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Abstract

Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used
functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making
participants squeeze a soft material either actively or passively. We found electromyographical recordings, an efference-
copy proxy, to predict activity in primary somatosensory regions, in particular Brodmann Area (BA) 2. Partial correlation
analyses confirmed that brain activity in cortical structures associated with motor control (premotor and supplementary
motor cortices, the parietal area PF and the cerebellum) predicts brain activity in BA2 without being entirely mediated by
activity in early somatosensory (BA3b) cortex. Our study therefore provides valuable empirical evidence for efference-copy
models of motor control, and shows that signals in BA2 can indeed reflect an input from motor cortices and suggests that
we should interpret activations in BA2 as evidence for somatosensory-motor rather than somatosensory coding alone.
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Introduction

The blood oxygen level dependent (BOLD) signal in premotor

(PM) and, as recently described, primary somatosensory cortices

(SI, Brodmann Area (BA) 2 in particular), is increased while

participants perform actions and while they witness similar actions

performed by others [1–3] suggesting a duality: witnessing others’

actions triggers vicarious motor representations in PM and vicarious

somatosensory representations in BA2 [4,5]. This duality is prompted

by reverse inference [6]: because electro-stimulation of PM can

lead to overt movements and that of BA2 to somatosensory

percepts [7] activations in the former are thought to reflect motor,

and in the latter somatosensory processes.

Contemporary theories of motor control however suggest

intensive crosstalk between motor and somatosensory regions [8–

12]: each motor command sent to the body also reaches

somatosensory cortices, as an efference-copy that forward internal

models convert into expected sensory consequences [8–12]. The

supplementary motor area (SMA) is considered the most likely

source of the efference-copy [13]. The notion of efference-copy

blurs the duality in the distinction between motor and somato-

sensory information and begs the question whether activations

measured in BA2 in a variety of paradigms necessarily always

represent somatosensory information alone or, at least sometimes,

also (efference copies of) motor commands. Only very few studies

have investigated this question.

Christensen and colleagues (2007) blocked sensory afference

from the leg and compared the difference between active and

passive ankle movements while the participant was or was not

under the influence of ischemia. As expected, ischemia reduced SI

activation during passive ankle movements, but this was not the

case during active movements, suggesting that an efference-copy of

the motor signal can determine activation of SI if actual

somatosensory afference from the leg is missing or reduced [14].

Whether an efference-copy can significantly influence BA2

activation in the presence of normal physiological afference to BA2

however remains controversial. Two studies found no SI difference

between the active and passive execution of a movement [15,16]

while one found smaller activation in SI during active compared to

passive finger tapping [17].

To provide further insights into this question, we compared

participants’ brain activity, measured with functional magnetic

resonance image (fMRI) with their muscle activity, measured with

electromyograhy (EMG) during active (ACT) and passive (PASS)

squeezing (Fig. 1a and b). While during ACT trials participants

gently squeezed bubble-wrap attached to the palm of the right

hand, during PASS trials the experimenter pressed the subject’s

fingers around the bubble-wrap (see Methods for more details).
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Muscle activity was measured to quantify the intensity of the actual

motor output and as a proxy of the motor command [18] and

hence efference-copy signal intensity. By comparing muscle

activity with brain activation, we investigated if SI activation can

reflect the magnitude of the motor efference. In addition, we used

two connectivity analyses to localize the likely source of this

efference-copy and distinguish it from somatosensory re-affer-

ences.

Results

EMG
Figure 1c presents the average rectified (i.e. absolute

value) electromyography (EMG) responses across sub-
jects over a 10 s interval centered on the onset of the
instruction to squeeze. The clear peaks and valleys of
the EMG indicate good within- and between-subject
consistency in the timing of the four squeezes.

For each trial, the rectified EMG during baseline (i.e.
25 s to 20.5 s relative to the onset of the task
instruction) and experimental epochs (i.e. the 4 s of
ACT or PASS) were averaged separately and the former
average subtracted from the latter to yield baseline-
corrected estimates of the EMG activity for each
experimental trial. The baseline-corrected estimates
for ACT and PASS where then averaged across trials to
yield a single value per subject and condition, that were
then compared using t-tests across participants. These
values were greater than zero for both ACT
(Mean = 77.18 mV; t(17) = 6.88, p,1027) and PASS
(Mean = 32.04 mV; t(17) = 3.25, p,0.002), and the differ-
ence between ACT and PASS was highly significant
(t(17) = 5.5, p,1024). Accordingly, comparisons of brain
activity in ACT and PASS trials are not of cases in which
there was motor activity vs. cases in which there was
none, but of cases in which there was more vs. less
motor activity, and hence efference-copy.

General Linear Models (GLMs)
Two GLMs were then calculated for the fMRI data (Fig. 1d). In

the first model a standard boxcar predictor was produced

separately for ACT and PASS and convolved with the canonical

hemodynamic response function (HRF). In the second model a

single ‘generic task’ boxcar predictor was produced which

contained both ACT and PASS blocks. In addition, a first-order

parametric modulator was defined using the EMG (EMGpm). The

value for a particular block was calculated as the average EMG

during the 4 s block minus the average EMG during the preceding

baseline (from 25 to 20.5 s of the appearance of the task

instruction). The parametric modulator (EMGpm) was then

demeaned and standardized, and both predictors (the generic

task predictor, and the generic task predictor * the EMG) were

convolved with the HRF.

Figure 1e–f show the fMRI results of comparing ACT versus

PASS conditions and EMGpm versus zero. Both ACT.PASS and

EMGpm.0 revealed widespread differential activations in areas

typically associated with motor programming and execution

including the cerebellum, primary motor cortex (M1), SMA, PM

and the posterior parietal lobe, including area PF and the superior

parietal lobule (Table 1). Most relevant for the present report, SI

was activated in both of these contrasts, in particular its BA2 sub-

region. In the EMGpm.0 analysis, both the left and the right BA2

showed significant modulation, with a larger proportion of the left

BA2 (51.3% of the anatomical region of left BA2 was activated;

contra-lateral to the squeezing hand) being modulated than the

right BA2 (44.3% of the anatomical region of right BA2 was

activated; ipsilateral to the squeezing hand).

The inverse contrasts ACT,PASS and EMGpm,0 mainly

recruited areas along the superior temporal sulcus, parietal

operculum and cingulate cortex (Table S1 in File S1). In line

with our results, reduction of tactile responses in these areas have

been previously described in humans [15] (anterior cingulate

cortex and parietal operculum) and monkeys [19] (superior

temporal sulcus) while participants were actively generating the

tactile stimulus. In the interest of our focus on BA2, the results in

ACT,PASS and EMGpm,0 will not be further discussed.

As expected given that the EMG was higher in ACT than

PASS, the comparisons between ACT and PASS and EMGpm

versus zero showed very similar activations. Conceptually, if the

EMG is taken as a proxy for motor efference, and thus efference-

copy, EMGpm.0 is the most direct localization of the efference-

copy effect as itcan capture variance even within conditions, and

will thus be used instead of ACT.PASS throughout the

remainder of the paper.

Psycho-Physiological Interaction (PPI)
Increased activation of BA2 during blocks with higher EMG

activity could be due to increased re-afference (i.e. more

somatosensory input from the active hand) or efference-copy

(more input from motor programming regions). If signals from

motor regions contribute to the heightened BA2 activity during

blocks with greater muscle activity, then the correlation between

BA2 and motor regions should be higher on blocks with high

muscle activity (i.e., active blocks) than on blocks with low muscle

activity (i.e., passive blocks), when little efference-copy signals

should be sent. Therefore, we performed a PPI interaction analysis

with BA2 as the seed region (Fig. S1 in File S1) and EMG as the

interacting physiological signal to find areas where the connection

with BA2 increases on blocks with high muscle activity.

The results are presented in Figure 1g and Table 1. Supporting

the influence of motor signals on SI, we found a large cluster with

peaks in the SMA, which shows higher connectivity with SI during

trials with more EMG, and hence, motor command generation

[13]. A number of other regions associated with motor control also

showed increased connectivity: PM, PF, M1, and cerebellum, in

accord with the results found using ischemia [14]. However, there

was also a peak in bilateral BA3b, which suggests an alternative

explanation of why BA2 activity is heightened in blocks with high

EMG. Proprioceptive and tactile feedback was similar but not

identical during ACT and PASS blocks, so it is possible that

heightened BA2 activity on blocks with high EMG could be due to

the differences in somatosensory re-afference from BA3b to BA2

through what we will call the ‘body-loop’.

No voxels surviving FDR correction were found for the inverse,

negative correlation (the first 16 voxels cluster within the gray

matter appears at punc,0.002, qFDR.0.99, in the left hippocampus

at MNI -30 -32 -12).

Partial Correlations
To explore whether the modulation of BA2 by regions involved

in motor programming could simply be due to re-afference

through the body-loop, we calculated partial correlations between

activity in BA2 and the candidate motor control regions (SMA,

PM, M1, PF and cerebellum) (Fig. 2). These partial correlations

were obtained, in different analyses, after removing the variance

shared (i) with the generic task time course (after HRF

convolution), to remove variance due to the timing of the

squeezing task; or (ii) the generic task and BA3b time courses, to

Efference-Copy to BA2

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84367



exclude variance that could be associated with re-afference

through BA3b. Figure S2 in File S1 illustrates the rationale

behind removing the generic task time-course (after HRF

convolution), and calculating partial correlations over the entire

(residual) time course of a run. If a ROI responds similarly to ACT

and PASS trials, regressing out the generic task time course will

generate an essentially flat residual, with only noise left. If the ROI

responds differently to ACT and PASS trials, regressing out the

generic task will preserve the variance between ACT and PASS

trials in the residuals. Performing a correlation between the

residuals across ROIs then specifically looks at whether variance in

responses between ACT and PASS trials in one ROI predicts

Figure 1. Experimental design and main results. (a) A photo of the experimental set-up. (b) Schematic diagram of the experimental design. (c)
Grand-average EMG responses during ACT and PASS conditions. Time 0 marks the onset of the 4 s blocks. (d) Comparison of the standard boxcar
approach (left graph) to the data-driven EMG approach (right graph) to modeling the fMRI data of a representative subject. In the standard approach,
a boxcar predictor models ACT blocks and another PASS blocks. In the EMG approach, a boxcar predictor models the effects of a nonspecific, generic
task (i.e. a single predictor models both the ACT and PASS blocks); and the standardized and mean-corrected EMG is included as a first-order
parametric modulator (EMGpm) of the generic task predictor. (e) fMRI results of the comparison between the ACT and PASS conditions (f) fMRI results
of EMGpm versus baseline. (g) PPI results (for e-g, voxelwise threshold: punc,0.001; only clusters of at least 10 voxels are shown. All results also
survive qfdr,0.05).
doi:10.1371/journal.pone.0084367.g001
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Table 1. Clusters of activity resulting from the contrasts ACT.PASS, EMGpm.0, and the PPI analysis.

Cluster size in
number of voxels

Number of
voxels in
CytoArea Hem Cyto/anatomical area

% of CytoArea
activated x y z T

ACT.PASS

33901 2132 L Area 6 48 N/A N/A

1978.1 R Area 6 44.6 N/A N/A

1463.3 R Cerebellar Lobule VI (Hem) 76.4 6 268 218 17.77

1396 L Cerebellar Lobule VI (Hem) 69.3 232 256 230 11.61

725 R Cerebellar Lobule VIIa Crus I (Hem) 21.5 N/A N/A

608.4 L Cerebellar Lobule VIIa Crus I (Hem) 19.2 N/A N/A

580.1 R Cerebellar Lobule V 70.1 2 256 210 14.31

458.9 L Cerebellar Lobule V 60.3 N/A N/A

446.8 L Area 2 47.9 N/A N/A

409.5 R Area 2 41.6 N/A N/A

375.7 R Area 44 41.3 N/A N/A

368.7 R hOC3v (V3v) 52.9 30 284 28 10.09

339.2 L Cerebellar Lobules I–IV (Hem) 67.5 N/A N/A

N/A R Middle Cingulate Cortex N/A 10 10 34 10.1

N/A L hlPI, BA3a, BA4a, BA4p N/A N/A N/A

N/A R hlP2, BA44, SPL(7A and 7P) N/A N/A N/A

N/A L/R hlP3, BA3b, Insula, Putamen, Pallidum, Thalamus N/A N/A N/A

440 316.4 L SPL (7A) 19.1 216 268 54 6

52.3 L SPL (7P) 9.6 214 268 58 5.65

32 L SPL (5L) 6 214 252 64 4.59

N/A L Superior Parietal Lobule N/A 218 266 58 5.74

N/A L Precuneus N/A 216 258 66 4.13

90 20.1 R Cerebellar Lobule VIIIa (Hem) 2.8 24 260 250 6.8

14.5 R Cerebellar Lobule VIIIb (Hem) 2 N/A N/A

12 R Cerebellar Lobule VIIa Crus II (Hem) 0.8 34 262 250 5.06

4.8 R Cerebellar Lobule VIIb (Hem) 0.7 N/A N/A

57 N/A R Middle Frontal Gyrus N/A 44 58 8 4.64

52 N/A L Middle Frontal Gyrus N/A 236 54 30 4.89

12 5.4 L Hipp (CA) 0.7 234 226 210 4.01

10 N/A L Middle Orbital Gyrus 226 56 214 4.33

EMGpm.0

17151 1403.1 R Cerebellar Lobule VI (Hem) 73 6 264 218 14.74

1395.2 L Cerebellar Lobule VI (Hem) 69 228 260 230 11.55

606.6 R Cerebellar Lobule VIIa Crus I (Hem) 18 N\A N/A

587.6 L Cerebellar Lobule VIIa Crus I (Hem) 18.5 N\A N/A

533.3 R Cerebellar Lobule V 64.2 12 254 222 11.15

429 L Cerebellar Lobule V 56.2 N\A N/A

336.7 R hOC3v (V3v) 48.2 N\A N/A

263.8 R hOC4v (V4) 47.4 N\A N/A

232.9 R Cerebellar Lobule VI (Vermis) 96.7 N\A N/A

224 L Cerebellar Lobules I–IV (Hem) 44.4 N\A N/A

214.8 L Cerebellar Lobule VI (Vermis) 99.5 N\A N/A

196.4 R Area 18 11.8 N\A N/A

178.4 L hOC3v (V3v) 26.4 N\A N/A

N/A L Pallidum N/A 224 28 2 8.68

N/A L/R Insula, Thalamus, Putamen N/A N\A N/A

N/A R Pallidum N/A N\A N/A

Efference-Copy to BA2
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Table 1. Cont.

Cluster size in
number of voxels

Number of
voxels in
CytoArea Hem Cyto/anatomical area

% of CytoArea
activated x y z T

11038 1995.3 L Area 6 (SMA) 46.6 224 24 62 8.04

1857.5 R Area 6 43.5 N/A N/A

461.9 L Area 2 51.3 N/A N/A

421 R Area 2 44.3 38 234 44 7.42

197.1 L IPC (PFt) 49 N/A N/A

184.4 R IPC (PFt) 42.1 N/A N/A

172.6 L hIP1 37.5 230 246 40 8.34

169.5 R Area 1 20.4 54 230 56 7.02

138.9 L IPC (PF) 14.1 N/A N/A

138.3 L Area 4p 24.4 N/A N/A

121.5 L hIP2 53.8 N/A N/A

121.4 L hIP3 43.3 N/A N/A

114.6 L Area 4a 9.9 N/A N/A

N/A R Middle Cingulate Cortex N/A 12 4 44 8.22

N/A R hIP1,hIP2,hIP3, BA3b, BA4a, BA4p N/A N\A N/A

N/A L BA3a, BA3b N/A N\A N/A

434 332.4 L SPL (7A) 20.1 216 268 50 5.9

52.3 L SPL (7P) 9.6 214 270 58 5.51

12 L SPL (5L) 2.2 N\A N/A

427 150.5 R SPL (7A) 13.9 26 254 56 4.24

75.1 R SPL (7P) 11.2 14 268 56 4.49

39.9 R SPL (7PC) 9.8 34 254 62 4.81

34.6 R hIP3 11.3 N\A N/A

178 144.9 L Area 44 12.4 256 10 14 4.94

6.1 L Area 6 0.1 258 8 34 4.19

152 N/A R Middle Frontal Gyrus 40 50 28 5.63

111 N/A R Middle Frontal Gyrus N/A 48 52 4 4.86

92 1.5 L Area 44 0.1 N\A N/A

L Temporal Pole N/A 258 12 24 5.13

20 N/A L Middle Orbital Gyrus N/A 226 56 214 4.9

PPI.0

3064 990 L Area 6 (SMA) 23.1 24 222 50 9.88

334.6 L Area 2 37.2 258 222 40 8.21

334.5 R Area 6 7.8 N\A N/A

181.6 L Area 3b 28.3 N\A N/A

177.3 L Area 1 19.2 232 246 56 7.07

174 L Area 4a 15 258 216 42 6.95

97.3 L Area 4p 17.1 N\A N/A

75.9 L IPC (PFt) 18.9 N\A N/A

31.4 L Area 3a 6.3 N\A N/A

N/A L Middle Cingulate Cortex N/A 28 224 48 10.08

L SPL(7PC) N/A N\A N/A

1671 603.9 R Cerebellar Lobule VI (Hem) 32.7 22 250 222 10.62

170 R hOC4v (V4) 31.8 N\A N/A

51.8 R hOC5 (V5) 52.1 54 268 0 6.99

45 R hOC3v (V3v) 6.7 N\A N/A

33.3 R Cerebellar Lobule V 4.2 N\A N/A

22 R Cerebellar Lobule VIIa Crus I (Hem) 0.7 N\A N/A

Efference-Copy to BA2
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Table 1. Cont.

Cluster size in
number of voxels

Number of
voxels in
CytoArea Hem Cyto/anatomical area

% of CytoArea
activated x y z T

N/A R Fusiform Gyrus N/A 32 258 214 7.42

N/A R Middle Temporal Gyrus N/A 56 270 2 7.17

N/A R Inferior Temporal Gyrus N/A 52 268 26 5.39

1327 389.1 L Cerebellar Lobule VI (Hem) 20 228 264 222 9.15

147.3 L Cerebellar Lobule VIIa Crus I (Hem) 4.8 236 260 230 6.24

81.5 L hOC4v (V4) 11.7 N\A N/A

46 L hOC5 (V5) 63.4 N\A N/A

15.8 L hOC3v (V3v) 2.4 N\A N/A

N/A L Middle Temporal Gyrus N/A 244 270 8 7.2

N/A L Fusiform Gyrus N/A 232 260 216 7.18

N/A L Cerebellum N/A 232 272 220 5.57

N/A L Inferior Occipital Gyrus N/A 238 272 210 5.49

N/A L Middle Occipital Gyrus N/A 250 270 22 5.32

646 214.6 R Area 1 25.9 58 212 38 8.09

130.8 R Area 3b 14.2 62 214 28 4.84

100.6 R Area 2 10.6 46 226 52 6.58

49.4 R IPC (PFt) 11.3 54 226 46 4.18

39.5 R Area 6 0.9 N\A N/A

11.1 R Area 4a 1 N\A N/A

6.9 R IPC (PFop) 2.5 54 220 36 8.69

N/A R Precentral Gyrus N/A 60 210 48 5.76

N/A R Postcentral Gyrus N/A 66 212 38 5.63

N/A R SupraMarginal Gyrus N/A 68 216 30 5.48

556 365 R Area 44 41.6 62 14 26 7.5

37.4 R Area 45 3.5 N\A N/A

N/A R Rolandic Operculum N/A 48 4 6 5.66

N/A R Temporal Pole N/A 62 10 22 4.85

436 103.6 L Area 44 8.9 248 10 4 6.04

N/A L Superior Temporal Gyrus N/A 252 6 24 6.42

403 220.8 L OP 1 37.1 252 232 24 7.35

95.9 L IPC (PFcm) 25.5 248 232 20 7.92

49.6 L IPC (PFop) 17.5 N\A N/A

7.1 L IPC (PF) 0.7 N\A N/A

5.3 L OP 4 0.9 N\A N/A

N/A L Superior Temporal Gyrus N/A 254 240 20 4.66

361 138.3 R IPC (PF) 15.6 64 236 12 10.05

57.6 R OP 1 11.3 66 220 14 5.26

33.9 R IPC (PFcm) 10.7 N\A N/A

204 N/A L Thalamus N/A 28 222 4 7.02

143 31.9 L Amyg (SF) 17 224 22 210 6.11

N/A L Putamen N/A 222 8 24 5.57

85 N/A L Putamen N/A 222 8 10 5.66

81 N/A R Putamen N/A 24 10 24 6.53

47 N/A R Insula N/A 30 22 10 5.29

44 N/A R Thalamus N/A 6 224 22 5.43

18 17.9 L Area 6 0.4 252 24 44 4.58

15 N/A R Middle Cingulate Cortex N/A 10 20 30 4.48

14 4.5 L Area 18 0.3 28 262 22 4.37
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variance in the other, as would be expected if efference-copy

signals are transmitted along that path. However, the entire time-

course of each ROI flows into the analysis, so that spontaneous

(resting-state-like) fluctuations in one region would also remain in

the residual time-course, and its transmission along the path would

also benefit the analysis.

Correlations that only partial out the task (Fig. 3a, black bars)

confirm the significant link between BA2 and all the motor control

regions as well as BA3b. Removing the variance shared with BA3b

(gray bars) reduces the correlation with M1 to non-significance

(p.0.8 after bonferroni correction, b.c., for 5 ROI), suggesting that

the association between M1 and BA2 could be entirely mediated

by the body-loop, i.e. by BA3b. For PF, cerebellum, SMA and

PM, the correlation with BA2 is reduced (matched-sample t-test,

all p,0.001 after b.c. for 5 ROI) but remains significant (all p,

0.003 after b.c. for 5 ROIs). This suggests that these regions are

linked to BA2 both through the body-loop and through an

efference-copy. Finally, because PF shows a particularly high

partial correlation with BA2 after removing BA3b variance, and

because PF is a key anatomical hub linking frontal motor regions

with BA2 [20,21] we explored if PF mediates the effect of SMA,

PM and cerebellum on BA2, by additionally removing variance

shared with PF (i.e., a partial correlation calculated after removing

the variance shared with the generic task, BA3b and PF time

courses; white bars). Doing so significantly reduced the partial

correlations for all the ROIs (for SMA, PM and cerebellum, p,

0.001; for M1, p,0.03 after b.c. for 4 ROIs), and all partial

correlations were no longer significantly above zero (all p.0.2

even without b.c. for 4 ROIs), confirming a likely mediation by PF.

Inverse covariance method
For a more comprehensive path analysis, we used the inverse

covariance method, that identifies which nodes have direct

connections by exploring the significance of the partial correlation

between these regions after removing variance shared with any

other ROIs or the task (see methods). This analysis revealed two

pathways through which BA2 is connected with motor structures:

one through BA3b (Fig. 3b, gray lines) and one through PF (black

lines).

Discussion

In our study, we challenge the validity of reverse inferences,

suggesting that activations in BA2 exclusively reflect somatosen-

sory processes, by investigating whether BA2 activation can

instead also reflect motor commands (e.g. efference-copies), as

suggested by modern theories of motor control [8–12,22] We

varied the efference-copy signal by making participants squeeze a

soft material in their hand either actively or passively. We

measured the EMG activity in the participants’ lower arm to

quantify the amount of motor efference. We then used the

magnitude of this measure on a given trial as a proxy for the

magnitude of the efference-copy.

By correlating the EMG with the BOLD signals throughout the

brain we show that in addition to early somatosensory regions

(BA3b) and regions involved in motor programming (SMA, PM,

M1, cerebellum and PF), BA2 activity was also positively

correlated with the EMG signal. This correlation is compatible

with the efference-copy account: BA2 activity is higher on high EMG

trials because higher activity in motor regions, SMA in particular

[13] would lead to higher efference-copy signals to BA2 through

the known anatomical connections between the motor structures

and BA2 [20] in particular through area PF [21]. The presence of

a similar correlation between EMG and BA3b is however

compatible with an alternative body-loop account: despite our

efforts to equate tactile sensations across conditions, the high EMG

(active) trials might still have induced stronger tactile sensations

that then activated BA2 more strongly via BA3b [20]. Because

BA2 and BA3b are anatomically close and a 9 mm spatial

smoothing was used in the preprocessing there is the possibility

that overlapped voxels exist in these two regions. But this

possibility would not weaken our conclusion because in the partial

correlation, any smoothing overlap would express itself as a linear

combination of signals, which would be taken out in the partial

correlation. For example, the partial correlation of BA2 and PF,

after removing BA3b, would only become smaller if we had more

overlap in signal through smoothing. Therefore, the remaining

significant correlation shown here stands.

A PPI analysis revealed that the connectivity with BA2 is

augmented as a function of EMG with both somatosensory (BA3b)

and motor control regions (SMA, PM, PM, M1, cerebellum and

PF). This analysis is therefore again equally consistent with a body-

Table 1. Cont.

Cluster size in
number of voxels

Number of
voxels in
CytoArea Hem Cyto/anatomical area

% of CytoArea
activated x y z T

N/A L Cerebellar Vermis N/A 24 270 26 4.61

12 5.4 R Hipp (SUB) 1 16 240 24 4.91

N/A R Lingual Gyrus N/A 12 242 22 5.21

11 1.6 L Area 17 0.1 N\A N/A

N/A L Lingual Gyrus N/A 224 262 26 4.73

From left to right we first list the cluster size in number of voxels. Then if the cluster encompasses cytoarchitectonically mapped brain regions (CytoArea, as by the
Anatomy toolbox), the number of voxels activated within that CytoArea; hemisphere; name of CytoArea and the percentage of that CytoArea activated within this
cluster. If the cluster extends beyond CytoAreas, the macroanatomical name are indicated instead, but the number of voxels within the CytoArea and the % activated
are then not available (N/A). The final two columns apply if a local maximum falls within the Cyto- or anatomical area, in which case we mention the MNI coordinates (in
mm) and the T value of the maximum. Note that if an area encompasses less than 1% of the cluster, the anatomy toolbox does not provide the Number of voxels or %
of CytoArea activated, but we still list these clusters here for completeness because they encompass more than our threshold of 10 voxels. For the entire table, the
voxelwise threshold was punc,0.001, all clusters had at least 10 voxels and also survived qfdr,0.05.
doi:10.1371/journal.pone.0084367.t001
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loop (mediated by Ba3b) and efference-copy account of the BA2

modulation.

To establish whether some of the correlation in brain activity

between BA2 and the motor control regions reflects an efference-

copy, we removed any variance shared with BA3b using the most

robust connectivity analyses available: partial correlations [23].

Results indicated that although part of the association between the

activity in these motor control structures and BA2 seems indeed to

be mediated by BA3b, for all regions except M1, another

significant part is not. This shared variance between BA2 and

the motor control regions, not mediated by BA3b, is exactly what

efference-copy theories would predict, and makes it less likely that

the inevitable tactile differences between the conditions could have

been the only driving force behind the differential BA2 activity. A

mathematically similar analysis, the inverse covariance method,

corroborated this conclusion: BA2 is linked to motor control

structures along two complementary paths that map onto the

notion of a body-loop and an efference-copy. The body-loop

corresponds to a path where motor control structures feed onto

M1, which feeds onto BA3b and finally BA2. Because no direct

anatomical connections exist between M1 and BA3b [24] this

M1RBA3b pathway probably reflects M1 triggering body motion

that changed tactile input to BA3b. The other pathway involves

the motor control structures feeding onto PF then BA2. This

pathway is in agreement with the main anatomical connections

between frontal structures and BA2 [20,21] and is therefore likely

to reflect connections conveying an efference-copy.

While BA1 is known to play a critical role in relaying

information from BA3b to BA2, this region is spatially so close

to BA2 and BA3b, that its signal would have been highly

correlated with that of the regions we already model. In the

interest of the balance between accuracy and complexity BA1 was

therefore not modeled.

Voluntary action is thought to originate in the frontal lobe, and

the efference-copy could derive from premotor, supplementary

motor and/or primary motor regions. Although most of the

previous experiments are compatible with many of these routes,

Haggard and colleagues identified SMA as a strong candidate

[13]. Our own data indicates that SMA and/or PM, but not M1,

are likely frontal source of the efference-copy to the somatosensory

cortex, and suggest that PF is the main hub through which this

efference-copy is sent to BA2. The cerebellum also seems to

mediate part of that information in agreement with many theories

[3,9,22].

Two families of methods currently exist to explore connectivity

in fMRI data [23]. Undirected methods explore which brain

regions are connected (directly or indirectly) using (partial)

correlations, and simulations indicate these methods to be accurate

and reliable [23]. Directed methods additionally attempt to derive

the direction of information flow across regions but often lead to

erroneous directions, and are thus less reliable [23,25]. Also in our

case, undirected, correlation based analyses lead to a stable

patterns of connectivity while our attempts to use directional

methods (Dynamic Causal Modeling, [26]) lead to less stable

results. In particular, the connection pattern, complexity or

number of ROIs included in the model comparison altered

depending on whether the winning directed model explained BA2

activation differences in terms of efferenc-copy alone, a direct

input to BA2 or as a combination of efference-copy and re-

afference (see Supplementary Method S1, and Supplementary Fig.

S3 and S4 all in File S1). Accordingly, we decided not to present or

interpret the results of the directed analysis measures any further.

With this caveat in mind, that frontal motor regions send the

efference-copy to PF and then onwards to BA2 is one of the

interpretations of the data. Alternatively PF might be the origin of

the ‘decision’ to move, sending information to frontal motor

regions to generate an overt movement and to BA2 as

somatosensory predictions. Attributing a seminal role to the

parietal lobe in the generation of visually instructed action is

compatible with findings that electro-stimulation of the posterior

parietal lobe can generate a volition to act [7]. Finally, undirected

methods by themselves cannot exclude that it is BA2 that sends

more somatosensory information to PF and frontal motor regions

during the active than passive condition. The latter alternative is,

however, rendered unlikely by evidence from an experiment using

ischemia to reduce somatosensory re-afference [14]. In this

experiment, ischemia reduced SI activation during passive ankle

movements. If information exchange during active movements

between premotor and SI regions were only to reflect somatosen-

sory re-afference, this manipulation should have also reduced SI

activation during active movements, which was not the case.

Additional evidence that motor signals are sent from motor to

somatosensory cortices stems from a study in rodents that found

that while rodents palpate objects with their whiskers, the vibrissal

motor cortex (vM1) sends motor information about whisker

movements to the vibrissal somatosensory cortex (vS1) [27].

Electroencephalographic investigations might in the future provide

data with higher temporal resolution to further disentangle these

alternatives.

Generally, our data dovetail well with those of the study of

Weber and colleagues [28] who recorded BA2 neurons in

monkeys that showed changes in activity preceding active

Figure 2. Regions of interest used in the partial correlation analysis. As mentioned in the text, left BA2 and left BA3b maps were directly
selected from the toolbox; left PF included the PF, PFt, PFop, PFm, PFcm; left M1 included the BA4a and 4p; bilateral SMA was obtained by
intersecting (Marsbar, http://marsbar.sourceforge.net) left and right BA6 maps with a box containing all voxels along y and z, but only from 217 to
+17 along x; left PM resulted from the combination of BA6 and 44 and used all x,217; Cerebellum included right lobule 5 and 6.
doi:10.1371/journal.pone.0084367.g002
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movements, of London and colleagues [29] who recorded neurons

within SI (in particular BA2) that only discharged during passive

and others only during active movements; and of Christensen and

colleagues [14], who, by depriving the brain of the afferent input

to SI, provided evidence for the presence of an efference-copy

signal to BA2. By maintaining normal somatosensory afference in

our experiment, but keeping it relatively constant across active and

passive trials with very different levels of efference-copy signal, we

provide evidence that even in the context of normal physiological

afference, EMG-correlated neural signals from the SMA and/or

PM have a significant predictive power on BA2 activation levels.

That early studies failed to find a difference in BA2 activity

when comparing active and passive conditions could be due to a

lack of power since they included only 6 participants [15,16]. That

one study measured a reduction in BA2 activation in active

compared to passive finger-tapping [17] is however compatible

with the idea that an efference-copy modulates BA2 activation but

raises the question of when such an efference-copy augments and

when it decreases BA2 activation.

Our study has a number of limitations that should be kept in

mind. First, some residual motor activity was present even in the

passive condition, and our data should not be seen as a contrast

between conditions with and without motor command. To address

this issue, we used statistics that explore trial-by-trial differences to

explore if trials with more/less motor command show stronger/

weaker activation in BA2 and more/less connectivity with motor

control structures. Second, there are inevitable differences in the

somatosensory consequences associated with the active and passive

condition. We believe that such somatosensory differences are

unlikely to account for the BA2 modulation we observed because

the tactile input was actually stronger in the passive condition (in

which the pressure of the hand of the experimenter was added to

the counter-pressure of the material to be squeezed), whilst BA2

activation was higher in the active condition. We further tried to

minimize the impact of such differences by excluding variance

mediated by BA3b, as a proxy for somatosensory input from the

body. However, our results should be examined with the caveat in

mind, that we cannot entirely exclude the possibility that some

afferent somatosensory signals may have been more intense in the

active condition and may have bypassed BA3b. Finally, we use a

number of methods (GLM, PPI, partial correlations), that all

assume linear models in which different sources of influence on a

region (BA2 in particular) add to each other. As in most BOLD-

MRI studies, it should be noted, that this is only an approximation

of how neural information is actually transformed into BOLD

activity. Ultimately, these limitations will need to be overcome by

converging evidence from different experiments investigating the

influence of efference-copies to SI using different manipulations

(ischemia, passive vs. active etc.) and different measurement

techniques (BOLD fMRI, EEG etc.), each of which have different

caveats.

In conclusion, our study suggests that the BOLD signal in BA2

can, under certain circumstances, reflect an input from motor

control structures (SMA, PM, the cerebellum or PF in particular).

This provides neural evidence for the recent view that efference-

copy signals and internal models are part of the neural architecture

of motor control [8–12,22]. It additionally invites us to interpret

activations in SI more carefully. That BOLD activation in BA2

can be significantly explained, in the sense of partial correlations,

by signals from these motor control regions that scale with motor

efference and that cannot be explained by BA3b activity, favors

interpreting our effect in BA2 as at least partially motor rather

than purely somatosensory. Theoretical models suggest that an

internal model transforms the motor efference-copy into predicted

somatosensory consequences [1–5]. This interpretation would

warrant calling the modulation of BA2 we measured somatosen-

sory-motor rather than strictly motor. Accordingly, together with

the data of Christensen et al. [14], London et al [29] and Weber et

al [28] and the modern visions of sensorimotor control [8–12,22],

our experiment suggests that we should interpret activations in

BA2 in fMRI experiments as evidence for somatosensory-motor

coding. Interpreting BA2 activations as evidence for somatosen-

sory as opposed to, and qualitatively distinct from, motor coding,

on the other hand, seems no longer appropriate.

Figure 3. Partial Correlation and ICOV analysis results. (a) Partial correlation between BA2 and the key ROIs revealed by the PPI analysis as a
function of the variance that has been removed (task only, black bars; task and BA3b, gray bars; task and BA3b and PF, white bars). ***: one tailed
paired t-test p,0.001 Bonferroni-corrected for 5 ROIs (task only vs. task and BA3b removed) or 4 ROIs (task and BA3b vs. task, BA3b and PF). *: same
at p,0.05. +++: one-tailed t-test against zero, p,0.001, Bonferroni-corrected for 6 ROIs (task only), 5 ROIs (task and BA3b) or 4 ROIs (task and BA3b
and PF). (b) ICOV analysis revealing the pattern of direct connectivity between the selected ROIs. Connection strength (visually presented as line
thickness), as average partial correlation value (6 standard deviation), is indicated on each significant partial correlation. Connections between the
nodes represent all the significant partial correlations (at p,0.05, bonferroni corrected for 21 possible pair-wise correlations, two-tailed t-test).
Connections in grey are likely to represent re-afference through the body loop, those in black neural connections that could carry efference-copy
signals.
doi:10.1371/journal.pone.0084367.g003
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Method

Subjects
Nineteen right-handed subjects (11 male, 21.6 years 64.5 s.e.m.

ranged 18–40 years) with no history of neurological disorders

participated in the experiment. One was excluded from all

analyses due to electromyography recording problems and one

from the connectivity (incl. partial correlation) analyses because a

stronger EMG response during passive compared to active blocks

suggested poor understanding of task instructions. The research

was approved by the Medical Ethical Committee of the University

Medical Center Groningen (NL) and all subjects signed a written

informed consent form.

Experimental Design
Participants and the experimenter wore a thin latex glove on

their right hand (Fig. 1a). On the palm side of the subject’s glove,

bubble wrap was attached as an object to squeeze. During PASS,

participants were shown a sequence of four 1 s red circles of

decreasing size (Fig. 1b). At the onset of each circle, author CF

squeezed the bubble wrap, by acting upon the subject’s right hand

fingers. During ACT, the circles were green instead of red, and the

participant gently squeezed the bubble wrap. Because subject’s

and experimenter’s gloves were glued together, during ACT the

experimenter could follow, with her fingers, the subject’s

movements, introducing a light pressure (i.e. an afference signal)

similar to the one in PASS. Prior to scanning, (i) participants and

author CF rehearsed to make the squeezing force and range of

motion as similar as possible in both conditions to ensure that

somatosensory feedback would be closely matched, and (ii)

participants were trained, by EMG biofeedback, to keep the

EMG as small as possible during PASS. The 20 ACT and 20

PASS blocks were presented in a pseudo-randomized order. A

random duration (10–14 s) centered gray circle separated the

blocks.

Electromyography
Surface EMG monitored muscle activity from the flexor

digitorum superficialis (FDS) muscle. A bipolar recording was

made from two electrodes, placed longitudinally with respect to

the muscle fibers above the FDS on the skin, close to the more

superficially positioned flexor carpi radialis muscle, using the

BrainAmp MR plus system (Brain Products GmbH, Munich,

Germany). The electrode locations were determined by observing

and palpating muscle contractions, using maximum voluntary

contractions (as measured by the EMG) towards the specific

pulling direction of the FDS. A reference electrode was placed on

the right wrist, at the processus styloideus. All data were recorded

at 5 kHz using the Brain Vision Recorder 1.03 software (Brain

Products, Munich, Germany). BrainVision Analyzer 1.05 was used

to correct the EMG data for MRI artifacts using the standard

averaging and subtraction method [30], which has been validated

for its use in EMG [31]. A 10 Hz high-pass filter was applied to

remove movement artifacts [32]. The data were then rectified and

down sampled to 250 Hz. As a consequence of the rectification,

the information on EMG burst-frequency is enhanced, thereby

recovering the low frequency (,10 Hz) EMG content [33]. MRI

acquisition and preprocessing: Whole brain functional MRI images

(EPIs) were acquired, with a Philips Intera 3T Quasar whole body

scanner, using a a T2-weighted echo-planar sequence (39

interleaved, 3.5 mm axial slices, no gap; TR = 2000 ms;

TE = 30 ms; flip angle = 80u; FOV = 2246224 mm; 64664 ma-

trix of 3.5 mm isotropic voxels), and were followed by a whole

brain T1-weighted anatomical image (16161 mm), parallel to the

bicommissural plane. All EPIs were slice-time corrected and

realigned to the subject’s mean EPI. The normalization param-

eters from the segmentation of the mean-co-registered T1 images

were then applied to all EPIs. Data were smoothed with a 9 mm

isotropic FWHM Gaussian kernel (SPM8; http:www.fil.ion.ucl.ac.

uk/spm/software/spm8).

An MR-compatible 32-channel BrainAmp system (Brain

Products, Munich, Germany) was used to record EEG simulta-

neously to investigate the relationship between EEG mu-suppres-

sion and BOLD signal, as reported in [34]. For most subjects,

there was a drop in BOLD signal intensity over the left parietal

lobe, likely an artifact caused by the EEG cables. SPM8 therefore

considered these voxels out of the brain. The following procedure

was used: ‘‘(a) all 19 subjects’ smoothed mean EPIs were averaged

into a grand mean EPI; (b) this grand mean EPI was divided by

each subject’s smoothed mean EPI; (c) we then multiplied, for each

subject separately, all the smoothed EPIs by the subject’s

correction map obtained in point (b)’’ [34] (http://www.nin.

knaw.nl/Portals/0/Department/keysers/

Arnstein%20SupplementaryFigures.pdf). Additionally, regression

analyses found no significant relationship between the amount of

attenuation within regions of interest in a participant and the

connectivity measures derived from those regions in that

participant (see Supplementary Method S2 in File S1).

MRI data analyses
In both GLMs blocks in which the task was performed

incorrectly were modeled separately with a boxcar predictor of

no interest and then convolved with the HRF. To account for

head movements we included 24 parameters (three translations,

three rotations, their first temporal derivative, their quadratic, and

these head motion parameters shifted forward by 1TR), as

covariates of no interest, not convolved with the HRF.

Psycho-Physiological-Interaction (PPI) analysis
Activity in left BA2, defined using the Anatomy Toolbox 1.7

maps ([35] http://www.fz-juelich.de/ime/spm_anatomy_toolbox)

for SPM8, was the physiological predictor for the PPI analysis. At

the first level, for each subject, we visualized EMGpm.0 at punc,

0.001, and extracted the first eigenvariate from a 6 mm sphere,

centered on the individual’s absolute maximum within the left

BA2 masked results(Fig. S1 in File S1). The EMGpm of each

participant’s original GLM was the psychological variable. The

SPM8 PPI function then determined the interaction term. We

used the psycho-physiological option because the EMG measure-

ment, like a psychological variable, does not lag behind the

underlying neural process. The physio-physiological option,

terminologically more appropriate, would instead have de-

convolved the EMGpm signal. A new GLM was then created

for each participant using these three predictors. The parameter

estimates for the interaction term were brought to second level

analysis, comparing it against zero using a t-test. Only 14 out of

the 17 subjects had a maximum within left BA2 at punc,0.001. In

the main text and Figure 1g, for the PPI analysis, we therefore only

show group results coming from them. A similar analysis, reducing

the thresholds for the ROI definition to include all 17 participants

led to virtually identical results (see Supplementary Methods S3

and Fig. S5 in File S1). Similar results were also obtained, when a

ROI resulting from the masking of the EMGpm group results (p,

.001 uncorrected, k.10) with the anatomical BA2 was used as a

mask at the first level (see Supplementary Methods S4 and Fig. S6

in File S1).
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Statistical Threshold
All analyses were initially thresholded at punc,0.001 (k.10) at

the second, group level. To control the overall false discovery rate,

we only report results that also survive a voxelwise qFDR,0.05.

Partial Correlation Analyses
Based on the PPI results, for the partial correlation analyses, we

defined (Anatomy Toolbox [36]) seven anatomical ROIs: BA2

[37], BA3b [38,39], PF [40,41], cerebellum [42], SMA, PM [43]

and M1 [44]. All, but SMA and cerebellum, only included the left

hemisphere (Fig. 2). BA2 and BA3b maps were directly selected

from the toolbox; PF included the PF, PFt, PFop, PFm, PFcm; and

M1 the BA4a and 4p. Based on visual inspection of the averaged

anatomy of our group, and on the Harvard-Oxford cortical atlas

(http://www.cma.mgh.harvard.edu/fsl_atlas.html), to obtain the

SMA, we intersected (Marsbar, http://marsbar.sourceforge.net)

left and right BA6 maps with a box containing all voxels along y

and z, but only from 217 to +17 along x. For left PM, we

combined BA6 and 44 and used all x,217. Cerebellum included

right lobule 5 and 6, which contain the main cerebellar hand

representation and are connected with motor, parietal and

somatosensory hand representations in the cortex [45]. For each

ROI and participant, we extracted the first eigen-time-course from

all voxels for which EMGpm.0 at punc,0.05. Only 14

participants contained at least 5 significant voxels in all ROIs,

and the analysis was restricted to them. The mean partial

correlation values for the 14 participants in the three correlation

analyses were assessed at second level using a one tailed t-test

against zero. All significant t-test results were also significant when

using non-parametric tests (Wilcoxon-Signe Rank or Mann-

Whitney U).

Inverse Covariance Method
To identify which ROIs are directly connected, we explored the

significance of the partial correlation between these regions after

removing variance shared with the other ROIs and the task.

Assuming that the matrix of plausible connections between the

ROIs is sparse, the inverse covariance method (‘‘glasso’’ imple-

mentation in the R Statistical package) leverages the fact that a full

set of partial correlations can be computed using the inverse of the

covariance (ICOV) matrix [46]. Briefly, each variable ‘i’ (ROIs in

this context) is represented as a general linear model (GLM)

comprising of all other variables ‘j’, under the constraint that the

sum of the absolute coefficients (Cij) of the individual regressors be

less than a given constant tuning parameter P. If Cij and Cji is

zero, then the ij entry of the inverse covariance matrix is zero [47].

This Lasso shrinkage method [48,49] sets many of the entries in

the partial correlation matrix to zero as a function of P. Note that

if P is very large the contraint has no effect and a full inverse

covariance matrix (and hence a full partial correlation matrix) is

obtained. But a small positive P sets many of the partial correlation

values to zero, while resulting in different fitting errors for the

model. We present the results corresponding to P = 0.01 and the

results remain robust against slight variations of this value. The

tuning parameter has the effect of controlling the number of

predictors in the GLM.

Supporting Information

File S1 Contains the following: Table S1: Clusters of activity

resulting from the contrasts PASS.ACT and EMGpm,0. Figure

S1: Illustration of the BA2 region used in PPI analysis for all the 14

subjects. The green shows the 6 mm sphere centered in the peak.

The red shows the anatomical region of BA2. And yellow are the

overlaps as well as the region used in the PPI analysis. Figure S2:

Illustration of the Partial Correlation Logic. (A) If a ROI has an

actual BOLD response similar during ACT and PASS blocks,

regressing out the time course of the generic task (after HRF

convolution) leaves only noise in the residuals. (B) If a ROI

responds differently to ACT and PASS, regressing out the same

generic task retains the variance between conditions in the residual

time-course. These residuals can then serve to track how

differences between ACT and PASS are transmitted from ROI

to ROI. The time-courses in this figure are not actual data, but

simulated data to caricature the concept. Figure S3: Graphical

illustration of the six models compared in DCM. The RFX

Bayesian model comparison results is in the graph on the right.

The numbers in the top left of each graph correspond to those in

the x-axis of the chart. Figure S4: Graphical illustration of the

models including M1 and PM compared in the DCM analysis.

The RFX Bayesian model comparison results is in the graph on

the bottom. The numbers in the right underside of each graph

correspond to those in the x-axis of the chart. Note that the generic

task is always included as modulator of both BA3b and BA2, as in

the previous analysis. Figure S5: PPIs group results. Green color:

second level PPI results currently presented in the manuscript (T,

4.02 at punc,0.001, all survive qfdr,0.05). The eigen-vectors

were extracted from a 6 mm sphere centered on the local maxima

within the anatomical BA2 ROI. Eigen-vectors were extracted at

the single subject level at punc,0.001 for 14 out of 17 subjects.

Red color: second level PPI results for the entire group of 17

subjects (T.3.69, punc,0.001, all voxels also survive qfdr,0.05).

As for green, the eigen-vectors were extracted from a 6 mm sphere

centered on the local maxima within the anatomical BA2 ROI.

Eigen-vectors were extracted at single subject level within that

region from all voxels where a subject showed a correlation with

EMG, at punc,0.001 threshold for 14 out of 17 subjects, and at

punc,0.5 for the remaining 4. Yellow color: overlap between Red

and Green. Figure S6: PPIs group results. Green color: second

level PPI results currently presented in the manuscript (T,4.02 at

punc,0.001, all survive qfdr,0.05). The eigen-vectors were

extracted from a 6 mm sphere centered on the local maxima

within the anatomical BA2 ROI. Eigen-vectors were extracted at

the single subject level at punc,0.001 for 14 out of 17 subjects.

Red color: second level PPI results for the entire group of 17

subjects (T.3.69, punc,0.001, all voxels also survive qfdr,0.05)

using the method define above (supplementary method S4 in File

S1). Yellow color: overlap between Red and Green. Supplemen-

tary Method S1: Dynamic causal modeling (DCM). Supplemen-

tary Method S2: Influence of the EEG artifact on the partial

correlation analyses. Supplementary Method S3: PPI analysis

including all 17 subjects. Supplementary Method S4: PPI results

using group-level results to define ROIs.

(DOC)
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