics


TABLE 1 HA and SARS-CoV-2 RBD antibodies and the source of
the identified epitopes

Antibody Antigen References

S139/1 HA head (26)
FI6v3 HA stalk (25)
C179 HA stalk (47)
COVOX-222 SARS-CoV-2 RBD (48)
S2H97 SARS-CoV-2 RBD (29)
To further assess the relationship between the structures of the in-
terfaces in our models and the changes in their dynamics upon bind-
ing, we used the ContPro webserver (49) to compute the closest
distances between all amino acid sites within 6 Å proximity across
the PPI interface of both our Covox222-RBD and S2H97-RBD models.
We then correlated these interface distances to the change in dy-
namics upon binding at each amino acid site (i.e., dFLUX or KL
divergence).
Relation of dampened atom motion and the number
of heavy atom contacts in the antibody-viral binding
interface

The AmberTools20 “nativecontacts” function was utilized to extract
both native and nonnative heavy atom contacts for the first frame
(i.e., static structure) and the subsequent 100,000 frames from a
20-ns MD simulation on the antibody-bound structures of the SARS-
CoV-2 RBD and the COVX222 and S2H97 antibodies (i.e., providing
both a static view of the contacts in space as well as a dynamic
view of the contacts over time). We subsequently analyzed the corre-
lations of our atom dampening metric (i.e., KL divergence) to both the
static heavy atom contacts and the fraction of contacts over time. All
supporting files, data, and custom code are supplied in a folder
labeled “S3 [heavy atom contact analyses]” in the Data S1 file (data_
RajendranFerranBabbitt_2022). The commands we used to invoke
nativecontacts in the AmberTools program are given in the READ-
ME.txt file in this folder. Fig. S3 A shows an overview of the pipeline,
including the use of our custom parsing scripts written in python and
our correlation analyses written in R language.
RESULTS

Using our comparative MD analysis pipeline (DROIDS
4.0), we successfully identified and validated previ-
ously known antibody escape sites in the head and
stalk domains of the influenza HA. We then expanded
the scope of our study to identify potential mutational
sites prone to antibody escape in the spike protein of
SARS-CoV-2 RBD and its recent Omicron genetic
variant.
Computational validation of antibody escape
mutation hotspots in influenza HA head and stalk
domains

We first conducted comparative site-wise analyses of
various HA viral spike protein dynamics in both anti-
body-bound versus unbound states (Fig. 1 A). We
then applied our approach to anti-HA antibodies with
a wide range of breadth against different influenza
strains. Negative-signed KL divergences indicated uni-
versal dampening of atom fluctuation at key epitope
sites in the antibody-bound state. A two-sample KS
test corrected for the number of sites analyzed
confirmed the statistical significance of these binding
effects (Fig. 1 A). S139/1 is a one such mAb known
to neutralize both group 1 (H1, H2, H5, H9, and H13)
and group 2 (H3) influenza viruses (Fig. 1 B) (50). Crys-
tallization studies have revealed that the antibody tar-
gets highly conserved residues in the RBD of the
head domain (26) (Fig. 1 B). We applied a Mann-Whit-
ney U-test to compare our KL divergence values, gener-
ated using MD simulations, to amino acid residues with
significant average fraction of variants surviving and
nonsignificant average fraction of variants surviving
in the presence of S139/1, in accordance with (19)
(Fig. 1 C). In our comparative analyses of MD simula-
tions, we found significantly higher KL divergence in
the average fraction of variants surviving during
directed selection (p < 0.001), supporting that our KL
divergence metric proves to be a useful quantitative
measure in discriminating sites with mutations leading
to vaccine escape. Comparative MD simulations of HA
bound to S139/1 and unbound have revealed strong
dampening of atom fluctuations occurring at sites
K156, G158, and N193 of the HA, with �KL divergence
values �4.65 (D ¼ 0.810, p < 0.001), �5.81 (D ¼ 0.895,
p < 0.001), and �4.81 (D ¼ 0.807, p < 0.001), respec-
tively (Figs. 1 A and 2 A). Directed selection using
mAb S139/1 revealed that these three residues match
empirically identified sites of strong escape (Fig. 2 B)
(19). As expected, the three amino acid residues with
the highest negative KL divergence in our comparison
of atom fluctuations from MD simulations also fall
directly in the empirically determined physical binding
footprint of the antibody. And they are the same three
sites where previous works have selected escape mu-
tants in the H1, H2, and H3 HAs (26,50). It should be
noted that residue 156 is a part of the 150 loop of the
influenza HA and forms electrostatic interactions by in-
serting itself into the acidic pocket in the Fab formed by
residues GluH35 and GluH50. Another 150 loop binding
determinant is residue 158, which has the largest
dampening of atomic fluctuations. Gly158 is closely
stacked on the light chain complementarity deter-
mining region 3 of S139/1 and is further stabilized by
a main chain hydrogen bond between S159 and
AsnL92. Thus, any mutations at these positions will
cause clashes at the antibody interface. S139/1 also
recognizes members of the 190 helix. In the residues
of 190 helix, Asn193 plays a significant role in antibody
recognition and is buried by heavy chain complemen-
tarity determining regions 1–3 of S139/1 (50). Further-
more, it should be noted that site 193 was known to
Biophysical Reports 2, 100056, June 8, 2022 5



FIGURE 2 Epitope prediction and validation of hotspot residues of the influenza hemagglutinin in the presence of neutralizing antibodies.
Sequence positional plotting of dampening of atom motion on the influenza hemagglutinin (HA) head domain by (A) S139/1 and (B) matching
hotspots identified in lab work by Doud et al. (19) and additional sites of moderated dampening of atom motion on the HA stalk domain by (C)
FI6v3 and (D) C179. The sequence profile of the�KL divergence between S139/1 and the head domain produces strong negative peaks in (A) at
K156, G158, and N193. A modest negative peak is observed in the stalk domain in (C) at E47 in the presence of FI6v3. HA1 numbering is used to
identify the amino acid positions in (A). HA2 numbering is used to identify the amino acid position in (C) and (D). The gray bar on top of the �KL
divergence plots denotes the HA amino acid backbone with the location of (A) S139/1 epitopes shown in green, (C) FI6v3 epitopes in blue, and
(D) C179 epitopes in red. (B) Logo plots of S139/1 show the amino acid position that has the largest effect. Letter heights are proportional to the
excess fraction of virions with that mutation that survive the antibody, as indicated by scale bars. The logo plot was prepared using deep muta-
tional scanning data from Doud et al. (19).
interact with the host receptor molecule (sialic acid
moiety), suggesting the contribution of this residue to
receptor binding of HA (51,52). Therefore, isolates
with mutated residues at site 193 have reduced viral
fitness due to their inability to bind to the host recep-
tors (53). Selective pressure created by S139/1 on res-
idue 193 has other secondary effects on the virus, such
as the reduced binding activity of the influenza virus.
With mAb S139/1, atomic fluctuation dampening is
also seen in residues 133–134 of the influenza HA
(Fig. 2 A). These residues are part of the 130 loop of
the HA, and make a significant portion of the RBD of
the influenza virus. Finally, in addition to atomic fluctu-
ation dampening at residues 133–134 and at residues
156/158, we also see dampening at 145–147 (Fig. 2 A).
Upon further examination, there lie no epitopes of
S139/1 between residues 145 and 147, supporting
that this dampening may be an artifact of the residue's
location between two epitope sites (130 loop and 150
loop) of S139/1. Therefore, in summary, the three sites
6 Biophysical Reports 2, 100056, June 8, 2022
determined to have the largest physical effect upon
antibody binding in our simulations (i.e., showing the
largest negative KL divergence) are exactly the same
three sites most likely to evolve antibody escape under
directed selection experiments of (19).

We also chose two broad antibodies that target the
stalk domain of the HA (FI6v3 and C179) to further vali-
date our computational approach to identify potential
sites of escape. FI6v3 was first isolated by high-
throughput screening of immortalized antibody-
secreting cells and was found to bind to both group 1
(H1, H2, H5, H6, H8, H9, and H13) and group 2 (H3,
H4, H7, and H10) viruses (Fig. 1 B) (24). Antibody
C179 was first isolated from a mouse that had been
immunized with the H2N2 virus and was later found
to cross-neutralize H1, H2, H5, H6, and H9 subtypes
(Fig. 1 B) (47). Both FI6v3 and C179 have epitopes
that lie in the stalk domain and are known to interfere
with membrane fusion (Fig. 1 B). Our MD simulations
do not reveal dampening of atomic fluctuations in the



FIGURE 3 Identification of hotspot residues that escape neutralizing antibodies and the importance of the SARS-CoV-2 variants of concern
mutations.
(A) Crystal structure of COVOX-222 (green) (PDB: 7OR9) and S2H97(cyan) (PDB: 7M7W) superimposed onto the structure of RBD of SARS-CoV-2
(gray) (PDB: 7M7W) (42,43). COVOX-222 epitopes with the greatest KL divergence dampening are highlighted in pink, and S2H97 epitopes with
the greatest KL divergence dampening are highlighted in olive. Sequence positional plotting of dampening of atom motion on the RBD of SARS-
CoV-2 by (B) COVOX-222 and (C) S2H97. Amino acid positions with moderate to modest dampening of atomic fluctuation are identified in (B)
and (C). The gray bar on the top of the KL divergence plots denotes the RBD domain amino acid backbone with the location of COVOX-222 epi-
topes shown in pink and the S2H97 epitopes shown in olive.
stalk domain in the presence of FI6v3 or C179. When
we look at the difference in atomic fluctuations of the
stalk antibodies on the same scale as S139/1, we
only see a few sites with only weak to moderate levels
of dampening in atom fluctuation (Fig. 2, C and D). In
conclusion, antibody selection experiments revealed
very similar results as our comparative MD simulation
studies, with only few sites in the stalk domain with
slightly increased fraction of variants surviving mAb
FI6v3 again, much in accordance with the experiments
of (19). As a result, these authors concluded that the
stalk domain is less capable of escaping antibodies
by single mutations (19). We also find that, in the pres-
ence of FI6v3, both directed selection and MD simula-
tion show a small bump at site 47 (KL ¼ �2.41, D ¼
0.647, p < 0.001), which is of importance (Figs. 1A
and 2C), also in accordance with (19). Other mutational
scanning studies have demonstrated that the introduc-
tion of E47R in the stalk domain has increased the
resistance to FI6v3 (54). Like these studies, we also
conclude that the HA stalk is more intolerant of muta-
tions and, confirmed by us here, by a weaker signature
of negative KL divergence at individual sites with more
dampened atom fluctuations upon binding (Fig. 2, C
and D). The presence of sites with only small diver-
gences in atomic fluctuations in our comparative MD
simulations on the HA stalk would seem to confirm
that the antistalk antibodies studied here readily target
sites with high mutational tolerance, as suggested by
other site-directed experiments (55), or that the binding
energetics at protein-protein interfaces can be asym-
metrically distributed across all sites, thus preventing
us from identifying the mutational tolerant sites
(17,18).
Computational prediction of antibody escape
mutation hotspots in SARS-CoV-2 RBD

Upon validation of our computation approach using
influenza HA, we implemented our computational pipe-
line to identify potential hotspot residues in the RBD of
the spike protein of SARS-CoV-2 in the presence of two
recently published antibodies against the virus:
COVOX-222 and S2H97 (Fig. 3 A). COVOX-222 is
known to bind to different residues than S2H97 and
is known to neutralize strains P.1 (gamma) from Brazil,
B.1.351 (beta) from South Africa, and B.1.1.7 (alpha)
from the UK (48). Termed “super-antibody,” S2H97, is
known to bind with high affinity across all sarbecovirus
clades and prophylactically protects hamsters from
Biophysical Reports 2, 100056, June 8, 2022 7



FIGURE 4 Functional impacts of SARS-CoV-2 VOC mutations on the MD of the SARS-CoV-2/ACE2 interface.
(A) The site-wise KL divergence profiles showing the dampening of atommotion between the wild-type and mutated RBD of the spike protein of
SARS-CoV-2 in the presence of hACE2. The wild-type RBD was computationally mutated to include mutations from the VOC. (B) Multiple test-
corrected two-sample KS tests of significance for the impact of the mutations are also shown. Amino acid positions that correspond to the VOC
mutations are highlighted and show higher level significance than other positions. Mutations that correspond to the four VOC in the RBD of spike
protein are noted on top of (B).
viral challenge (29,56). In the presence of COVOX-222,
we see the most dampening of atomic fluctuations at
residues G476 (KL ¼ �5.50, D ¼ 0.888, p < 0.001),
F486 (KL ¼ �4.52, D ¼ 0.800, p < 0.001), and N501
(KL ¼ �4.55, D ¼ 0.708, p < 0.001) of the RBD (Figs.
1 A and 3 B). We see modest amount of dampening
at residues D405 (KL ¼ �2.57, D ¼ 0.572, p < 0.001),
K417 (KL ¼ �3.27, D ¼ 0.678, p < 0.001), and K458
(KL ¼ �3.49, D ¼ 0.703, p < 0.001) of the RBD (Figs.
1 A and 3 B).

It should be noted that the residues picked up by our
computational method are part of the epitopes of
COVOX-222. Of all the residues identified by the com-
parison of MD simulation, the residues with the great-
est dampening of atomic fluctuation have a higher
chance of being classified as hotspot residues. They
are more prone to mutate, thus allowing the virus to
escape COVOX-222. Residue 417, one of the residues
with moderate dampening of atomic fluctuation,
makes a weak salt bridge interaction with the heavy
chain complementarity determining region 3 residue
E99 of COVOX-222 (48). Also, residue N501, one with
residues with the most dampening of atomic fluctua-
tions, is known to interact with light chain complemen-
tarity determining region 1 residue P30 of the antibody
via a stacking interactions (48,57). In the case of
the mAb S2H97, we see a moderate dampening of
atomic fluctuations at sites D428 (KL ¼ �3.81, D ¼
0.692, p < 0.001) and K462 (KL ¼ �3.37, D ¼ 0.723,
p < 0.001). Sites N394 (KL ¼ �4.25, D ¼ 0.760,
p < 0.001), E484 (KL ¼ �5.20, D ¼ 0.837, p < 0.001),
and L518 (KL ¼ �6.56, D ¼ 0.945, p < 0.001) have
the most dampening of atomic fluctuations (Figs. 1 A
and 3 C). Four of the five sites, except E484, fall in
the epitope footprint of S2H97 (29). Like mAb
COVOX-222, we predict that the sites with the most
dampening of atomic fluctuations (i.e., negative KL
divergence) are more prone to functionally evolve un-
der the selection pressure of the vaccine, thus allowing
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the virus to potentially escape the binding of S2H97.
However, E484 does not fall in the S2H97 footprint; it
has been shown that the mutation of this site is known
to enhance immune escape form neutralizing anti-
bodies and also increase affinity to hACE2 (58).

Many of the residues identified as potential sites of
escape, either in the presence of COVOX-222 or
S2H97, overlap with mutations seen in the VOC. At pre-
sent, there are mainly five kinds of VOC: Alpha, Beta,
Gamma, Delta, and Omicron. We employed compara-
tive MD simulation of the SARS-CoV-2 RBD bound to
hACE2 (PDB: 6VW1 trimmed to only include the viral
RBD) modeled with and without the recently arising
VOC mutations in the alpha to delta variant strains.
Three of the VOC mutations (417, 484, and 501) that
were previously identified as potential escape sites us-
ing our approach (Figs. 1 A, 3, B and C) here were
shown to significantly increase viral binding to hACE2
at the protein interface. This additional comparative dy-
namics analysis of wild-type versus mutant viral bound
structures demonstrates that the VOC mutations have
an overall effect to increase binding at the protein inter-
face (i.e., overall negative KL divergence in Fig. 4 A). In
addition to the three sites that we confirmed previously
by comparing bound versus unbound dynamics (i.e.,
417, 484, and 501), we also saw significant differences
in the viral bound atomic fluctuations (i.e., impacts of
mutations themselves) at positions 452 (KL ¼
�0.206, D ¼ 0.155, p < 0.001) and 478 (KL ¼ �0.129,
D ¼ 0.190, p < 0.001) of RBD (Fig. 4 B). Investigation
with pseudoviruses possessing RBD mutations
harbored by VOC demonstrated that the plasma-
neutralizing activity of vaccinated individuals showed
one- to threefold significant decreases against E484K,
N501Y, or the K417N þ E484K þ N501Y triple mutant
(59). These results confirm what we have observed us-
ing our comparative MD analysis (Figs. 1 A and 3, A–D)
and extend our method to the investigation of biophys-
ical impacts on function the individual VOC mutations



FIGURE 5 MD simulationswith the Omicron variant reveal sites that
promote similar binding affinity to hACE2.
(A) Sequence positional plotting of the normalized dampening of
atom motions on the Omicron RBD (red) and the wild-type RBD
(blue) by monoclonal antibody COVOX-222. KL divergence values
for normalization of the wild-type RBD were obtained from Fig. 3 B,
and for the Omicron RBD they were obtained from Fig. S1 A. The Om-
icron RBD mutations are labeled in red (1–15). The sites correspond-
ing to the COVOX-222 epitope on the wild-type RBD on labeled in blue
(I–VII). The amino acid residues that correspond to the numbers and
roman numerals are listed in (B). In the Omicron RBD, we see an in-
crease in atomic fluctuation peaks at several of the epitope sites.
Sites that overlap between the Omicron mutations and COVOX-222
epitope (shown by *) are sites of ACE2 interaction. (B) List of Omicron
mutations modeled onto RBD, and the list of COVOX-222 epitopes.
(C) Crystal structure of COVOX-222 Fab (green) superimposed onto
the structure of the Omicron RBD (gray) (PDB: 7NXA). Some of the
amino acid residues that correspond to the COVOX-222 epitopes,
which show an increase in atomic fluctuation dampening, are shown
in blue. Several of the amino acid residues that correspond to Omi-
cron mutations with increased atomic fluctuation dampening, which
are sites of ACE2 interactions, are shown in red.
themselves (Fig. 4, A and B). Furthermore, evidence
from clinical trials on the impact of VOC on vaccine ef-
ficacy confirms what we have observed as well. For
example, the ChAdOx1 nCoV-19 vaccine and the sin-
gle-dose JNJ-78436735 (Johnson & Johnson/
Janssen) vaccine have reduced vaccine efficacy by
10.4 and 57%, respectively, against the B.1.351 variant,
which contains K417N, E484K, and N501Y mutations
(60–62). Therefore, when evaluating vaccine efficacy
and the effect of neutralizing antibodies against the
SARS-CoV-2 virus, the focus should be given to amino
acid positions that are prone to mutate and escape
the antibody, as these positions might cause the emer-
gence of new VOCs.
Finally, we also modeled the most recent VOC, Omi-
cron. The Omicron RBD is known to harbor 15 different
mutations, with several mutations linked to greater
transmissibility, lower vaccine efficiency, and increased
risk of reinfection (63). To further understand the evolu-
tion of the variant, we ran comparative MD simulations
with the Omicron variant bound and unbound to mAb
COVOX-222. In the wild-type RBD we see a dampening
of atomic fluctuation at residues that correspond very
well to the antibody footprint (Fig. 5 A and B). Interest-
ingly, in the Omicron RBD, we see some increase in the
atomic fluctuation dampening at several of the residues
that correspond to the COVOX-222 epitopes (Fig. 5).
Furthermore, some of the mutations that correspond to
the Omicron RBD overlap with the COVOX-222 antibody
footprint. These sites include K417N (KL ¼ �2.60, D ¼
0.631, p < 0.001), S477N (KL ¼ �3.83, D ¼ 0.762,
p < 0.001), Q493K (KL ¼ �2.84, D ¼ 0.762, p < 0.001),
N501Y (KL ¼ �3.25, D ¼ 0.737, p < 0.001), and Y505H
(KL ¼ �3.16, D ¼ 0.77, p < 0.001) (Figs. 5 and S1).
Upon closer examination, the residues that overlap be-
tween the antibody footprint and the Omicronmutations
are sites where the hACE2 is known to interact with the
RBD. As a result, the increase in atomic fluctuation
dampening might not be because of the direct evolution
of stronger binding to the antibody, but also due to the
evolution of increased binding affinity to hACE2. Other
studies have shown that the mutations in the Omicron
variant increase the number of salt bridges and hydro-
phobic interactions between RBD and hACE2, resulting
in a higher binding efficiency to hACE2 (64). In addition,
it has also been shown that the structural changes in
the RBD domain, caused by the mutations, reduce the
antibody interactions (65,66). We present a similar anal-
ysis of the functional binding of theOmicron variant with
S2H97 (Fig. S2), which also indicatesminimal overall ef-
fects of the genetic changes on potential antibody
neutralization, with the exception of E484A, T478K, and
S477Nsites, inwhichOmicronappears to have lost inter-
action with S2H97.

To provide comparison of our results with more
traditional structure-based methods of contact map-
ping and counting heavy atom contacts within the
structure of the binding interface, we conducted native
and nonnative heavy atom contact analysis using
AmberTools20. We report moderate and significant
correlations between the degree of dampened atom
motion (KL divergence) and the number of static heavy
atom contacts, indicating roughly 25% association
(Table S1 and Fig. S3 B). We do not find that counting
the fraction of static contacts over time of 20 ns adds
any more information, probably not surprising because
the bound protein structures are well equilibrated and
do not largely change in structural conformation over
time (Fig. S3 B). However, we do find that both the
Biophysical Reports 2, 100056, June 8, 2022 9



number of sites identified, as well as the slopes of the
linear models describing the relation between heavy
atom counts and KL divergence are quite dependent
upon the distance cutoff chosen for counting (Fig. S3,
B, C, and D, respectively) While some sites identified
by both methods are quite congruent (Fig. S3, C and
D) when a good cutoff distance is chosen, we conclude
that our analyses of short-term dynamics is better than
contact mapping in its ability to fully identify the larger
landscape of sites that may be prone to vaccine
escape. Our method is also not prone to potential
bias imparted by the user's arbitrary choice of cutoff
distances in defining heavy atom contacts. Finally, we
also demonstrate that our results are quite reproduc-
ible over identically initiated sets of replicate MD runs
(Fig. S4). In summary, we observe that introduction of
mutations sites in the Omicron RBD have only slightly
altered the COVOX-222 and S2H97 interactions with
the viral RBD. Most importantly, our computational
method appears to be an important, reproducible, and
effective way to prescreen, quantify and monitor these
changes without much additional effort in the lab.
DISCUSSION

Here, we report a remarkably fine agreement between
experimental approaches to identify vaccineescapemu-
tations anda relatively simple comparative computation
applied to MD simulations conducted on the primary
functional structural states of antibody-antigen inter-
faces. Furthermore, we demonstrate the capacity of
comparativeMD todescribe the overall trajectory of evo-
lution of the SARS-CoV-2/ACE2 binding interface
throughout the ongoing pandemic. While some of what
we report might be able to be deduced from structural
data alone, our additional comparative analysis of the
dynamic states induced by the structure-function rela-
tionship adds a clear and quantitatively grounded level
of resolutionallowing for the identificationof single sites
(i.e., hotspots) contributing to the epitope binding of an-
tibodies. Directed selection experiments, followed by
confirmation through neutralization assays, are the clas-
sical approach for identifying the location of these hot-
spot residues. Not only are the selection experiments
time consuming, unless they are conducted in a sophis-
ticated high-throughputmanner, they only identify one of
many potential mutations that may escape an antibody
(67). Compared with the classical method, our simple
computational approach can identify the locations of
sites prone to vaccine escape in a matter of days on
modern GPU hardware (e.g., 30 h on an Nvidia RTX
3080Ti). In addition, our method identifies positions of
all amino acids that couldmutate to escape theantibody
in a single in silico experiment.And, comparedwithother
computational tools, our MD-based approach does not
10 Biophysical Reports 2, 100056, June 8, 2022
require large and potentially biased ML training data
sets. Furthermore, the de novo prediction is based on a
given experimental structure, which enables an unprece-
dented close synergy between our computational
approach and existing laboratory methods for identi-
fying potential routes of viral evolution leading to
enhanced transmissibility and vaccine escape.

Over the years, many sequence- and structure-based
computational methods have been developed for the
purpose of deducing protein sites contributing to PPI
specificity. These have ranged from coevolutionary
rate analysis (12), simple contact mapping combined
with a variety of contact scoring methods (13,68,69),
and, more recently, graph network and ML approaches
aimed at solving the “contact scoring challenge”
(15,16) originally raised by the work of Bogan and Thorn
(11). In addition,many tools that have beenmore specif-
ically designed for epitope prediction also include
sequence-based methods, ML methods, and structure-
based methods. The epitope surface accessibility to
antibody binding is generally used by the sequence-
based methods (70,71). The availability of an antigen
sequence is crucial for the sequence-based method;
however, the predicted epitope residues are not grouped
into the corresponding epitopes (72). The ML-based
epitope prediction methods include several steps: a
collection of data sets with clean and comprehensive
data, extraction of antigen features of the sequence
(e.g., physicochemical properties, evolutionary informa-
tion, aminoacidcomposition), and training themodelus-
ingML algorithms (73). Someof the commonly usedML
tools for epitope prediction are ABCPred (uses artificial
neural network), COBEpro (uses support vector ma-
chine), EPSVR (uses support vector regressionmethod),
and BepiPred (based on random forest algorithm)
(70,71,74–76). Finally, structure-basedmethods identify
epitopes by antigen structure and epitope-related pro-
pensity scales, including specific physicochemical prop-
erties and geometric attributes (71,77). As the evolution
of antibody-antigen interactions seems largely driven by
single-sitemutationswith large functional antibody-anti-
gen binding effects that would impart obvious biophysi-
cal impacts on MD, we offer a simple and effective
alternative computational method to study vaccine
escape in silico using readily available MD simulation
software. We have combined this with a classic and
easily interpretable approach to the statistical compari-
son of distributions of local atom fluctuations on virus
proteins in the presence/absence of antibodies. While
our comparative dynamics method may be computa-
tionally heavy compared with many of these, it is not
burdened by potential bias imparted by the data sets
used to develop the contact scoring method or to train
ML algorithms. However, it is subject to the main ca-
veats of all MD studies, mainly that the force fields



employed are accurate for the systems being modeled,
and that the dynamics of the systems are appropriately
stabilized and representatively sampled.

In summary, we have computationally identified hot-
spot residues known to mutate in a viral antigen in the
presence of a neutralizing antibody. We first validated
our approach using the influenza spike protein and
three well-characterized antibodies against the influ-
enza HA (13). We then implemented our approach to
identify sites in the RBD of SARS-CoV-2 that are known
to mutate in the presence of neutralizing mAbs S2H97
and COVOX-222 (42,43). We further identified that res-
idues known to mutate in the presence of the antibody
overlap with the mutations seen in the VOC. Finally, we
also identified sites in the Omicron variant mutations
that enhance binding efficiency to hACE2. While the
method described here is not a complete substitute
for laboratory-based methods and takes longer to
conduct than simple analyses of antibody-bound viral
protein structure, we believe it can greatly comple-
ment these methods by allowing time and cost saving
through the computational prescreening of the under-
lying biophysics that may drive outcomes of many
potential lab experiments. Determining which viral
mutations escape from antibodies will be crucial for
designing future therapeutics and vaccines and as-
sessing future antigenic implications of ongoing viral
evolution.
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