
sensors

Article

Multivariate Analysis of Concrete Image Using Thermography
and Edge Detection

Bubryur Kim 1 , Se-Woon Choi 2, Gang Hu 3, Dong-Eun Lee 4,* and Ronnie O. Serfa Juan 4,*

����������
�������

Citation: Kim, B.; Choi, S.-W.; Hu, G.;

Lee, D.-E.; Serfa Juan, R.O.

Multivariate Analysis of Concrete

Image Using Thermography and

Edge Detection. Sensors 2021, 21, 7396.

https://doi.org/10.3390/s21217396

Academic Editors: Dae-Ki Kang and

Sukho Lee

Received: 28 September 2021

Accepted: 3 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Robot and Smart System Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu,
Daegu 41566, Korea; brkim@knu.ac.kr

2 Department of Architectural Engineering, Daegu Catholic University, Hayang-ro 13-13, Hayang-eup,
Gyeongasan-si 38430, Korea; watercloud@cu.ac.kr

3 School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China;
hugang@hit.edu.cn

4 School of Architecture, Civil, Environment and Energy Engineering, Kyungpook National University, 80,
Daehak-ro, Buk-gu, Daegu 41566, Korea

* Correspondence: dolee@knu.ac.kr (D.-E.L.); ronnie71@naver.com (R.O.S.J.); Tel.: +82-53-950-7540 (D.-E.L.);
+82-10-9549-6318 (R.O.S.J.)

Abstract: With the growing demand for structural health monitoring system applications, data
imaging is an ideal method for performing regular routine maintenance inspections. Image analysis
can provide invaluable information about the health conditions of a structure’s existing infrastructure
by recording and analyzing exterior damages. Therefore, it is desirable to have an automated
approach that reports defects on images reliably and robustly. This paper presents a multivariate
analysis approach for images, specifically for assessing substantial damage (such as cracks). The
image analysis provides graph representations that are related to the image, such as the histogram.
In addition, image-processing techniques such as grayscale are also implemented, which enhance
the object’s information present in the image. In addition, this study uses image segmentation and a
neural network, for transforming an image to analyze it more easily and as a classifier, respectively.
Initially, each concrete structure image is preprocessed to highlight the crack. A neural network is
used to calculate and categorize the visual characteristics of each region, and it shows an accuracy for
classification of 98%. Experimental results show that thermal image extraction yields better histogram
and cumulative distribution function features. The system can promote the development of various
thermal image applications, such as nonphysical visual recognition and fault detection analysis.

Keywords: crack analysis; concrete; cumulative distribution function; edge detection; Sobel
edge detection

1. Introduction

The issue of concrete infrastructure deterioration has become a global concern; main-
tenance or rehabilitation for infrastructure stability is necessary. In addition, unexpected
expansion, external forces such as wind [1], and incremental loads contribute to struc-
tural aging, which increases maintenance, repair, or replacement costs [2–4]. Further,
numerous variables can cause concrete infrastructure deterioration, such as mechanical
stress, fatigue [5], and chemical and environmental conditions [6]. In the past, assessing
infrastructure’s condition was done using human subjectiveness. However, when human
subjectiveness is used to perform crack analysis, detection, and evaluation as a manual
approach, the frequent outcome is time-consuming and error-prone, especially in large
datasets. Psychophysical measurements are used to assess image quality in the percep-
tion of visual information by a human observer, which constrains the performance of
human vision.

Unmanned techniques have been implemented to improve the accuracy and efficiency
of inspection. Digital image processing is a widely used and standard method for detecting

Sensors 2021, 21, 7396. https://doi.org/10.3390/s21217396 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4226-7435
https://orcid.org/0000-0001-9205-3836
https://orcid.org/0000-0002-8551-8057
https://doi.org/10.3390/s21217396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217396
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217396?type=check_update&version=3


Sensors 2021, 21, 7396 2 of 24

and evaluating potential cracks in structures [7–9]. An algorithm for concrete compressive
strength detection using image processing and artificial neural networks (ANNs) was
presented in Reference [10]. The presented method used five specific parameters, concrete
samples, and acquired images. Multitarget multiclass defects in concrete structures found
in civil infrastructures were classified using a deep multi-deformation-aware attention
learning architecture, comprising a multiscale assembly of attention and fine-grained
feature-induced attention modules [11]. An image-processing technique to provide con-
crete regression analysis has been employed [12]; the technique can be an auxiliary tool
for destructive and nondestructive testing methods. Reference [13] used a convolutional
neural network (CNN) to recognize the orientation of crack segments in concretes. In [14],
an enhancement algorithm using the swarm optimization technique with adaptive cumu-
lative distribution function (CDF) based on histogram equalization (HE) was proposed
for iteratively optimized contrast enhancement and HE, which resulted in a combined
function that converted the input images into quality images. An imaging-based detection
technique for mapping crack damages in concrete structures has also been introduced [15];
this technique employed the gray-level co-occurrence matrix texture analysis approach
integrated with ANN as a classifier to obtain surface damage information. Reference [16]
presented an automated crack assessment and quantitative growth monitoring employing
dual CNNs. An artificial-intelligence-empowered pipeline for image-based inspection of
concretes was illustrated in [17]; this innovative approach comprised anomaly detection,
extraction, and defect classification of regions from large image datasets. A review and
model comparison using a machine learning (ML) approach for crack detection on a se-
lective scale are presented in [18]. Additionally, Reference [19] used image processing to
conduct an experimental study on microscopic mobbing characteristics of pedestrians in
built corridors to provide the real-time characteristics of the structures with pedestrian
interaction. The fundamental purpose of this research is to provide an image analysis that
presents the graphical characteristics linked to images, such as histograms, which can be
used for further study. Additionally, images in grayscale offer information on identifying
the many types of objects that are included in images and good description of the surfaces
of the objects that are present. Thermal imaging was also considered, which provides a
more significant image than images taken from an ordinary camera. The image analysis
algorithms were utilized for classification, defect detection, and segmentation, and neural
network was used for pattern recognition. Both were used for image segmentation and
pattern recognition with minimal human intervention.

To solve the issues mentioned, we focus on establishing sufficient information on
images to analyze concrete conditions. In addition, to achieve the research objective, an
image segmentation approach is implemented to enhance acquired images to simplify the
study of the concrete conditions, and an ML technique is employed for detecting concrete
defects. In the proposed method, the acquired images are initially preprocessed to remove
unwanted information. Then, edge detection (ED) and filtering are used to highlight only
the defect region on concrete images. The remainder of this paper is structured as follows:
Section 2 addresses the related works. The proposed method is discussed and described in
Section 3. Section 4 presents simulations, evaluation results, and interpretations. Finally,
Section 5 concludes this study.

2. Review of Related Literatures
2.1. Image-Processing Analysis

Image processing is a technique for improving an image or extracting relevant in-
formation from it. Digital image-processing methods enable the alteration of digital
images using computers. Fundamental image parameters include resolution, contrasts,
dynamic range, and the signal-to-noise ratio. Details of these parameters are provided
in Appendix A.

The representation of an image can take several forms, which can vary in regards to
their color space (including aspects such as hue, saturation, or value) and even in graphical
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schemes. This representation conveys information, such as color, coded information, tem-
perature mapping, and how an image is digitally preserved. Cumulative histograms and
the cumulative distribution function (CDF) are the two common graphical representations
of digital image processing. The detailed description of these two graphical represen-
tations is presented in Appendix A. Figure 1 shows the corresponding histogram of a
sample image.
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Figure 1. Sample concrete image: (a) image in grayscale mode and (b) its corresponding histogram.

Figure 2 shows the histogram and CDF comparison between two images taken from
an ordinary and a thermal camera, respectively. The image histogram was plotted using
pixel values and the number of pixels. The histogram of the sample image taken from the
ordinary camera exhibits a bimodal distribution. One peak represents the object pixels,
whereas the other peak represents the background. Meanwhile, the histogram of the
thermal image shows a good distribution of pixels over the entire intensity range. The
histogram also shows most pixel values clustered in a small area; the top half of the intensity
values are occupied by only a few pixels. The more the pixels are evenly distributed over
the entire intensity range, the more easily the image can be transformed. The CDF is more
linear in the thermal image, producing a more enhanced image. Thus, the representation
of a thermal image in a different domain from the extracted features such as the histogram
and CDF is helpful for postprocessing, e.g., in pattern selection, which can be used for
classifying and assessing an image.

Using an image edge detection (ED) method, the object boundaries can be established
on a per-image basis. These methods can be helpful for examining individual pixels and
their nearby segments to determine portions of an image that have strong contrast. The
method of identifying edges in image processing is known as ED [20]. Image segmentation
is a necessary step in image analysis. The segmentation process separates an image into
its components or objects that have the same texture or color. In this study, only Sobel
edge detection is used in the simulation process. A brief discussion of edge detection is
presented in Appendix A. Figure 3 shows the simulated results using the different ED
techniques compared between an image dataset taken from an ordinary camera and a
thermal camera. It shows that the output from the thermal camera is better than that from
the ordinary camera.
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2.2. Related Implementation

Below are some related works for concrete analysis that use image-processing tech-
niques. Reference [21] described an online image-processing-based technique for rapidly
and non-invasively detecting cracks in pressed-panel goods; however, this method used
a standard camera, and the dataset was relatively small. An algorithm developed in [22]
presented a feature detection approach that uses the Sobel operator to filter and denoise
concrete images before implementing the Otsu method for thresholding segmentation
for crack edge identification. Another implementation that uses the ED technique was
presented in [23]; it analyzes crack identification for bridges. The presented work com-
pared the crack detection results using the fast Fourier transform, Sobel filter, and Canny
filter. A comparison of performance using deep CNNs and EDs for image-based crack
detection in concrete structures yielded an 86% accuracy rate in the network that correctly
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detected the cracked images [24]. Finally, Reference [25] presented a CNN application for
ground-penetrating radar images that automatically recognized, located, measured, and
provided a three-dimensional reconstruction of concealed cracks. In addition, three distinct
CNNs were constructed to automate the tasks mentioned above: recognition, location, and
feature extraction.

Sensors 2021, 21, 7396 5 of 24 
 

 

 Ordinary camera Thermal camera 

Sample image 

  

Grayscale 

  

RED 

(Inverted color) 

  

SED 

(Inverted color) 

  

CED 

(Inverted color) 

  

PED 

(Inverted color) 

  

LOG-ED  

(Inverted color) 

  

Figure 3. Comparison of sample images taken from ordinary and thermal cameras. 

2.2. Related Implementation 

Below are some related works for concrete analysis that use image-processing tech-

niques. Reference [21] described an online image-processing-based technique for rapidly 

and non-invasively detecting cracks in pressed-panel goods; however, this method used 

a standard camera, and the dataset was relatively small. An algorithm developed in [22] 

presented a feature detection approach that uses the Sobel operator to filter and denoise 

concrete images before implementing the Otsu method for thresholding segmentation for 

crack edge identification. Another implementation that uses the ED technique was pre-

sented in [23]; it analyzes crack identification for bridges. The presented work compared 

the crack detection results using the fast Fourier transform, Sobel filter, and Canny filter. 

A comparison of performance using deep CNNs and EDs for image-based crack detection 

Figure 3. Comparison of sample images taken from ordinary and thermal cameras.



Sensors 2021, 21, 7396 6 of 24

3. Methodology

Below are presented the detailed technical specifications, algorithm, and setup used
in this paper. Table 1 under Experimental Setup provides the technical specifications of
the thermal camera used in this study. The specifications for the physical setup in data
acquisition are shown in Figure 4.

Table 1. Thermal camera technical specifications.

Brand/Company Name FLIR E8

Field of View 45◦ × 34◦

Object Temperature Range −20 ◦C to 250 ◦C
Image Frequency 9 Hz

Thermal Sensitivity <0.06 ◦C
Accuracy ±2 ◦C

Thermal Palettes Iron, Rainbow, Grayscale
File Format Radiometric JPG

On-board Digital Camera 640 × 480
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Experimental Setup.
Data Acquisition Setup.

3.1. Image Acquisition

The acquired dataset consists of 2700 thermal concrete images from various structures
of universities in Daegu City, Republic of Korea, between November 2019 and September
2021. The proposed approach was simulated using the MATLAB platform. Detailed
descriptions of the algorithm and experimental setup are discussed below.

3.2. Algorithm

The following sections describe each step of the proposed work. Pre-image processing
was implemented to improve the raw image. All concrete images were then enhanced
using different image-processing techniques as shown in Figure 5. Finally, a convolutional
neural network approach was applied for automatic image classification to assess the
accuracy of classification on the testing image, which is shown in Figure 6.
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Below are the details of each processing block and the MATLAB syntaxes used in
this study.

Step 1: Loading and Reading of Images.
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Initially, the raw thermal concrete images were to be imported from the dataset folder.
First, the MATLAB function “dir” prepared the listing of the files and folders in the current
folder for the task. Then, the “imread” function was implemented at this stage.

Step 2: Resizing Images.
To visualize the change in the images, two MATLAB functions were implemented.

The “imresize” function provided the image in the size necessary for the required task.
Then, the “imshow” function displayed the image for visual verification. In this study, the
base size of all sample images was set to a 720 × 576 pixel value (4:3 aspect ratio).

Step 3: Image Segmentation.
Image segmentation is used to transform an image representation into something

more meaningful and easier to analyze. This study applied image segmentation to concrete
images; only those with cracks were extracted. Furthermore, the clustering method called
k-means clustering was performed for the segmentation process with a k value of 4.

Step 4: Grayscale-Level Image.
The resulting image from step 3 was converted to a grayscale image using the MAT-

LAB function “rgb2gray,” which removed the hue and saturation content information while
maintaining the luminance.

Step 5: ED Techniques.
This step presented the relative performance of ED techniques as SED. The ED tech-

nique was implemented and tested using a sample crack image. The objective was to
produce a clean edge map by extracting the principal edge features of the image.

Step 6: Morphologic Noise Reduction
Aiming to detect concrete surface cracks, the Otsu algorithm is processed based on

differential images. The Otsu method selects a threshold that reduces the intraclass variance
of the black and white pixels that have been thresholded.

Figure 7 shows the different threshold iteration levels used in the sample image. The
inverted image is depicted in Figure 8.
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Step 7: Median Filtering of Grayscale Level.
In this study, median filtering was used to minimize noise while preserving the edges

of the sample images. The median filter works by moving an image pixel by pixel and
changing each value with the median value of the adjacent pixel. The median is calculated
by first numerically sorting all pixel values in the window and then replacing the pixel
under consideration with the middle (median) value. Further, as shown in Figure 9, a noise
reduction algorithm was implemented with an appropriate filter iteration to enhance the
sample images being tested, preventing any unnecessary data from being included in the
noise reduction process.
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As seen in Figure 10, the original image was further filtered to remove any unwanted
noise in the target object of the image. Additionally, a clearer version of the filtered output
image is shown in Figure 11.
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3.3. Image Classifier

Following feature extraction and image enhancement, the proposed approach employs
CNN [26,27] as a feature extractor and a support vector machine (SVM) as a classifier to
categorize images. The results of this module section can then be used to pinpoint faults.
This module section of the classification’s full description is as follows. The employed
CNN can be used as a feature extractor and a classifier in various real-world applica-
tions [26]. This study used the Keras sequential model, which included convolutional,
activation, and max-pooling layers. The first convolutional layer comprises 32 filters with
3 × 3 pixel dimensions. Following filtering, a ratio of 2 was employed to facilitate the
max-pooling procedure.

The convolutional layer’s main job is to detect the local connections of features from
the prior layer. The feature map output is subsequently transmitted to the activation
layer, which is the ReLU. In vision systems, the max-pooling approach is used for two
reasons: (1) to reject non-maximal values, which reduces layer calculation time; and (2) to
execute down-sampling operations on 2 × 2 subregions to minimize the dimensions of
the intermediate feature vectors. Then, the filters are piled together, and fully connected
layers are used to compute the class scores. The output of the fully connected layers is
used as the input feature vectors for the SVM classifier in the proposed model. At the
final stage of the proposed defect detection, an SVM classifier was used instead of CNN’s
softmax layer to find a hyperplane that divides the most significant fraction of a labeled
dataset into subgroups appropriate for binary classification. The training data comprise
pairs of training samples (x1, y1),...(xi, yi), where xi is the observation or input feature for
the ith sample, and yi is the associated class label (x1, 0). The discriminant function that
transforms an input feature space xi into a class label yi is the SVM classifier. Since a radial
basis function was used as the kernel in SVM, cross-validation was performed to obtain
the optimal kernel values. Moreover, the experimental setup was simulated via MATLAB
environment for both the ground truth/actual and predicted labels; positive and negative
values were assigned to defective and nondefective input images, respectively.

A confusion matrix is a representation of the performance of any classification model
on a dataset. For reference, the two possible predicated classes are “yes” and “no”. In this
paper, predicting non-defective concrete images means “yes”, while “no” would indicate
cracked images. The rows of confusion matrix correspond to the predicted class (Output
Class), while the columns correspond to the true class (Target Class). The diagonal cells rep-
resent correctly classified observations, and the off-diagonal cells are incorrectly classified
observations. The matrix shows both the number of observations and the corresponding
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observed percentage equivalent to the total dataset number in each cell. Additionally, the
row at the bottom of the confusion matrix provides the percentage equivalent of all datasets
belonging to each class that are correctly and incorrectly classified. On the other hand, the
column of the confusion matrix shows all the predicted percentages that belong to each
class that are correctly and incorrectly classified. Lastly, the cell at the bottom right of the
confusion matrix shows the overall accuracy of classification. Below are the definitions of
each type of cell in a confusion matrix.

True Negative (TN): Predicted “no”; means that cracked images are classified correctly
as “defective”.

False Positive (FP): Predicted “yes”; means that cracked images are classified inaccu-
rately as “non-defective”.

False Negative (FN): Predicted “no”; means that non-defective concrete images are
classified as “defective”.

True Positive (TP): Predicted “yes”; means that non-defective concrete images are
classified correctly as “non-defective”.

Below are equations for the confusion matrix interpretation.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

Negative Predictive Value =
TN

TN + FN
(5)

For this objective, two ML-based classifiers (SVM and ANN) were employed. A
challenging aspect of developing ML-based classifiers is determining their parameters. In
this study, the classifier parameters, such as the SVM kernel type, number of ANN layers,
and number of neuron-nodes per layer, were correctly chosen based on earlier work [28]
and subsequent experimental results.

4. Results and Discussion

Figure 12 illustrated the sample results of each step in the proposed image-processing
method, for images taken from both ordinary and thermal cameras. It shows that using a
thermal camera for concrete crack image acquisition could provide a better result when
the proposed method was implemented. Images taken from both the ordinary camera
and the thermal camera were subjected to different digital image processing. The figure
illustrates that the thermal-imaging technique of this proposed algorithm is appropriate
and can provide additional support for digital image analysis, because the outcome of
each stage for the thermal image is much better than that of the image taken from the
ordinary camera.

Figure 13 shows some sample outputs of corresponding inputs, illustrating images
taken from both ordinary and thermal cameras. As seen in this figure, by assessing
the perceptual quality of the sample input images, various features could be estimated
to represent subjective qualities, whose characteristics could be considered desirable or
not. Images taken from the thermal camera provided better edge visibility, contrast,
and brightness.
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Figure 13. Sample outputs of corresponding inputs from ordinary and thermal cameras.

4.1. Analysis of Five Tonal Zone of Histogram

Five tonal zones of the histogram are illustrated in Figure 14; these zones are (from 1
to 5) blacks, shadows, midtones, highlights, and whites, corresponding to the tonal range
of 0–255.

1. Blacks—this segment is completely black, with no details captured. It also has a
very narrow tonal range located on the far left side of the histogram. When a histogram
reaches the far left of the chart (tonal range of 0), it means that shadows have been clipped
on the image.

2. Shadows—shadows are frequently mistaken for blacks, especially when a darker
shadow appears; however, this segment has a slightly wider tonal range than blacks.
Shadows have some details and can be lightened to some extent. Usually, image noise
appears in this area.

3. Midtones—this segment has the most tonal range and contains the most pixels.
Even if there is stretch or shift in any direction, the tones will most likely remain intact.
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4. Highlights—this segment has the same property as shadows, but it is in the brighter
part of the image and contains some visible details. It can be cautiously adjusted to the far
right toward clipping.

5. Whites—whites have a similar characteristic to blacks, but this segment is pure
white with no details. If a histogram reaches the far right, it means that more information
in the brightest portion has been clipped.
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Figure 15 shows the tonal zone representation of the image taken from the ordinary
camera; a small-scale shadows region appears in the histogram, which indicates that the
input image is close to a black segment. In addition, more information is provided in
the midtone section, resulting in an asymmetrical histogram. Finally, a small portion of
highlights exists in this image, which is likely the same as the shadow contents.
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Figure 16 depicts a symmetrical histogram if shifted further to the far left portion of
the image. If shifted to the far left portion, the sample image might have a better contrast
quality. In addition, it shows that most pixels fall between the midtone and highlight
portions of the image.
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4.2. Image Quality Metrics

As shown in Table 2, image quality assessment is a difficult task, yet the choice of
technique is fundamental for evaluating image quality. Techniques belonging to objective
fidelity, such as mean square error (MSE) and peak SNR (PSNR) assessment, and subjective
fidelity, which corresponds to the human visual system, such as the multiscale structural
similarity (MS-SSIM) index, are widely used. In addition, no-reference algorithms use
statistical features of the input image to evaluate image quality, such as blind referenceless
image spatial quality evaluators (BRISQUE), natural image quality evaluators (NIQE),
and perception-based image quality evaluators (PIQE). The reference image was set using
the masking technique for MSE, PSNR, SNR, and MS-SSIM only and was compared
with the final output of the proposed image-processing method using the thermal and
ordinary cameras.

Table 2. Image quality metrics.

Ordinary Camera Thermal Camera

images
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The experiment results of the CNN and proposed method, which is the CNN–SVM,
were compared. Table 3 displays the results of the proposed fault identification scheme
for the training dataset. Further, the CNN–SVM method alone outperformed the CNN
method for both the training and testing datasets (Tables 3 and 4).

Table 3. Validation results of the training set based on sensitivity, specificity, and accuracy.

Classifier Method Percent Sensitivity Percent Specificity Percent Accuracy

CNN 98% 94.96 93.96
CNN-SVM 99% 95.3% 98%

Table 4. Validation results of the testing set based on sensitivity, specificity, and accuracy.

Classifier Method Percent Sensitivity Percent Specificity Percent Accuracy

CNN 94.25 90% 90%
CNN-SVM 97.55% 93.65% 93.96%

The correlation value indicates whether the provided dataset is on the best-fit line. In
most cases, a positive correlation should be close to +1, and a negative correlation should
be close to −1. Moreover, the regression value should be between 0 and 1, with values
closer to 1 indicating a model that better fits the dataset. Table 5 shows that the correlation
and regression values provided the best model.

Table 5. Correlation and Regression Values of CNN and CNN–SVM.

Coefficient CNN CNN–SVM

Correlation 0.9321 0.9981

Regression 0.9629 0.9995

5. Conclusions

Images of structural sites are frequently used to document construction scenes. The
ability to automatically detect material regions in these images can be utilized to automate
construction applications, such as monitoring and surface quality assessment. Existing
studies necessitated the use of acceptable material classification thresholds. However,
they did not elucidate how to determine these levels. This paper presents an algorithm
for using thermal imaging technology for concrete image analysis that utilizes different
image-processing techniques, with the aim of representing the sample images in an easier-
to-interpret domain.

Furthermore, noise reduction techniques were implemented with an appropriate filter
iteration to enhance the sample images being tested, preventing any unnecessary data
from being included in the noise reduction process. Concrete regions in a sample image
can be recognized without the need for manually specifying thresholds. Additionally, in
this study, we propose an automated model for detecting concrete regions in images of
structural sites. As such, we trained a classifier on 2700 samples.

Moreover, the proposed approach not only uses ordinary images but also uses thermal
images. The thermal imaging technology algorithm extracts characteristics from ther-
mal images to simplify their representation into a more manageable area for analysis.
In addition to an image histogram, a thermal image provides considerable information
during image processing. Experimental results demonstrated that the improved ther-
mal images provided better histogram and CDF features—further, the proposed method
employed CNN to improve image classification, with a 98% accuracy. Lastly, the cor-
relation and regression values provided the best model of the proposed concept in the
dataset used. The proposed method may encourage the development of various thermal
image applications, such as nonphysical visual recognition and fault detection analyses.
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In the future, many properties of these thermal images could help neural networks in
categorization applications.

In the future, we plan to deal with different external factors such as various lightning
conditions, high surface roughness, and differences in the concrete surface, and to pro-
vide different comparative analyses on how these factors affect the equipment technical
specifications and setup. We will also consider sensitivity testing in different models.
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Abbreviations

CDF Cumulative Distribution Function: this function of image processing presents the
resulting image as a linear cumulative distribution function.

CED Canny Edge Detection: this edge detection operator uses a multi-stage algorithm to
detect a wide range of edges in images. It locates the intensity gradients of the
image and applies non-maximum suppression remove spurious response in the edges.

CNN Convolutional Neural Network: this provides the function of classification of images.
ED Edge Detection: this technique identifies points in a digital image with discontinuities.

It sharpens changes in the image brightness.
FN False Negative: this provides the predicted “no”, indicating that non-defective concrete

images are classified as “defective”.
FP False Positive: this provides the predicted “yes”, indicating that cracked images are

classified inaccurately as “non-defective”.
HE Histogram Equalization: this function is a method in digital image processing that

provides contrast adjustment using the histogram of the sampled image.
LOG-ED Laplacian of Gaussian Edge Detection: initially, this smoothens an image, and it then

calculates the Laplacian. The process results in a double-edged image. It finds edges
and then locates the zero-crossing between the double edges.

ML Machine Learning: this simply predicts outcomes of classifying the sampled images.
Machine learning algorithms use historical data as input to predict new output values.

PED Prewitt Edge Detection: this operator is appropriate for detecting the magnitude and
orientation of edges. It also has the same parameters as Sobel edge detection; however,
it is easier to implement.

RED Robert’s Edge Detection: this operator is a straightforward and efficient approach to
quantifying an image’s spatial gradient. The pixel value at a location in the produced
image represents the estimated absolute magnitude value of the inputted image’s
spatial gradient at that location.

SED Sobel Edge Detection: this operator works by calculating the gradient of the intensity
of the digital image at each pixel within the image. It locates the direction of the
maximum increase from light to dark and the rate of change in that direction.
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SNR Signal-to-Noise Ratio: this function is a general metric for determining image quality.
It is described as the relative strength of an aimed signal from a sample compared with
the undesired background signal from noise.

TN True Negative: this provides the predicted “no”, indicating that cracked images are
classified correctly as “defective”.

TP True Positive: this provides the predicted “yes”, indicating that non-defective concrete
images are classified correctly as “non-defective”.

Appendix A. Fundamental Definitions of Terms Used in This Article

Appendix A.1. Image-Processing Analysis

Image processing is a technique for improving an image or extracting relevant infor-
mation from it. Digital image-processing methods enable the alteration of digital images
using computers.

Appendix A.1.1. Fundamentals of Image Parameters

Below are the core imaging parameters and their definitions:
1. The ability to discern between two (or more) objects close in space is referred

to as resolution. In digital imaging, resolution refers to the quantity and quality of the
pixels in each digital image; the more significant the number of pixels, the greater the
resolution [29–31].

2. Contrast is the difference in signal intensity between a sample and an image’s
average signal intensity. As with resolution, the concept of contrast has implications for
the ability to discern between different structures [32].

3. In general, dynamic range refers to when a variable has two values that have a
significant difference, which relates to the difference between the most and least extreme
signals (most likely from a sample) when imaging (from the background) [33].

4. The signal-to-noise ratio (SNR) is a general metric for determining image quality.
It is described as the relative strength of an aimed signal from a sample compared with
the undesired background signal from noise. SNR must be high enough to distinguish
a sample from the background, which relates to the concepts of contrast, resolution, and
dynamic range [31,34].

Appendix A.1.2. Graphical Representation of Digital Image

The representation of an image can take several forms, which can vary in regards to
their color space (including aspects such as hue, saturation, or value) and even in graphical
schemes. This representation conveys information, such as color, coded information,
temperature mapping, and how an image is digitally preserved.

Histogram

A histogram is defined as a graphical representation of the frequency of an event’s
occurrence. Image processing presents a relative frequency of occurrence of various gray
levels (which can be shown with a bar chart representation). The histograms of images
also provide a global description of their appearances [35]. The global description displays
the number of pixels in each gray level but not their location as spatial coordinates (local
information). Finally, different images can be generated from the same histogram, as
pixel location is not maintained in a histogram; therefore, a histogram is not a unique
representation of images. It only counts the pixels of each gray level.

In HE, the perfect image is one where each gray level has the same number of pixels.
The main objective of HE is to have equal pixels at all gray levels, not just to distribute the
dynamic range. It is impossible to obtain an exactly equalized image from a digital image.
In HE, a decision is taken based on two parameters: the density (or the number of pixels)
of gray levels and the transfer function. HE reallocates the cumulative histogram used
as a transfer function to distribute the pixel intensity levels evenly. The purpose of HE is
to produce an output image with a histogram that has a flattened result. The objective of
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histogram matching is to take an input image and generate an output image based on the
shape of a specified (or reference) histogram.

CDF

A required function derived from a histogram is called a cumulative histogram.
Figure A1 shows the concept of a cumulative histogram. There are two intervals with the
same widths but different slopes; one interval has a gentle slope, and the other has a steep
slope. The number of pixels is accumulated for each intensity value. The density of a steep
slope is higher than that of a gentle slope. The projected interval is based on the slope of
the cumulative histogram.
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The numerical data (i.e., the frequency distribution of pixels) that are not categorical
have distributions. In general, when data are not categorized, the frequency of each entry
is ineffective as a summary, since the bulk of entries are unique. Therefore, another useful
technique to define a distribution for numeric data is providing a proportion of data below
the random variable, which is picked from the histogram of the image. CDF [27] is the
term used to describe this function [36]. Mathematically, a CDF is defined as follows:

F(a) = Pr (x ≤ a) (A1)

where Pr is the probability of distribution of x (given function). Figure A2 provides a
sample image of a CDF, demonstrating that a significant number of F(x) values from a
given set of numbers (a) are less than or equal to x. In addition, when the histogram is
perfectly equalized (i.e., when each intensity roughly corresponds to the same number of
pixels), the CDF will look like a straight 45◦ line.
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Appendix A.1.3. Factors That Affect Image Quality

The assessment of “image quality” is difficult to describe, because it frequently de-
pends on context and application specifics. The primary goal of image quality assessment
is developing computational models for assessing perceptual image quality [37]. As seen
by human observers, image quality and threshold values are measurable and constant
properties, even when comparing images with varying content and types of degradation.
Therefore, changes in the application vary in the selected parameters.

Appendix A.1.4. Image ED Methods for Image Segmentation

Image Segmentation

Using image ED methods, object boundaries can be established on a per-image basis.
These methods can be helpful for examining individual pixels and their nearby segments to
determine portions of an image that have strong contrast. The method of identifying edges
in image processing is known as ED [20]. Image segmentation is a necessary step in image
analysis. The segmentation process separates an image into its components or objects that
have the same texture or color. The image segmentation process produces a set of regions
that span the entire image’s set of contours, which were extracted from the image. Each
pixel in a region has certain qualities, such as color, intensity, or texture. The segmentation
process initially establishes the boundaries between regions based on discontinuities in
intensity levels, followed by thresholds based on pixel property distributions, such as
intensity values, and finally directly locates the regions.

ED Techniques

ED is an essential preprocessing method for image segmentation. ED techniques
convert original images into edge images. ED in image processing, especially in computer
vision, is concerned with the localization of significant changes in a gray-level image and
detecting physical and geometrical features of objects in a scene [38]. It is a basic technique
that recognizes and outlines an object, the borders between objects, and the backdrop in
an image. There are many ED techniques; the commonly known ones are Sobel ED (SED),
Robert’s ED (RED), Prewitt ED (PED), the Laplacian of Gaussian ED (LOG-ED), and Canny
ED (CED). Below, each technique is briefly discussed.

a. SED
The Sobel operator is a fundamental first-order ED operator. As shown in Figure A3,

the Sobel operator uses two 3 × 3 convolution masks; the second mask is a 90◦ rotation of
the first mask. Each mask responds to the edges as much as possible, both horizontally
and vertically [23]. To obtain the gradients in the right directions, the masks are moved
horizontally and vertically. Equations (A2) and (A3) show the magnitude and direction of
the gradient, respectively.
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b. RED
RED is a straightforward and efficient approach to quantifying an image’s spatial

gradient. The pixel value at a location in the produced image represents the estimated
absolute magnitude value of the inputted image’s spatial gradient at that location [39].
It takes a grayscale image as input and generates edges involving the image. However,
its functionality is limited by the fact that it is not symmetric and cannot be generalized
to identify edges that are multiples of 45◦. Figure A4 depicts a pair of 2 × 2 convolution
masks of RED. The gradient magnitude is given by Equation (A4), and its corresponding
angle of orientation to the spatial gradient is given by Equation (A5).
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∆f = mag(∆f ) = (Gx
2 + Gy

2))1/2 (A4)
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3Π
4

(A5)

c. PED
The PED algorithm is appropriate for detecting the magnitude and orientation of

edges. The PED has the same parameters as the SED, but it is much easier to implement;
however, the result is a little noisier, because it differentiates in one direction and averages
in another direction [39]. Figure A5 depicts a sample of PED with 3 × 3 convolution masks.
Equations (A6) and (A7) show how the Prewitt operator is measured.
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d. LOG-ED
A well-known ED approach is the LOG-ED. The LOG-ED first smoothens an image

and then calculates the Laplacian. The process results in a double-edged image. It finds
edges and then locates the zero-crossing between the double edges [24]. Figure 8 shows



Sensors 2021, 21, 7396 22 of 24

3 × 3 convolution masks of the LOG-ED. Equation (A8) shows the second-order derivative
of the LOG-ED.
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e. CED
This is the most common, powerful, and widely used ED approach. Before extracting

edges, it isolates the noise from the image. CED is superior to other EDs, and it yields good
results [39]. The Canny operator has complete control over various edge image details
and can effectively suppress noise. As shown in Figure A7, CED uses a pair of 3 × 3
convolution masks. In addition, Equations (A9) and (A10) provide the local gradient value
of CED and its corresponding direction angle, respectively.
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2))1/2 (A9)

α(x, y) = tan−1(Gy/Gx) (A10)

Most ED techniques use the concept of convolution with a series of directional deriva-
tive masks. Gradient-based ED entails calculating the gradient’s (derivative’s) magnitude
and comparing it with a fixed threshold to determine the edge points. The numerical
gradient is approximated independently in the horizontal Gx and vertical Gy directions.

An edge is a contour in an image along which the brightness of the image quickly
shifts. Discontinuities may cause an intensity edge in the normal surface, depth, reflectance,
or lighting. To locate edges within an image, ED operators analyze the gray level of each
pixel and its neighboring pixels to determine which pixels correspond to regions of high
contrast in gray-level intensity. The fundamental ED operator is calculated by constructing
a matrix centered at a pixel selected as the matrix area’s center. If the value of this matrix
area is more significant than a predefined threshold, the center pixel is considered to be
an edge. Typically, the slope and direction of the edge, often referred to as the magnitude
and orientation of the gradient vector, respectively, are employed to define the contrast
regions. Gradient-based ED determines edge sites by estimating the gradient magnitude in
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the first derivative and comparing it with a preset threshold. At edge pixels, a rapid rate of
change in intensity in the direction specified by the gradient vector’s angle is noticed. The
gradient’s magnitude shows the edge’s strength.
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