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Abstract: Background: antibiotic resistance encourages the development of new therapies, or the
discovery of novel antibacterial agents. Previous research revealed that Myrmecodia pendans (Sarang
Semut) contain potential antibacterial agents. However, specific proteins inhibited by them have
not yet been identified as either proteins targeted by antibiotics or proteins that have a role in the
quorum-sensing system. This study aims to investigate and predict the action mode of antibacterial
compounds with specific proteins by following the molecular docking approach. Methods: butein (1),
biflavonoid (2), 3”-methoxyepicatechin-3-O-epicatechin (3), 2-dodecyl-4-hydroxylbenzaldehyde (4),
2-dodecyl-4-hydroxylbenzaldehyde (5), pomolic acid (6), betulin (7), and sitosterol-(6′-O-tridecanoil)-
3-O-β-D-glucopyranoside (8) from M. pendans act as the ligand. Antibiotics or substrates in each
protein were used as a positive control. To screen the bioactivity of compounds, ligands were
analyzed by Prediction of Activity Spectra for Substances (PASS) program. They were docked with 12
proteins by AutoDock Vina in the PyRx 0.8 software application. Those proteins are penicillin-binding
protein (PBP), MurB, Sortase A (SrtA), deoxyribonucleic acid (DNA) gyrase, ribonucleic acid (RNA)
polymerase, ribosomal protein, Cytolysin M (ClyM), FsrB, gelatinase binding-activating pheromone
(GBAP), and PgrX retrieved from UniProt. The docking results were analyzed by the ProteinsPlus
and Discovery Studio software applications. Results: most compounds have Pa value over 0.5
against proteins in the cell wall. In nearly all proteins, biflavonoid (2) has the strongest binding
affinity. However, compound 2 binds only three residues, so that 2 is the non-competitive inhibitor.
Conclusion: compound 2 can be a lead compound for an antibacterial agent in each pathway.

Keywords: anti-bacteria; molecular docking; Myrmecodia pendans; protein; quorum sensing

1. Introduction

Infectious disease leads to sickness, including infection caused by bacteria [1]. More-
over, pathogenic bacteria can increase the probability of being exposed to other diseases [2].
Antibiotic resistance intensifies the difficulty to deal with pathogenic bacteria, and the
development of new therapy or the discovery of novel antibacterial agents plays a vital
role to counteract this [3].

Strategic pathways that can be inhibited by antibacterial agents, especially in Gram-
positive bacteria, are in the step of the cell wall, protein, ribonucleic acid (RNA), and
deoxyribonucleic acid(DNA) synthesis. The processes of their syntheses involve many
proteins that support them. In cell wall bacteria, the MurB enzyme contributes to the first
step of peptidoglycan synthesis, while penicillin-binding proteins (PBPs) play a role in the
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final step of cell wall biosynthesis [4,5]. Moreover, the Sortase A (SrtA) enzyme, a protein
anchored to the cell wall, is also an important agent for virulence and biofilm formation [6].
The 30S and 70S ribosomal subunits are targets of antibiotics in protein synthesis [7,8]. DNA
gyrase participates in the transcription and replication of DNA, while RNA polymerase has
a key role in DNA transcription. Both are involved in the first step of gene expression [9,10].
Those proteins are a key in each position that can be a target-inhibited antibacterial agent.

On the other hand, the virulence factor of bacteria can be pressed by blocking the
quorum-sensing systems [11]. The quorum-sensing (QS) system is a system of cell–cell
communication of bacteria that controls gene expression. Otherwise, proteins and/or
receptors that contribute to QS can be targeted for antibacterial therapy. This is an alter-
native approach to fight pathogenic bacteria. All bacteria, even if different species, can
communicate with each other through the general signal [12]. However, each bacterium
has a specific QS system and signal that can be detected only the similar species of bacteria.
A specific signal called pheromone from one bacterium and receptor that receives this
signal in another bacterium is a key point in the QS system [13]. By blocking signal-receptor
binding, the QS system breaks out and the virulence factor cannot be expressed [14,15].

Gram-positive QS pathways are divided into four main groups based on the types of
the pheromones and their receptors: (1) members of the Rap, NprR, PlcR, and PrgX (RNPP)
family of regulators; (2) Agr-type cyclical pheromones; (3) peptides with double-glycine
(Gly–Gly) processing motifs; and (4) regulators of the Rgg family. The Enterococcus faecalis
is known to at least have first and second types of QS [16]. PrgX, is a member of the RNPP
family of regulators that controls the conjugative transfer genes expression of the E. faecalis
plasmid pCF10 in response to an intercellular peptide pheromone signal [17]. Moreover,
the FsrB system is an Agr-type like cyclical pheromone in E. faecalis [18], while gelatinase
biosynthesis-activating pheromone (GBAP) is a pheromone in this system [19,20]. FsrB
system encodes gelE and sprE to express gelatinase and serine protease as virulence factors.
Another virulence factor found in isolated E. faecalis is cytolysin. There are cytolysin
M (ClyM) that become the protein-expressing toxin structural components CyLS and
CyLL [21–24].

Besides the potency of proteins as an antibacterial target, we have to screen candidate
antibacterial agents that are suitable for each mechanism. Hence, exploring the antibacterial
agent from the natural product as a source bioactive compound must be considered [25].
Sarang semut, Myrmecodia pendans, is one of the original Indonesian herb plants known
to consist of antibacterial compounds [26–30]. There are flavonoids, phenolics, steroids,
and terpenoids, which have the ability to inhibit and kill bacteria including E. faecalis,
Streptococcus mutans, and Streptococcus sanguinis [31–34]. However, their mechanism has
not yet been found. To determine the potency of the compound, we conducted an in silico
study to screen the specific ability of the compound.

The in silico method is a computational method to predict the binding affinity of a
small molecule (ligand as an active compound) candidate to a receptor (protein target) in
revolving the affinity and activity of a small molecule. This tool is simple and fast, making
it suitable for screening bioactive compounds for an in vitro study [35]. Therefore, this
study shows the prediction of antibacterial activity in every mechanism to determine the
most effective compound as an antibacterial agent from M. pendans.

2. Results
2.1. Bioactivity Prediction of the M. pendans Compound via Prediction of Activity Spectra for
Substances (PASS) Online Analysis

Based on PASS analysis, M. pendans compounds have a high enough Pa (probability
to be active) value, especially activity relating to microbes, as can be seen in Table 1.
Generally, the flavonoid group (compound 1–3) is more dominant compared to the others.
Compounds 1–8 have 28, 21, 14, 11, 9, 3, 16, and 7 activities. However, all compounds have
general activities relating to a microbe at a moderate level (Pa value of 0.5). Almost all
compounds act as antifungal agents, except compound 5. The highest value of compounds
is found in the antifungal activity, followed by an antibacterial activity. Meanwhile, in
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specific mechanisms, the Pa value of the compound varies. Data analysis shows that
most compounds are a high value of bacteria cell wall inhibitor (at least 0.59), while in
the DNA synthesis pathway, they are just a value of 0.3. In action mode in RNA and
the protein synthesis pathway, most compounds showed a low Pa value. The Pi value of
the compounds is presented in Table 2. Almost all compounds that have Pa < 0.5 have
Pi > 0.05.

Table 1. Prediction activity of M. pendans compounds through PASS analysis.

No Bioactivity
Prediction to be Active (Pa) of Compound

1 2 3 4 5 6 7 8

General

1 Antibacterial 0.375 0.326 0.344 0.441 - - 0.242 -
2 Antibiotic - 0.095 - 0.251 - - - -
3 Antifungal 0.494 0.490 0.498 0.622 - 0.526 0.507 0.327
4 Anti-infective 0.442 0.375 - - - - - -
5 Antimycobacterial 0.621 0.347 - - - - - -
6 Antiparasitic 0.483 - - - - - 0.199 -
7 Antiseptic 0.783 0.271 - 0.277 0.751 - - -
8 Anti-tuberculosis 0.583 - - - - - - -

DNA Synthesis Pathway

1 DNA synthesis inhibitor - - - - - - 0.247 0.195
2 DNA-3-methyladenine glycosylase I inhibitor 0.255 - - - 0.725 - - -

3 DNA-(apurinic or apyrimidinic site) lyase
inhibitor 0.255 0.217 - - 0.829 - - -

4 DNA gyrase inhibitor - 0.033 0.159 - - - - -
5 DNA ligase (ATP) inhibitor 0.384 0.401 0.386 0.221 - 0.733 0.496 -
6 DNA polymerase I inhibitor 0.260 0.248 0.299 - - - 0.360 0.253
7 DNA directed RNA polymerase inhibitor - - 0.137 0.164 - - 0.172 0.338
8 Transcription factor inhibitor 0.511 - - - - - - -

Protein Synthesis Pathway

1 Protein synthesis inhibitor - - - 0.322 - - 0.202 0.246
2 Protein 30S ribosomal subunit inhibitor - - 0.077 - - - - -

3 Tpr proteinase (Porphyromonas gingivalis)
inhibitor - - - - 0.862 - - -

No Bioactivity (38)
Prediction to be Active (Pa) of Compound

1 2 3 4 5 6 7 8

Cell Wall Biosynthesis Pathway

1 Cell wall biosynthesis inhibitor 0.227 - 0.204 - - - - -
2 Cell adhesion molecule inhibitor 0.327 - - - - - - -
3 Membrane integrity antagonist 0.234 0.516 0.263 - - - 0.496 -
4 Membrane permeability inhibitor 0.745 0.788 0.700 0.680 0.820 - 0.411 -
5 Peptidoglycan glycosyltransferase inhibitor - 0.327 - - - 0.460 0.590 -
6 Phospholipid-translocating ATPase inhibitor - - - - 0.815 - - -
7 UDP-glucuronosyltransferase substrate 0.709 0.827 0.771 0.527 - - 0.554 0.183

8 UDP-N-acetylglucosamine 4-epimerase
inhibitor 0.559 - - - 0.924 - - -

RNA Synthesis Pathway

1 RNA synthesis inhibitor 0.313 0.326 0.328 0.261 - - 0.360 0.208
2 RNA directed DNA polymerase inhibitor 0.161 0.172 0.207 0.204 - - 0.161 -
3 RNA-directed RNA polymerase inhibitor 0.418 - - - - - 0.276 -
4 tRNA nucleotidyltransferase inhibitor 0.234 - - - 0.805 - - -
5 tRNA-pseudouridine synthase I inhibitor 0.359 0.217 - - 0.902 - - -
6 Alanine-tRNA ligase inhibitor 0.184 - - - - - - -
7 Aspartate-tRNA ligase inhibitor 0.145 0.196 - - - - - -
8 Asparagine-tRNA ligase inhibitor 0.124 0.151 - - - - - -
9 Glutamate-tRNA ligase inhibitor 0.248 0.205 - - - - - -
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Table 2. Prediction inactivity of compound Bioactivity from PASS online (Pi).

No Bioactivity
Prediction to Be Active (Pi)

1 2 3 4 5 6 7 8

General

1 Antibacterial 0.030 0.051 0.045 0.023 - - 0.087 -
2 Antibiotic - 0.087 - 0.020 - - - -
3 Antifungal 0.030 0.032 0.031 0.016 - 0.026 0.029 0.071
4 Anti0infective 0.030 0.057 - - - - - -
5 Antimycobacterial 0.000 0.056 - - - - - -
6 Antiparasitic 0.010 - - - - - 0.098 -
7 Antiseptic 0.000 0.043 - 0.041 0.005 - - -
8 Anti-tuberculosis 0.000 - - - - - - -

DNA Synthesis Pathway

1 DNA synthesis inhibitor - - - 0.086 0.168
2 DNA-3-methyladenine glycosylase I inhibitor 0.007 - - - 0.003 - - -

3 DNA-(apurinic or apyrimidinic site) lyase
inhibitor 0.010 0.141 - - 0.004 - - -

4 DNA gyrase inhibitor - 0.015 0.003 - - - - -
5 DNA ligase (ATP) inhibitor 0.010 0.016 0.019 0.087 - 0.001 0.006 -
6 DNA polymerase I inhibitor 0.120 0.154 0.065 - - - 0.025 0.143
7 DNA directed RNA polymerase inhibitor - - 0.104 0.065 - - 0.057 0.013
8 Transcription factor inhibitor 0.010 - - - - - - -

Protein Synthesis Pathway

1 Protein synthesis inhibitor - - - 0.027 - - 0.053 0.041
2 Protein 30S ribosomal subunit inhibitor - - 0.035 - - - - -

3 Tpr proteinase (Porphyromonas gingivalis)
inhibitor - - - - 0.002 - - -

Cell Wall Biosynthesis Pathway

1 Cell wall biosynthesis inhibitor 0.100 - 0.148 - - - - -
2 Cell adhesion molecule inhibitor 0.060 - - - - - - -
3 Membrane integrity antagonist 0.162 0.040 0.139 - - - 0.496 -
4 Membrane permeability inhibitor 0.023 0.012 0.039 0.047 0.007 - 0.198 -
5 Peptidoglycan glycosyltransferase inhibitor - 0.091 - - - 0.032 0.009 -
6 Phospholipid-translocating ATPase inhibitor - - - - 0.004 - - -
7 UDP-glucuronosyltransferase substrate 0.014 0.005 0.009 0.025 - - 0.024 0.110

8 UDP-N-acetylglucosamine 4-epimerase
inhibitor 0.041 - - - 0.002 - - -

RNA Synthesis Pathway

1 RNA synthesis inhibitor 0.046 0.042 0.039 0.088 - - 0.028 0.158
2 RNA directed DNA polymerase inhibitor 0.160 0.135 0.082 0.085 - - 0.159 -
3 RNA-directed RNA polymerase inhibitor 0.041 - - - - - 0.178 -
4 tRNA nucleotidyltransferase inhibitor 0.040 - - - 0.002 - - -
5 tRNA-pseudouridine synthase I inhibitor 0.056 0.124 - - 0.002 - - -
6 Alanine-tRNA ligase inhibitor 0.099 - - - - - - -
7 Aspartate-tRNA ligase inhibitor 0.070 0.046 - - - - - -
8 Asparagine-tRNA ligase inhibitor 0.064 0.048 - - - - - -
9 Glutamate-tRNA ligase inhibitor 0.103 0.160 - - - - - -

2.2. Prediction of Bioavailability and Antibacterial Activity of M. pendans through Molecular
Interaction with Targeted Proteins
2.2.1. Binding Affinity Analysis of Compounds to Proteins

All proteins were docked with ligands not only the M. pendans compound, but also
to others, as a positive control. According to the docking results, biflavonoid (2) has the
highest binding affinity on almost all proteins. Its binding affinity is −11.2 kcal·mol−1

of PBP, −11.5 kcal·mol−1 of MurB, −8.6 kcal·mol−1 of SrtA, −7.6 kcal·mol−1 of DNA
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gyrase, −8.6 kcal·mol−1 of RNA polymerase subunit alpha, and −9.0 kcal·mol−1 of RNA
polymerase subunit beta,−9.4 kcal·mol−1 of ribosomal subunit 30S, -6.8 kcal·mol−1 of ribo-
somal subunit 50S, −10.4 kcal·mol−1 of ClyM, −7.7 kcal·mol−1 of FsrB, −6.9 kcal·mol−1 of
GBAP, and −8.5 kcal·mol−1 of PgrX. In the second place, there is 3”-methoxy epicatechin-
3-O-epicatechin (3), followed by pomolic acid (6). All three ligands have a binding affinity
higher than positive control in each protein (see Table 3). Binding affinity ligand to riboso-
mal protein 30S is the weakest. Even compound 4 has a binding affinity of −4.7 kcal·mol−1.
After that, the second weakest binding affinity ligand is to SrtA enzyme.

Table 3. Binding affinity of the compound against proteins (kcal·mol−1).

No. Compound PBP MurB SrtA DNA
Gyrase

RNA
Polymerase Ribosomal

ClyM FsrB GBAP PgrX
Alpha Beta 30S 50S

1 Compound 1 −6.9 −7.2 −5.6 −6.6 −6.6 −6.7 −7.5 −5.6 −8.3 −5.8 −5.5 −6.6
2 Compound 2 −11.2 −11.5 −7.6 −8.6 −8.6 −9.0 −9.4 −6.8 −10.4 −7.7 −6.9 −8.5
3 Compound 3 −10.5 −9.5 −7.0 −8.3 −8.4 −9.0 −7.4 −5.8 −9.4 −7.1 −6.3 −9.0
4 Compound 4 −8.0 −7.9 −6.5 −7.1 −5.6 −6.7 −6.1 −4.7 −7.8 −6.0 −5.3 −6.3
5 Compound 5 −7.5 −8.4 −6.4 −7.2 −6.3 −7.3 −7.5 −5.4 −8.5 −5.8 −5.2 −6.7
6 Compound 6 −10.1 −8.8 −7.1 −7.5 −7.9 −8.2 −7.6 −6.2 −8.9 −6.6 −6.0 −7.4
7 Compound 7 −7.5 −6.4 −6.7 −8.1 −7.0 −7.5 −7.0 −6.1 −7.9 −6.1 −5.3 −6.4
8 Compound 8 −8.1 −6.8 −5.4 −6.0 −5.7 −6.6 −5.9 −5.3 −8.3 −6.7 −4.6 −6.4

Average binding affinity −8.7 −8.3 −6.5 −7.3 −7.0 −7.6 −7.3 −5.7 −8.7 −6.5 −5.6 −7.2
9 Penicillin −7.5 NT NT NT NT NT NT NT NT NT NT NT

10 Carbapenems −8.5 NT NT NT NT NT NT NT NT NT NT NT
11 Glycopeptides NT −7.4 NT NT NT NT NT NT NT NT NT NT
12 Quercetin NT −8.1 NT NT NT NT NT NT NT NT NT NT
13 Amoxicillin NT NT −5.8 NT NT NT NT NT NT NT NT −6.3
14 Cefixime NT NT −5.2 NT NT NT NT NT NT NT NT −6.9
15 Curcumin NT NT −5.7 NT NT NT NT NT NT NT NT NT
16 Sitafloxacin NT NT NT −6.0 NT NT NT NT NT NT NT NT
17 Rifamycin NT NT NT NT −6.7 −7.7 NT NT NT NT NT NT
18 Tetracycline NT NT NT NT NT NT −7.4 NT NT NT NT NT
19 Chloramphenicol NT NT NT NT NT NT NT −4.9 NT NT NT NT
20 (+)-AMP NT NT NT NT NT NT NT NT −8 NT NT NT
21 Ambuic acid NT NT NT NT NT NT NT NT NT −5.3 −5.3 NT

Note: penicillin-binding protein (PBP), Sortase A (SrtA), Cytolysin M (ClyM), gelatinase-binding activating pheromone (GBAP). NT: not tested.

2.2.2. Hydrogen Bond and Hydrophobic Contact Analysis of Compounds to Proteins

Almost all M. pendans compounds have more hydrogen bonds to proteins in the cell
wall than proteins in other parts (DNA, RNA, and/or quorum sensing). Similar to the
hydrogen bond, hydrophobic contact of ligands mostly appears in proteins in the cell
wall. According to Table S1 Supplement Material, compounds 1 and 3 bonds to PBP with
fourteen and seven hydrogen bonds, respectively. Moreover, compound 2 formed nine
hydrogen bonds to MurB enzyme. Then, SrtA was bound by compounds 3 and 5 with
a total of six hydrogen bonds. All three proteins are in the bacteria cell wall. Based on
Table S2 supplement material, almost all ligands have the most hydrophobic contact with
MurB. The total hydrophobic contacts of compounds 3, 4, 5, 6, and 7 are 5, 8, 4, 5, and 12,
respectively. On the other hand, ligands that have the most hydrogen bond to proteins in
RNA and DNA synthesis are compound 3 (seeTable S3 Supplement Material). Compound
3 has four and six hydrogen bonds for RNA polymerase subunit alpha and beta. Moreover,
it has five and three hydrogen bonds for ribosomal subunits 30S and 50S. Meanwhile,
hydrophobic contact at these proteins is not dominated by one compound. The most
hydrophobic contact on RNA polymerase subunit alpha is compound 3 (5 bonds), while for
RNA polymerase subunit beta, it is compound 1 (5 bonds). Furthermore, there are seven
bonds for compound 8-ribosomal subunit30S and compound 2-ribosomal subunit 50S (see
Table S4 Supplement Material). In quorum sensing proteins, such as ClyM, FsrB, GBAP,
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and PgrX, the sum of hydrogen bond and hydrophobic contact is lower than the others
(see Tables S5 and S6, Supplementary Material). In these proteins, the greatest number of
bonds is in ClyM complexes, although there are almost no similar residues in each of the
ligand-ClyM complexes. Meanwhile, in PgrX, there are at least three of the same residues
in each ligand-PgrX complex.

2.2.3. Prediction of Lipinski’s Rule

Based on the results of Lipinski’s rule (see Table 4), only three compounds (compounds
1, 4, and 5) met this rule, while others have two parameters that do meet it, namely, log P,
and Molar Refractivity.

Table 4. Lipinski’s rule result.

Ligand

Lipinski’s Rule of Five
Drug-LikenessMolecular

Mass (Dalton)
Hydrogen

Bond Donor
Hydrogen Bond

Acceptors Log P Molar
Refractivity

Less Than 500
Dalton Less Than 5 Less Than 10 Less Than 5 40–130 Lipinski’s Rule

Follows

M1 272 4 5 2.405 72.908 Yes
M2 524 4 9 5.714 137.134 No
M3 576 - 11 4.441 146.781 No
M4 448 4 7 4.249 120.748 Yes
M5 272 2 6 3.138 68.719 Yes
M6 472 3 4 6.204 134.071 No
M7 442 2 2 6.997 132.062 No
M8 772 3 7 10.711 221.185 No

2.2.4. Drug-Likeness Analysis of M. pendans Compounds

The drug-likeness profile includes clogP, solubility, and topological polar surface
area (TPSA) of M. pendans compounds, as can be seen in Table 5. Compound 1–5 has a
good clogP value. However, only compounds 1 and 3 have good solubility. Moreover, all
compounds, except compound 3, meet the TPSA range of drugs (less than 150). TPSA is a
factor contributing to the oral bioavailability of the drug. Furthermore, toxicity analysis
shows that almost all M. pendans compounds have a low risk of mutagenic, tumorigenic,
irritant, and reproductive effective effects.

Table 5. Drug likeness prediction using OSIRIS Property Explorer.

Ligand clogP Solubility TPSA Mutagenic Tumorigenic Irritant Reproductive Effective

M1 1.92 −2.66 97.99 High risk low risk Medium risk low risk
M2 4.92 −6.77 142.7 low risk low risk low risk low risk
M3 4.6 −3.41 178.5 low risk low risk low risk low risk
M4 4.87 −4.2 124.2 low risk low risk low risk low risk
M5 2.67 −5.15 93.06 Medium risk low risk low risk low risk
M6 5.18 −5.66 77.76 low risk low risk low risk low risk
M7 6.72 −6.3 40.46 low risk low risk low risk low risk
M8 11.5 −9.75 105.4 low risk low risk low risk low risk

2.2.5. Pharmacokinetic Prediction of M. pendans Compounds

Overall, the pharmacokinetic properties of M. pendans compounds are good (Table 6).
The compounds do not penetrate the brain (blood–brain barrier or BBB). Several com-
pounds (1, 4, 5, and 6) are not absorbed in the gastrointestinal (GI) tract. Moreover, almost
no compounds can disturb the metabolism of drugs. This can be seen in just a few ligands
that inhibit cytochrome.
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Table 6. Pharmacokinetic values of M. pendans compounds using SwissADME.

Ligand GI
Absorption

BBB
Permeant

Pgp
Substrate

Inhibitor of
Bioavailability

ScoreCYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4

M1 High No No Yes No Yes No Yes 0.55
M2 Low No No No No Yes No No 0.55
M3 Low No No No No No No Yes 0.17
M4 Low No Yes No No No No Yes 0.55
M5 High No No Yes No No No No 0.56
M6 High No Yes No No No No No 0.56
M7 Low No No No No No No No 0.55
M8 Low No Yes No No No No Yes 0.17

3. Discussion

According to PASS analysis data, M. pendans compounds 1–8 (see Figure 1) have the
potential to inhibit microorganisms with varying specifications. In Table 1, the flavonoid
group (1–3) is more active than phenolic (4 and 5) and terpenoid (6–8) groups. Among the
38 types of activities shown in Table 1, butein (1) has a Pa value (to be active) in 75% of
the activity, while betulin (7) as a representative of the steroid group has almost half the
amount of activities. In fact, the phenolic group (4 and 5) showed a quarter number of
activities. However, in general, all compounds except compound 5 have the highest Pa
value in antifungal activity, with an average Pa of 0.5, while antibacterial activity is only
seen in compounds 1–4. Meanwhile, in a specific activity, compounds have varying Pa
values. Most of the compounds can inhibit proteins in the cell wall biosynthetic pathway
(six compounds have pa above 0.5) as a membrane permeability inhibitor, Peptidoglycan
glycosyltransferase inhibitor, and UDP-N-acetylglucosamine 4-epimerase inhibitor. Half
of the compounds can block proteins in the DNA synthesis pathway. In contrast, only
compound 5 can inhibit tRNA-pseudouridine synthase I with 0.8 Pa and Tpr proteinase,
which is among the proteins in the protein synthesis pathway. In addition, most of the
compounds are predicted to be an inhibitor of RNA synthesis with a Pa below 0.5. Many
Pa values for compounds fall below 0.5. These values correspond to their Pi (to be inactive)
value. Most compounds with a Pa of 0.5 have a Pi value above 0.05. However, they still
have a Pa value that is higher than the Pi value. For compounds that have Pi < Pa < 0.5, the
probability to be active through the experimental activity will be lower. However, if the
prediction is confirmed, the compounds found could prove a parent compound for a new
chemical class for the biological activity being examined [36].

In addition, docking analysis shows the binding affinity of the compound to be at
least −5 kcal·mol−1. In the PBP, MurB, and SrtA, the binding affinity of compounds are
higher than that of the other proteins with mean binding affinities of −8.7, −8.4, and
−6.7 kcal·mol−1, respectively. Meanwhile, the average binding affinity of the compound
with ClyM, FsrB, GBAP, and PgrX, which are proteins in the quorum-sensing system, is in
the second position with the values of −8.7, −6.5, −5.6, and −7.2 kcal·mol−1, respectively.
Meanwhile, for other proteins, the average binding affinities for compounds are −7, except
for ribosomal subunit 50S. They are −7.3 for DNA gyrase, −7.0 for RNA polymerase
subunit alpha, −7.6 for RNA polymerase subunit beta, −7.3 for ribosomal subunit 30S,
and −5.7 kcal.mol−1 for ribosomal subunit 50S. These data show that compounds 1–8 are
preferred as cell wall inhibitors. Compound 2 is a ligand with the highest binding affinity
for each protein, except for RNA polymerase subunit alpha. For this particular protein,
compound 3 is the strongest. Both are flavonoids.

Based on the attachment position, most of the ligands attach to the same pocket
in some proteins, such as PBP, MurA, SrtA, DNA gyrase, and protein subunit 50S. The
flavonoid group (1–3) is marked by green, the phenolic group (4–5) has a violet strip,
and the terpenoid group (6–8) is colored red. Figure 2 shows that ligand positions on
RNA polymerase are scattered. It can be seen from the different types of residues that
stick to it. Almost no ligands attach the same residue by either a hydrogen bond or
hydrophobic contact. Only two ligands that bind Thr216 via hydrogen bond and Pro7 via
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hydrophobic contact on RNA polymerase alpha. In the RNA polymerase beta, only Tyr353
residue is bound by more than one ligand. Based on the data analysis, all ligands (1–8) are
non-competitive inhibitors against RNA polymerase alpha and beta.

Figure 1. Chemical structures of M. pendans compounds: butein (1), biflavonoid (2), 3”-
methoxy epicatechin-3-O-epicatechin (3), 2-dodecyl-4-hydroxylbenzaldehyde (4), 2-dodecyl-4-
hydroxylbenzaldehyde (5), pomolic acid (6), betulin (7), and sitosterol-(6′-O-tridecanoil)-3-O-β-
D-glucopyranoside (8).

Figure 2. Ligand positions in RNA polymerase alpha (a), and RNA polymerase beta (b).

On the other hand, all ligands (1–8) are shown in the same pocket in DNA gyrase (see
Figure 3). This suggests that almost all ligands attach to the same residues such as Asp75,
Glu52, Thr167, and Asn48 via hydrogen bond, and Pro81, Val96, and Ile80 via hydrophobic
contact. Meanwhile, in Figure 4, we can see that only two ligands are bound to different
sites in PBP, MurA, and SrtA. In complexes of PBP-ligands, many similar residues are
bound by ligands such as Ser232, Lys197, Asn362, Pro210, and Ile364. Penicillin and
carbapenems also stick to these residues. Besides that, almost all ligands bind to the same
residues by means of hydrophobic bonds. Pro210, Trp202, Arg143, Val213, phe160, and
Lys359 appear in complexes of ligand-PBP. This means that all ligands act as competitive
inhibitors, except for compounds 2 and 7, since they do not have the same attached residues.
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Additionally, in MurB complexes, only compound 4 did not attach the same residues with
glycopeptide and quercetin as the positive control. Tyr139, Arg209, Ser222, Gly137, Trp59,
and Arg294 appear in most MurB complexes. In the hydrophobic bond analysis, there are
the same residues that are bound together such as Tyr133, Trp59, Phe231, Tyr139, Ala138,
Ala136, Val61, His255, and Lys234. Furthermore, in SrtA, some compounds (compounds 2,
3, 6, and 8) attach to Met56, Ile61, Asp137, and Glu112, which are bound by amoxicillin,
curcumin, and cefixime, through hydrogen bonds. There are the similar residues between
ligands via hydrogen bonds such as Asn127, Cys187, and Ser59 and hydrophobic contacts,
such as Tyr197, Lys195, and Ala139. Amoxicillin and cefixime do not have hydrophobic
contact, whereas most M. pendans compounds have it.

Figure 3. Ligand positions in DNA gyrase.

Figure 4. Ligand positions in cell wall protein PBP (a), MurB (b), and SrtA (c).

However, in quorum sensing proteins, such as ClyM, FsrB, GBAP, and PgrX, ligands
bind to various sites. Therefore, almost no similar residue bound M. pendans compounds
and control ligand, as shown in ClyM, FsrB, and GBAP (Figure 5), in either hydrogen bond
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or hydrophobic contact. In PgrX, only compound 5 adheres to the same residues as the
ligand control. Se111, Glu154, and Ser118 are bound by them via hydrogen bond, whereas
no residues are the same, which attach to M. pendans compound and control ligands. These
include all ligands that are non-competitive inhibitors of ClyM, FsrB, GBAP, and PgrX.

Figure 5. Ligands position in quorum sensing protein: ClyM (a), FsrB (b), GBAP (c), and PgrX (d).

Furthermore, M. pendans compounds block the 50S and 30S protein subunits with
different types (Figure 6). In the 50S subunit, almost all ligands get together in the same
pocket, but not in the subunit 30S. Many of the same ligand-bound residues in the 50S
subunit indicate that they are competitive inhibitors, while almost no bound residues
indicate they are non-competitive inhibitors.

Figure 6. Ligand positions in protein ribosomal subunit 30S (a) and ribosomal subunit 50S (b).

Among all ligands, compound 2 is the strongest compound that binds to proteins.
This suggests that the bulky structure affects the activity of the compound. Ligands that
have a larger structure tend to have a stronger binding affinity. This may likely be because
they can replenish the active sites of the protein and attach more residues. The interaction
between compound 2 and the target protein can be seen in Figures 7 and 8. However,
further analysis is still needed to become a drug, especially an oral drug.



Molecules 2021, 26, 2465 11 of 17

Figure 7. Interaction biflavonoid with PBP (a), MurB (b), SrtA (c), DNA gyrase (d), RNA polymerase alpha (e), RNA
polymerase beta (f).

A good standard of the drug must follow Lipinski’s rule of five. According to the Lip-
inski rule, the ligand must meet several characteristics, namely, molecular weight <500 Da,
log P value <5, acceptor hydrogen bonds <10, and molar refractivity range between 40 and
130. Ligands with a molecular weight of <500 Da are easier to penetrate the cell membrane
than ligands with a molecular weight of >500 Da. The log P value is related to the polarity
of ligand in fat, oil, and non-polar solvents. Ligands with log P value >5 will more easily
interact through the lipid bilayer on the cell membrane, and are widely distributed in the
body. This reduces the sensitivity of ligands to reduce the target molecule and increases the
ligand toxicity. The smaller the log P value, the more the ligands tend to dissolve in water
and become hydrophobic. The log P value of the ligand should not be negative, because it
cannot pass through the lipid bilayer membrane (the number of hydrogen bonds on the
donor and acceptor correlates with the biological activity of a ligand or drug) [37]. Based
on the results of Lipinski’s prediction, compounds 1, 4, and 5 can be accepted, while others
cannot. Compounds 2, 6, 7, and 8 have log P of more than 5, which means they are too
hydrophilic to easily pass through the lipid bilayer, resulting in low sensitivity to the target
molecule and high toxicity. Moreover, it is concluded that compounds 2, 3, and 8 could not
easily penetrate the lipid layer because their molecular weights are over 500 Dalton.
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Figure 8. Interaction biflavonoid with protein ribosomal subunit 30S (a), ribosomal subunit 50S (b), ClyM (c), FsrB (d),
GBAP (e), and PgrX (f).

Hydrophilicity, solubility, and topological polar surface area (TPSA) of compounds
are measured by the OSIRIS tool. The hydrophilicity of the compound is established by
the clogP value. A higher clogP value indicates lower hydrophilicity and, thus, poor
absorption and permeation. Most drugs have clogP value less than 5. Compounds 1–5
meet this range, while others do not fit. In other words, compounds 1–5 are more easily
absorb and permeate compared to others. Meanwhile, a log S value indicates solubility;
the smaller the log S value, the higher the solubility, which will enhance the absorption.
Most drugs have a logS value greater than −4. Only compounds 1 and 3 are in this range.
However, all compounds, except compound 3, meet in the TPSA range of drugs (less than
150). TPSA indicates the surface belonging to polar atoms in the compound. An increased
TPSA is associated with diminished membrane permeability and compounds with higher
TPSA were better substrates for p-glycoprotein (responsible for drug efflux from the cell).
Thus, comparing the compounds, lower TPSA is more favorable for drug-like properties.
TPSA is a factor contributing to the bioavailability of the oral drug. Oral bioavailability
is the ability of a drug or other substance to become available to the target tissue after its



Molecules 2021, 26, 2465 13 of 17

administration. High oral bioavailability is often an important consideration for developing
bioactive molecules as therapeutic agents. The higher the bioavailability, the lower the
relative molecular mass, the number of donor and acceptor hydrogen bonds, and TPSA
value [38].

Toxicity analysis shows that almost all M. pendans compounds have a low risk of
mutagenic, tumorigenic, irritant, and reproductive effective effects. The only butein shows
a high-risk probability in mutagenic properties. Furthermore, it is supported by the result
of the pharmacokinetic properties of the SwissADME analysis. In the BOILED-Egg analysis
(see Figure 9), all compounds do not penetrate the brain (there are many compounds in
the yolk area). Several compounds (1, 4, 5, and 6) are not absorbed in the gastrointestinal
tract (in the white area). However, compounds 1 and 5 are actively effluxed by PGP, while
4 and 6 are non-substrates of PGP. Ligands 2, 3, and 7 are considered non-substrate of
PGP, which are not absorbed in the brain and the gastrointestinal tract. Moreover, almost
all compounds are non-inhibitor cytochrome, especially CYP1A2, CYP2C19, CYP2C9,
CYP2D6, and CYP3A4. Therefore, it is expected that they will not interfere with drug
metabolism. However, butein (1) is predicted to inhibit the work of CYP1A2, CYP2C9,
and CYP3A4.

Figure 9. BOILED-Egg visualization.

Compared to M. pendans compounds, quercetin and curcumin (as the control positive)
meet Lipinski’s rule. Quercetin is not absorbed by the brain (BBB), but is absorbed in the
human intestines, with a value of 69.799. It also does not cause toxic effects with a value of
Caco-2 0.737. Based on the ADME analysis, quercetin will not interrupt the metabolism
of the drug, because it does not interfere with cytochrome P450, except for CYP450 1A2
and CYP450 3A4. Conversely, curcumin penetrates the BBB by inhibiting four CYP450
cytochromes (CYP450 1A2, CYP450 2C9, CYP450 2D6, and CYP450 2C19) and human
gastrointestinal absorption (HIA). Moreover, it can be toxic [39,40].

4. Materials and Methods
4.1. Materials

We used twelve target proteins that were retrieved from Protein Data Bank (https:
//www.rcsb.org, accessed on 5 May 2020) and UniProt knowledgebase (http://www.
uniprot.org/, accessed on 8 May 2020). PBP (PDB code: 6BSQ), SrtA (PDB code: 2KW8),
DNA gyrase (PDB code: 4KSG), RNA polymerase subunit alpha (PDB code: 1BDF), ClyM
(PDB code: 5DZT), and PgrX (PDB code: 2AW6) were retrieved from Protein Data Bank,
while others were retrieved from UniProt. They were MurB (UniProt ID: Q830P3), RNA
polymerase subunit beta (UniProt ID: Q82Z41), ribosomal subunit 30S (UniProt ID: Q82ZI6),
ribosomal subunit 50S (UniProt ID: Q839E6), FsrB (UniProt ID: G8ADN9), and GBAP
(UniProt ID: G8ADP0). Meanwhile, the eight ligands considered were M. pendans com-

https://www.rcsb.org
https://www.rcsb.org
http://www.uniprot.org/
http://www.uniprot.org/
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pounds that were published in previous studies [31–33]. They were (1) butein or 2′,3,4,4′-
Tetrahydroxychalcone, (2) biflavonoid, (3) 3”-methoxy-epicatechin-3-O-epicatechin, (4) ben-
zoic acid, (5) dibenzo-p-dioxin-2,8-dicarboxylic acid, (6) pomolic acid, (7) betulin, and (8)
β-sitosterol tridecanoil glucopyranose. Moreover, there were fifteen ligands as the positive
control, including P or penicillin (CID 2349), Ca or carbapenems (CID 443582), Gly or
glycopeptides (CID 56928060), Q or Quercetin (CID 5280343), Ga or gatifloxacin (CID 5379),
S or sitafloxacin (CID 461399), M or myxopyronin (CID 136669146), R or Rifamycin (CID
6324616), A or Amoxicillin (CID 33613), Ce or Cefixime (CID 5362065, Cur or Curcumin
(CID 969516), AMP (CID 6083), and AA or ambuic acid (CID 11152290) retrieved from
PubChem compound database (https://www.ncbi.nlm.nih.gov/pccompound, accessed
on 3 May 2020).

4.2. Methods
4.2.1. In Silico Characterization of the M. Pendans Compounds

The characteristics of compounds 1–8 were confirmed using two online software
applications. The chemical structures of the four M. pendans compounds were converted
using a ChemDraw in the CDX file format. The 3D structure of the MOL file for all
compounds was retrieved from the PubChem Compound database. Those MOL files were
used to convert the chemical structure into a 3D format using OPEN BABEL 2.4.1 program,
in PDB file format [41]. The 3D structure model of PBP (PDB code: 6BSQ), SrtA (PDB
code: 2KW8), DNA gyrase (PDB code: 4KSG), RNA polymerase, subunit alpha (PDB code:
1BDF), ClyM (PDB code: 5DZT), and PgrX (PDB code: 2AW6) were retrieved from Protein
Data Bank. Meanwhile, others were retrieved from UniProt. They are MurB (UniProt
ID: Q830P3), RNA polymerase subunit beta (UniProt ID: Q82Z41), ribosomal subunit
30S (UniProt ID: Q82ZI6), ribosomal subunit 50S (UniProt ID: Q839E6), FsrB (UniProt ID:
G8ADN9), and GBAP (UniProt ID: G8ADP0), which were built using the SWISS-MODEL
server (https://swissmodel.expasy.org/, accessed on 8 May 2020) in PDB file format [42].

4.2.2. PASS Online Analysis of M. pendans Compounds

To determine the activity prediction of compounds, M. pendans compounds were ana-
lyzed with Prediction of Activity Spectra for Substances (PASS) online program, found at
http://www.pharmaexpert.ru/passonline/predict.php, accessed on 15 December 2020 [43].

4.2.3. Molecular Docking between Target Protein and M. Pendans Compounds

Automated docking studies were performed using AutoDock Vina in the PyRx 0.8
software application [44]. All target proteins (PBP, MurB, SrtA, DNA gyrase, RNA poly-
merase subunit alpha and RNA polymerase subunit beta, ribosomal subunit 30S, ribosomal
subunit 50S, ClyM, FsrB, GBAP, and PgrX) were loaded to become macromolecules. All
compounds 1–8 from M. pendans as ligands were subject to binding to each protein target;
the ligands were free for blind docking. The docking process was initiated by selecting the
macromolecule and the eight ligands. Position of grid box: PBP (X: 44,6994, Y: 21,1436, Z:
9,0408), MurB (X: −21.554, Y: 32.9988, Z: −4.3529), SrtA (128.612, Y: −2,4687, Z: −24.2904),
DNA gyrase (X: 14.4069, Y: 0.7488, Z: 7.6851), RNA polymerase subunit α (X: 47.0271,
Y: 15.3509, Z: 32.8666), RNA polymerase-β (X: 177.594, Y: 152.051, Z: 152.6960), FsrB (X:
42.4764, Y: 43.9861, Z: 1.7210), PgrX (X: −39.9609, Y: 36.154, Z: −0.2834), ClyM (X: 36.0740,
Y: 29.4745, Y: 85.2444), GBAP (X: 21.3901, Y: 14.4990, Z: 58.0145), ribosomal subunit 30S (X:
328.606, Y: 181.527, Z: 256.9210), ribosomal subunit 50S (X: 290.930, Y: 512.527, Z: 235.9659).
Moreover, step-by-step manual instructions were followed until the bonding energy and
hydrogen bond of macromolecule-ligand appeared. The selected conformations were
conformation with the lowest binding energy, which had a bonding energy score that less
than 1.0 Å in positional root-mean-square deviation (RMSD) [45]. This procedure was
repeated ten times.

https://www.ncbi.nlm.nih.gov/pccompound
https://swissmodel.expasy.org/
http://www.pharmaexpert.ru/passonline/predict.php
http://www.pharmaexpert.ru/passonline/predict.php
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4.2.4. Complex Protein-Ligand Visualization and Analysis

The final step was to analyze docking results using PYMOL, Discovery Studio, and the
online program ProteinsPlus [46]. Docking poses and molecular interaction of each protein-
ligand complex can be visualized by PYMOL. To show which residues bind to a ligand,
the ProteinsPlus program was used to analyze the protein-ligand complex file and then
the picture of molecular interactions come out in a 2D structure. For the best visualization,
those molecular interactions were illustrated in a 3D molecular picture. The docking poses
of each protein–ligand complex were compared to the 3D structure of a protein that bound
ligands on the catalytic sites of each protein. It was supposed to evaluate the similarity of
the ligation pose of the compound to another compound that bound ligands on that site.

4.2.5. Analysis of Lipinski Prediction

To determine the penetration ability into the cell wall, we conducted the Lipinski rule
test through http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp#anchortag,
accessed on 1 February 2021 [37].

4.2.6. Analysis of ADMET and Drug-Likeness Prediction

We predicted ADMET using online software (http://www.swissadme.ch/, accessed
on 16 February 2021) by entering a list of SMILES of chemical ligands running the pro-
gram [47]. Meanwhile, drug-likeness was predicted through OSIRIS Property Explorer
(http://www.organic-chemistry.org/prog/peo/, accessed on 16 February 2021) [48].

5. Conclusions

According to in silico studies, compounds 1–8 were predicted to be able to block
proteins that had a role in cell wall biosynthesis more extremely compared to other proteins.
However, they inhibited ClyM with the highest average binding affinity. In other words,
they had antibacterial activity through quorum sensing disruption. Based on the structure–
activity relationship analysis, compound 2 can be a lead compound for the antibacterial
agent in each pathway. However, it does not meet Lipinski’s rule and is just a little out of
the range, but it is still considered safe for an oral drug. On the other hand, compounds
1, 4, and 5 have a binding affinity lower than compound 2, but they meet the five rules.
Therefore, the three compounds can act as candidates for the antibacterial drug. This study
acts as a fundamental evaluation for in vitro and clinical studies in future research.

Supplementary Materials: The following are available online, Table S1: Sum and hydrogen bond
of complex in PBP, MurB, SrtA and DNA gyrase; Table S2: Hydrophobic contact of complex in PBP,
MurB, SrtA and DNA gyrase; Table S3: Sum and hydrogen bond of complex in RNA polymerase and
ribosomal subunit; Table S4: Hydrophobic contact of complex in RNA polymerase and ribosomal
subunit; Table S5: Sum and hydrogen bond of complex in protein QS; Table S6: Hydrophobic contact
of complex in protein QS.
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