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Abstract
The use of empirical prior information about participants has been shown to substantially improve
the efficiency of computerized adaptive tests (CATs) in educational settings. However, it is
unclear how these results translate to clinical settings, where small item banks with highly in-
formative polytomous items often lead to very short CATs.We explored the risks and rewards of
using prior information in CAT in two simulation studies, rooted in applied clinical examples. In
the first simulation, prior precision and bias in the prior location were manipulated independently.
Our results show that a precise personalized prior can meaningfully increase CAT efficiency.
However, this reward comes with the potential risk of overconfidence in wrong empirical in-
formation (i.e., using a precise severely biased prior), which can lead to unnecessarily long tests, or
severely biased estimates. The latter risk can be mitigated by setting a minimum number of items
that are to be administered during the CAT, or by setting a less precise prior; be it at the expense
of canceling out any efficiency gains. The second simulation, with more realistic bias and precision
combinations in the empirical prior, places the prevalence of the potential risks in context. With
similar estimation bias, an empirical prior reduced CAT test length, compared to a standard
normal prior, in 68% of cases, by a median of 20%; while test length increased in only 3% of cases.
The use of prior information in CAT seems to be a feasible and simple method to reduce test
burden for patients and clinical practitioners alike.
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Computerized adaptive testing (van der Linden &Glas, 2000) is a powerful tool to administer tests
that are tailor-made for the participant. By using item response theory (IRT; see Lord, 1980) to
administer items that are matched on the participant’s estimated trait level, Computerized
Adaptive Tests (CATs) provide reliable trait estimates with considerably fewer items compared to
static linear versions of the same test (Chang & van der Linden, 2003). Given that the trait level of
a participant is unknown before any items have been administered, it is common practice to
assume an average trait level as the starting estimate of each participant. However, other sources of
information about the participant are frequently available (e.g., demographical characteristics of
the participant, or scores from previous test administrations), and may be used to obtain a more
accurate starting estimate. Several studies have explored how these sources of information can be
used to improve CAT estimation and efficiency (e.g., Matteucci & Veldkamp, 2013; van der
Linden, 1999).

These studies show that the inclusion of prior information about a participant can reduce both
test length and estimation bias. Van der Linden (1999) concludes that the general use of prior
information in educational assessment appears to be inhibited solely by the assumption that
including information on prior test scores in performance assessment may be unfair to students.
However, the use of prior information may be more acceptable—and thus more likely to be
implemented—in clinical measurement, where tests are typically used as a diagnostic instrument
rather than as a measure of aptitude (Matteucci & Veldkamp, 2013). In such settings, it is common
practice to include information provided by the patient (regarding past experiences) or by multiple
sources, in the assessment procedure. For example, Achenbach (2006) posits that data from
multiple informants is essential in the assessment of psychopathology and personality.

Thus far, studies investigating the use of prior information in CAT have focused on the benefits
of empirical prior information in settings commonly found in educational contexts, where CATs
are often supported by large item banks of dichotomous items (Matteucci & Veldkamp, 2013; van
der Linden, 1999). It remains unclear how the uniformly positive message of using empirical prior
information in CATwill generalize to applied clinical settings. Item banks used in clinical practice
are typically much smaller, based on highly informative polytomous items, and aimed to measure
conceptually narrow pathological constructs (Reise & Waller, 2009). These characteristics often
lead to very short CATs and item banks that only provide adequate information regarding the
pathological range of the latent trait scale (Reise & Waller, 2009). In addition, while previous
studies have focused mainly on the benefits of using prior information in ideal settings, little is
known about the potential risks when prior information is not perfectly accurate. Overconfidence
in inaccurate prior information may in fact increase test length and/or lead to severely biased final
trait estimates, by selecting an incorrect starting point or introducing bias in the trait estimation
process, and administering items that do not match the participant’s trait level. In this paper, we
explore both the potential reward and risk of using empirical prior information in circumstances
resembling realistic clinical CAT settings.

Using Empirical Prior Information in CAT

Various authors have discussed how prior information may be included in latent trait estimation in
IRT and CAT (e.g., van der Linden, 1999; Zwinderman, 1991). In CAT, it is quite common to rely
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on an empirical Bayes paradigm to estimate a person’s latent trait. Such a Bayesian estimation
paradigm avoids the drawbacks of simple maximum likelihood estimation (e.g., infinite estimates
for all incorrect/correct response patterns) for CAT, by including a prior distribution on the latent
trait to supplement the likelihood of the observed response data in order to approximate the
posterior distribution of a person’s latent trait (Bock & Mislevy, 1982). Two common empirical
Bayes estimators are the Expected A Posteriori (EAP) and the Maximum A Posteriori (MAP),
which use either the mean or the mode of the posterior distribution of the latent trait as a point
estimate, respectively. In absence of empirical prior information, the common default prior

distribution is the standard normal distribution bθ
ð0Þ
p ∼Nð0; 1Þ. However, with available empirical

prior information, an empirical prior distribution can be defined in various ways (see, for example,
He et al., 2019; van der Linden, 1999); for instance, by making the mean and variance of the

normal distribution person specific bθ
ð0Þ
p ∼Nðμp, σ2pÞ. In such a personalized empirical prior, the

mean μp reflects the location of person p on the latent trait, and the variance σ2p reflects the level of

uncertainty of the information on that location. The inverse of the prior variance is also known as
the precision (i.e., 1/σ2p) of the prior.

Bayesian estimators such as EAP and MAP are so-called shrinkage estimators that pull the
person’s latent trait estimate bθp away from the maximum likelihood estimate towards the location
µp of the prior. The degree of shrinkage depends on the relative precision of the prior compared to
the amount of information present in the data. Hence, EAP and MAP estimates are biased by
definition, unless the test is perfectly reliable or the location μp of the prior is identical to the
participant’s true location θp on the latent trait (Kolen & Tong, 2010). This slight increase in bias is
typically counterbalanced by overall lower error variance.

In an educational context, Matteucci and Veldkamp (2013) illustrated how, compared to a
default standard normal prior, the adoption of a personalized empirical prior distribution with a
location close to the person’s true trait level leads to shorter test lengths in fixed-precision CATs.
Furthermore, even the estimation bias was reduced; with largest effects for extreme θ participants,
where the mismatch with the default standard normal prior was greatest, and whose estimates
would otherwise be shrunk towards zero.

These results suggest that using empirical prior information can be highly rewarding. However,
it is important to note that these advantages are dependent on the prior information giving a precise
and unbiased initial estimate of the latent trait (van der Linden, 1999). There is a risk that the
location μp of the prior might substantially diverge from the participant’s true latent trait θp,
making our initial estimate in fact severely biased. Moreover, since item selection in CAT is
conditional on the trait estimate, an incorrect initial estimate could lead to the selection of an item
that is not very informative for the estimation of the person’s latent trait, and in the worst case
could lead the CAT astray. An initial misstart by the participant, that is not responding in line with
their true latent trait value, could lead to a string of mismatched items making a fixed-precision
CAT unnecessarily long, and potentially inducing substantial estimation bias in a short fixed-
length CAT (e.g., Chang & Ying, 2008; Rulison & Loken, 2009). However, if a test is sufficiently
long and reliable, the influence of the prior on the trait estimate will eventually dissipate (van der
Linden & Pashley, 2010). The purpose of a CAT is to provide a relatively short, accurate test,
whereby one should bear in mind that, especially in clinical settings, due to the small number of
items, the risks associated with using a mismatched prior might be substantial when using a CAT.
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Current Study

In sum, whereas previous studies have focused on the rewards for CAT—in terms of accuracy and
efficiency—that result from using an unbiased personalized empirical prior in educational
contexts, we focus on both the risks and rewards of using empirical priors in a clinical CATsetting.
Since CATs are increasingly used in the domain of health measurement, and the inclusion of prior
information may be highly applicable in this context, exploring the impact of utilizing prior
information in clinical CATs is particularly relevant. Since item banks in clinical contexts
generally consist of a relatively small number of highly informative polytomous items, it is unclear
whether the uniformly positive message of using empirical prior information in CAT will
generalize to applied clinical settings. To explore the risks and rewards of a personalized empirical
prior in a clinical context, we conducted a simulation study using item banks that were simulated
based on characteristics found in the Patient Reported OutcomeMeasurement Information System
(PROMIS; Reeve et al., 2007), one of the most ambitious and widely known CAT applications in
health care. A second study was conducted using item banks and empirical priors that have been
simulated based on a structured clinical interview to assess personality functioning (Hummelen
et al., 2021). By using realistic examples and personalized empirical priors of varying quality, we
explored both the risks and rewards of using personalized empirical priors as compared to a
generic empirical prior or a commonly used standard normal prior.

Simulation Study 1

In this study, we compared the performance of a fixed-precision CAT using a personalized
empirical prior and two generic priors that represent a general and clinical population with fixed
prior location μ. We varied the quality of the personalized empirical prior by systematically
changing the degree of bias in the location of the prior distribution and the precision of the prior.

Item Bank

To ensure that simulated item banks had realistic properties, item bank sizes and item parameters
were based on characteristics found in empirical item banks in PROMIS, similar to a recent study
by Paap et al. (2019).1 We simulated 100 item banks for two different sizes (i.e., length N = {30,
60}) that represent moderately sized and larger item banks, currently found in the PROMIS adult
measures database2. Item bank size was varied, as smaller item banks generally have fewer
informative items at any given trait location, which may make them less effective at mitigating the
influence of a biased prior. Each item bank consisted of polytomous items with five response
categories calibrated under the Graded Response Model (GRM; Samejima, 1996). The fourth
category threshold parameter for all items was sampled from a normal distribution, with mean 2.2
and variance 0.16. The stepwise distances towards the other category thresholds in an item were
sampled from a log-normal distribution with mean 0.75 and variance 1.44. Item discrimination
parameters were sampled from a truncated normal distribution with location and scale of 3.5 and
1.0, respectively, on the interval [1.5, 5]. The resulting test information functions for simulated
item banks of length N = 30 and of length N = 60 can be found in the online supplement. For
average item banks of both lengths, information is maximized for trait values of θp ¼ 1:1 (i.e.,
higher degrees of pathology), which is consistent with the fact that PROMIS item banks are
calibrated in such a way that a trait value of zero represents trait characteristics in the general
population (Reeve et al., 2007).
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Simulees

To evaluate the performance of the different CATs across the latent trait space, the true θ values of
simulees were generated according to a grid ranging from �1.0 to 3.0 in increments of 0.5. These
θ values represent the target population of the PROMIS instruments used as a basis for the
simulation, and were matched to the item bank information curve to ensure that the vast
majority of generated item banks would supply sufficient information for the CAT to reach the
fixed-precision stopping threshold. At each of the nine θ grid points, 100 simulees were
located, resulting in a total of p = 900 simulees for each item bank.

CAT Administration

All CAT simulations were run in R version 4.1.1 (R Core Team, 2021) with the mirtCAT package
version 1.11 (Chalmers, 2016), and customized scripts for the setup of the priors, the data
simulation, and the statistical analyses of the CAT results. The scripts can be found online at
https://github.com/Niek-F/CAT_Empirical_Prior.

To initialize each CAT, the most informative item in the item bank given the prior location μ
was selected as the starting item. Likewise, subsequent items were selected based on the maximum
Fisher information criterion. Maximum A Posteriori estimation was used to estimate the location
of the simulee on the latent trait scale.

Stopping rule and constraints. A fixed-precision stopping criterion was used, with the following
threshold for the standard error of the trait estimate: SE(bθp) ≤ 0.316 (i.e., roughly corresponding to
a required local reliability of 1–.3162 = .90); in combination with a minimum number of items
constraint. Babcock and Weiss (2012) suggest that setting a minimum number of 15–20 di-
chotomous items might prevent fixed-precision CATs from terminating before converging on the
true trait estimate. Considering that a 5-category polytomous item can be viewed as a collection of
4 dichotomous pseudo-items, and that items in a clinical context tend to be more informative than
in an educational context, we set the minimum number of items to be administered in the CATat 2,
3, or 4 items; alongside a CAT administration without such a constraint (i.e., minimum number of
items = 1). Thus, we have a total of four different stopping rule variants in our study.

Prior conditions. Three different priors were used in each CAT: (i) a personalized prior

bθ
ð0Þ
p ∼Nðμ p, σ2pÞ with a location that is based on the participant’s true trait; (ii) a generic clinical

prior bθ
ð0Þ
p ∼Nð1; 1Þ, which represents the clinical target population of the item banks and has a

prior location that is closely aligned with the trait value for which the average item bank provides

maximum information; and (iii) a generic default standard normal prior bθ
ð0Þ
p ∼Nð0; 1Þ, with a

location that represents average trait values in a non-clinical population. Including these three
prior conditions facilitates direct comparison of CAT performance under a person-specific em-
pirical prior with both a generic empirical prior that takes a pathological value as an initial
assumption of the person’s trait and a commonly used standard normal prior.

The accuracy of the personalized prior was manipulated by varying the degree of bias in the
location of the prior distribution (i.e., μp ¼ θp þ bias0; with bias0 ¼ f�2, �1, 0, 1, 2g). The
selected values represent a bias of one or two standard deviations from the mean, under the generic
prior distributions that are used for comparison purposes. The precision of the personalized prior
was manipulated by varying the variance of the distribution (i.e., σ2p ¼ f1:00, 0:50, 0:25g). The
highest variance of 1.00 equaled the variance of the generic priors and was included to assess the
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isolated effect of bias in the personalized prior. The lowest variance was set higher than the fixed-
precision CAT’s stopping criterion (otherwise, the CATwould immediately stop, before any item
was administered).

Each simulated item bank was used to generate a new dataset Y consisting of item responses of
the p = 900 simulees on all N items3. For each simulee we ran 5 (bias in personalized prior
location) × 3 (precision of personalized prior) × 4 (min. item constraint) = 60 CATadministrations
with a personalized prior; and 2 (generic priors) × 4 (min. item constraint) = 8 CATadministrations
with a generic prior. Our experimental design with respect to the prior was within-subject (i.e.,
same item response data Y for the different CAT administrations per replication of an item bank),
facilitating comparisons at an individual level across prior conditions. Item bank size was the only
between-subject experimental factor (100 replicated item banks per item bank size, with each
replication having its own new item response datasets Y).

Evaluation criteria. The outcome measures were first computed at the individual level, and then
summarized at the θ-grid level by calculating the mean for the 100 simulees on each of the 9 latent
grid points. These summary measures represent the expected values at the grid level per replicated
item bank. Variation in these summary measures reflects variation due to differences in the
underlying item bank replications. Outcomes were reported in terms of the grand mean and
standard deviation (SD) over item bank replications for central tendency, and spread of these grid-
level outcome measures, respectively, supplemented by figures in which the error bars depict the
range [min, max] of values.

Convergence and test length. The proportion of CATs that did not reach the fixed precision stopping
threshold, and hence did not converge, was computed. The variance of the estimates in most fixed-
precision CATs will result in a near-constant, due to the CATs terminating at the stopping precision
SE(bθp) ≤ 0.316. Because the standard errors of the CAT estimates contain little to no variance, we
did not include a variance-based outcome measure, but instead looked at differences in test length.
Both the absolute test length n, and the relative test length were computed to evaluate CAT
efficiency, as a more efficient fixed-precision CAT will reach the stopping precision using fewer
items (i.e., shorter test lengths). Before summarizing at the θ-grid level, the relative test length was
calculated as a ratio nðEmpiricalÞp =nðGenericÞp for the personalized prior conditions, using the number of
items administered under each generic prior in the denominator given the same CATstopping rule.

Estimation bias. The accuracy of a simulee’s latent trait estimate bθp was assessed in terms of
its estimation bias BIASðbθpÞ ¼ bθp � θp. For the personalized prior conditions, absolute
estimation bias was also expressed relative to the two generic priors as

ΔjBIASðbθpÞj ¼ jBIASðbθ ðEmpiricalÞ
p Þj � jBIASðbθ ðGenericÞ

p Þj.

Results

Convergence

When supported by the larger item bank (N = 60), nearly all CATs (>99.9%), regardless of what
prior was used, reached the required fixed-precision stopping criterion. For the smaller item banks
(N = 30), 2.3% of CATs ran to bank depletion. Nearly all of these cases (89.8%) occurred under the
personalized prior CATs, specifically for simulees with an extreme θ value (i.e., θp = 3.0), that,
combined with prior bias, led to an extreme prior location (e.g., bias ¼ 2, θp ¼ 3, μp ¼ 5Þ.
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Test Length

When using the generic standard normal prior, average test length between simulations varied
between 2.1 and 4.1 items for the larger (N = 60) item bank, with a mean of 2.6 items. Tests were
slightly longer when the smaller (N = 30) item bank was used, and varied between 2.1 and 5.9
items with an average of 2.9 items. Using the generic clinical prior generally resulted in tests that
were nearly equally long between both item bank sizes. The average test length for the large item
bank was 2.8 items, and 3.1 items for the smaller item bank, when utilizing the generic clinical
prior. In line with expectations, test length varied as a function of the true θ value, especially in the
smaller item bank. Compared to simulees with trait values at the center of the distribution (θp = 1),
average test length was nearly three times longer at the lowest end of the latent trait scale
(θp =�1), and roughly two times longer at the highest end of the latent trait scale (θp = 3). For the
larger item bank, tests were around two times longer at either end of the scale. This is in ac-
cordance with the test information function of the item bank having less information in those areas
of the scale.

Figure 1 shows the average reduction in test length for the personalized prior condition, relative
to a generic standard normal prior. Since both generic priors performed highly comparable in
terms of test length, only the comparison with the standard normal prior is shown for both item
banks. The top central panel of Figure 1 shows that, given the same prior variance (σ2p ¼ 1Þ, an
unbiased personalized prior did not noticeably reduce test length, compared to a standard normal
prior. When utilizing an unbiased personalized prior, average test lengths for the smaller item bank

Figure 1. Average relative differences in test length between the generic default and personalized prior
conditions for different θ values. Split by item bank size, prior variance, and prior bias. Note. Unit-distances
on the y-axis are log-transformed to reflect the inverse equivalence of a test that is twice as long and a test
that is half as long. Y-values lower than 1 (white area) indicate that tests are shorter, when using a
personalized prior relative to a standard normal prior. The error bars indicate the range of replication
averages over 100 simulees.
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were up to 1.8 times longer for simulees with θp ¼ �1 or θp ¼ 3, as the item bank contained few
informative items for these trait values.

When the location of the personalized prior was biased, relative test length increased slightly
for most θ values (Figure 1, top row). As expected, tests were generally shorter when the variance
of the personalized prior σ2p was lower. For example, an unbiased personalized prior reduced test
length by a factor of 1.3 when prior variance σ2p ¼ 0:25, compared to prior variance σ2p ¼ 1:00.
However, a more precise prior led to a drastic increase in test length, when bias in the prior location
moved the initial estimate towards an extreme location on the latent trait (e.g.,
bias ¼ 2, θp ¼ 3, μp ¼ 5, bottom right panel of Figure 1). Equivalently, bias in the prior location
that resulted in a starting estimate closer towards the center of the latent trait distribution,
compared to the location of the generic default prior (e.g., bias ¼ �1, θp ¼ 3, μp ¼ 2Þ, resulted in
empirical prior CATs that were generally shorter in test length compared to a generic default prior
CAT. In essence, bias in the prior location led to relatively shorter/longer tests, when this bias
brought the starting estimate closer to/further away from the trait value areas for which the item
bank provided maximum information.

Estimation Bias

Average estimation bias varied from �0.34 to �0.13, with a mean of �0.09, when using the
generic default prior. That this default prior resulted in negatively biased estimates was to be
expected, since trait estimates were shrunk towards the location of the prior (i.e., 0). A generic
clinical prior did result in more unbiased estimates (mean estimation bias = 0.00) that varied

Figure 2. Average differences in absolute estimation bias between the generic default and personalized
prior conditions for different θ values. Split by item bank size, prior variance, and prior bias. Note. A
positive value on the y-axis indicates that the estimate using a standard normal prior is less biased than the
estimate using a personalized prior.
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between �0.23 and 0.22. As expected, both population priors resulted in an estimation bias trend
that pulled the estimates towards their respective location (i.e., 0 for the generic default prior and 1
for the clinical prior); consequently, the most extreme estimation bias was found for θ values that
were furthest from the prior location. In contrast, mean estimation bias under an unbiased
personalized prior (i.e., with location set at the true θ value) was near-zero and ranged from�0.03
to 0.02 across the θ-grid. In line with expectations, when increasing bias in the prior location,
estimates were increasingly biased towards the location of the prior. The overall effect was
symmetrical for positive and negative bias in the prior location, with a mean estimation bias
of�0.33 when the prior bias was�2 and�0.16 when prior bias was�1.Mean estimation bias did
not differ across bank sizes for the three prior conditions.

There was a mean reduction in absolute estimation bias of 0.05 (SD = 0.05) compared to the
generic default prior, and a mean reduction of 0.04 (SD = 0.03) compared to the generic clinical
prior. Figure 2 shows the difference in absolute bias between the personalized prior and a standard
normal prior for both item bank sizes4. As shown in Figure 2, the differences in estimation bias
between CATs supported by an unbiased personalized prior and the generic standard normal prior
CATwere somewhat larger for higher θ values (θp ¼ 3:0;ΔjBIASðbθpÞj: mean =�0.16, SD = 0.02).
The figure also shows how absolute average estimation bias under the personalized prior CATs
varied as a function of bias in the prior’s location. This negative effect of prior bias on estimation
bias was severely amplified when the variance of the prior was lower. In line with expectations,
when comparing the bottom left and top right panels in Figures 1 and 2, we can see that trait
estimates were particularly biased for θp values that were associated with relatively short tests.

Influence of Test Length Constraints

Changing the constraint on the minimum number of items to be administered during the CAT
influenced the results in two ways. Average test length increased as the required minimum number
of items in a CAT increased. Consequently, average absolute estimation bias decreased as the
average test length increased. These two effects can be seen in Table 1 for the two generic priors
and the unbiased personalized prior used in this study. Although the unbiased personalized prior
initially slightly outperformed the other two conditions in terms of test length and estimation bias,

Table 1. Effect of Setting a Minimum Number of Items on Average Absolute Estimation Bias and Average
Test Length for Three Prior Conditions and Effect of Bias in Prior Location and Prior Precision on Test
Length and Estimation Bias When Administering a Minimum of Four Items Before Terminating the CAT.

Min. items

Between conditions comparison

Default prior Nð0; 1Þ Clinical prior Nð1; 1Þ Personalized prior Nðθp, σ2pÞ
Test length Abs. est. bias Test length Abs. est. bias Test length Abs. est. bias

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

— 2.61 0.70 0.132 0.101 2.84 0.98 0.112 0.076 2.26 0.73 0.012 0.012
2 2.61 0.70 0.132 0.101 2.84 0.97 0.112 0.076 2.38 0.64 0.009 0.012
3 3.26 0.43 0.104 0.092 3.45 0.69 0.090 0.070 3.21 0.45 0.004 0.006
4 4.13 0.28 0.080 0.075 4.26 0.45 0.071 0.059 4.15 0.34 0.003 0.003

Note. Min. items = minimum number of items administered. Abs. est. bias = absolute estimation bias. σ2p = variance of the
personalized prior, outcomes in this table are aggregated over the different variance values.
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the differences between the prior conditions diminished as the minimum number of items
increased.

When setting a minimum of four items, CAT efficiency under an unbiased personalized prior
was comparable to that under a clinical prior. However, Table 2 shows that there were substantial
differences in estimation bias depending on bias in the prior location and precision of the per-
sonalized prior. In the least favorable scenarios of a precise and highly biased prior, average
absolute estimation bias remained substantial, even with a minimum number of four administered
items. Under the same constraint, reducing prior precision substantially reduced estimation bias
resulting from a biased personalized prior, but simultaneously eliminated any advantage that a
personalized prior provided in terms of the CAT test length.

Simulation Study 2

Design

The basis for the second study was a clinical structured interview measuring impairment of
personality functioning in which a so-called global score between zero and four—scored by the
clinician prior to the main interview—can be used as empirical information to support the CAT. In
clinical practice, this global score is obtained by asking several screener questions, and is used as a
level of reference to guide further interview questions (Hummelen et al., 2021). This particular
example was selected because the global score in this interview already functions as an informal
personalized prior in the item selection process. Due to general data protection rules, real data were
not used. Instead, this simulation study was based on previously acquired clinical data (Hummelen
et al., 2021).

Each simulee was administered two fixed-precision CATs that differed only in the prior
distribution used during the initialization and estimation process of the CAT: either the default
standard normal prior, or an empirical prior based on the simulee’s global score. The CAT al-
gorithmic settings and statistical software were the same as for Study 1, with one exception: we did
not include a constraint on the minimum number of items in this simulation, as the first simulation
showed that such a constraint mainly reduced the benefits of utilizing an empirical prior.

Table 2. Average Test Length and Absolute Estimation Bias for CATs Utilizing a Personalized Prior
bθ
ð0Þ
p ∼Nðμp þ bias, σ2pÞ with a Minimum of 4 Items, Split by Prior Variance and Bias in Prior Location.

Prior bias

σ2p ¼ 1:00 σ2p ¼ 0:50 σ2p ¼ 0:25

Test length Abs. est. bias Test length Abs. est. bias Test length Abs. est. bias

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

�2 4.53 1.17 0.111 0.024 4.57 1.61 0.216 0.045 4.91 2.57 0.403 0.075
�1 4.34 0.74 0.051 0.012 4.30 0.73 0.100 0.018 4.23 0.69 0.188 0.035
0 4.26 0.51 0.004 0.002 4.15 0.29 0.003 0.002 4.05 0.10 0.004 0.004
1 4.33 0.68 0.054 0.014 4.29 0.66 0.102 0.019 4.21 0.62 0.190 0.037
2 4.54 1.09 0.113 0.027 4.53 1.48 0.223 0.055 4.81 2.28 0.411 0.084

Note. Min. items = minimum number of items administered. Abs. est. bias = absolute estimation bias.
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Item Bank and Simulees

We used an existing polytomous item bank consisting of 12 items scored on a 5-point scale. The
items were calibrated in a clinical sample with the GRM (see Hummelen et al. (2021) for more
details on the item bank), where item discrimination parameters ranged from 2.03 to 3.03, with a
mean of 2.47. The true latent trait values of p = 5000 simulees were sampled from a standard
normal distribution θp ∼Nð0; 1Þ. Note that a θ-value of 0 corresponds to the average in a clinical
population in this case. As such, this simulation did not include a second generic prior condition,
since a generic clinical prior coincides with a default standard normal prior. The full item bank was
sufficiently informative for all simulees on the interval θ = [–1.96, 2.64] to be measured in line
with the required fixed precision SE(bθp) ≤ 0.316.

Global Score and Empirical Prior

The empirical prior was simulated to mimic the observed relation between the global score and θ
estimate in the clinical sample of Hummelen et al. (2021). Table 3 shows the expected frequencies
for each integer θ value and global score in a sample of p = 5000.

First, the global score of each simulee was obtained by sampling from the expected frequencies
in Table 3, conditional on the simulee’s true θ value rounded to the nearest integer. After a global

score was assigned, the empirical prior bθ
ð0Þ
p was assumed to be normally distributed, with mean µp

and variance σ2p equal to the mean and variance of the θ distribution for the assigned global score

(see Table 3).

Evaluation Criteria

The contrast between the empirical and default prior in terms of resulting test length and esti-
mation bias was evaluated on the same criteria used in the previous simulation study.

Results

Convergence

Ninety-eight percent of the CATs using the default standard normal prior reached the required
fixed precision. Out of the 104 CATs (2%) that ran to bank depletion, nearly all cases had estimated
θ values for which the item bank did not contain sufficient information. In contrast, only 56 CATs

Table 3. Expected Frequencies of Global Score and θp for the Simulated Sample Size p = 5000, Based on the
Clinical Sample of Hummelen et al. (2021) and Prior Parameters for Each Global Score.

Global score θ rounded to the nearest integer Expected frequency
Prior

parameters

�3 �2 �1 0 1 2 3 µp σ2p

0 63 21 21 0 0 0 0 105 �2.4 0.640
1 21 105 732 188 0 0 0 1046 �1.0 0.359
2 0 42 272 1673 356 0 0 2343 0.0 0.339
3 0 0 0 439 711 272 42 1464 0.9 0.597
4 0 0 0 0 0 21 21 42 2.5 0.250
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(1%) using the empirical prior ran to bank depletion without reaching the required fixed precision.
Fifty of these cases (89%) overlapped with the non-convergent cases under the default prior. The
remaining 6 cases (11%) all had a global score of 0 and an average trait value of �2.7 (range
θp ¼ ½�3:6, � 1:8�).

Test Length

Overall, the range of the number of items administered varied from 3 to 12 items, with a median of
5 items and a median absolute deviation (MAD) of 1 item. Out of the 5000 simulees, 68% had a
shorter test length under the empirical prior than under the default prior, 29% simulees had an
equal test length, and 3% had a longer test length. The within-subject difference in test length Δnp
showed that CATs utilizing an empirical prior ranged from a test length that is 6 items longer to a
test length that is 8 items shorter than the same CATs using a default prior, with a median reduction
in test length of 20% or 1 item (MAD = 0). Figure 3 shows how this reduction in test length is
related to the global score that informed the location and variance of the empirical prior dis-
tribution. The reductions could be observed for simulees with global score equal to 1, 2, or 4. For
the latter, reduction in test length ranged from�3 to 5 items with median of 2 (MAD = 0), whereas
for the former two, reduction in test length ranged from �1 to 7 or 8 items with a median of 1
(MAD = 0). In contrast, for simulees with a global score equal to 0 or 3, coinciding with less
precise empirical priors (cf. Table 3), test length was highly similar between the empirical prior
and default prior CATs. Similar to the previous simulation, one can see a small cluster of simulees
in the scatterplot of Figure 3 for which the CAT under the default prior had a much shorter test
length than the same CAT under the empirical prior. These five cases all had a global score of zero,
which assigned them an empirical prior location of �2.4, a value outside of the θ-range with
sufficient information in the item bank.

Figure 3. Test length np as a function of global score under a default and under an empirical prior. Note. The
number of simulees is not equally distributed across global scores (see Table 3). Δnp is the within-subject
difference in test length between the default and the empirical prior condition.
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Estimation Bias

Overall, the estimation bias in the simulees’ latent trait value varied from BIASðbθpÞ = �1.10 to
1.22, with a median of 0.00 (MAD = 0.21) for the default prior CATs, and BIASðbθpÞ = �1.16 to
1.32, with a median of �0.02 (MAD = 0.30) for the empirical prior CATs. Out of the 5000
simulees, 51% had smaller absolute estimation bias under the empirical prior than under the
default prior, while the reverse was true for the remaining 49%. The within-subject difference in
absolute estimation bias ΔjBIASðbθpÞj between the default prior CAT and the empirical prior CAT
ranged from �0.68 to 0.88, with a median of 0.00 (MAD = 0.14). Hence, the use of an empirical
prior did not appreciably change the estimation bias in bθp when compared to the default prior.

Discussion

Our simulation studies show that using a precise empirical prior in a clinical fixed-precision CAT
may lead to substantial gains in test efficiency. In many of the simulated scenarios, CATs
supported by a personalized prior performed equivalently or better than CATs supported by a
default standard normal prior. The potential gains to CAT efficiency were similar in size to the
gains associated with using more complex models like multidimensional CAT in clinical contexts
(e.g., Bass et al., 2015; Paap et al., 2019), and to the gains found in previous simulations using an
empirical prior in educational contexts (Matteucci & Veldkamp, 2013). In the ideal scenario of an
unbiased and highly precise prior for every participant, our first simulation showed a 30% re-
duction in test length. Under more realistic conditions, where there is a certain risk of bias in the
prior location, our second simulation showed that a personalized prior still reduced average test
length by 20%, while estimation bias was similar to the standard normal prior condition.

Although these rewards look promising, it seems that the substantial benefits in terms of CAT
efficiency associated with the use of a precise empirical prior can simultaneously be linked to the
highest risks, when the location of a precise empirical prior is severely biased. Our results indicate
that, contrary to initial tentative expectations about fixed-precision CATs (e.g., Chang & Ying,
2008), the trait estimate was not likely to recover sufficiently from a biased starting location before
the CAT is terminated. Moreover, when the item bank contained few informative items at the prior
location, a large number of items were needed before the CAT stopping precision was reached,
resulting in far longer tests compared to a generic prior. This was particularly noticeable in smaller
item banks where few informative items were available. In contrast, when the biased prior location
was set in an information-rich area of the item bank, CAT length was much shorter compared to a
generic prior, but estimates were severely biased, as only a few items were administered to counter
the biased starting location.

Our results show that the risk of estimation bias from a biased prior can be ameliorated in two
ways: (i) by reducing the precision of the prior or (ii) by imposing a constraint on the minimum
number of items administered in the CAT. However, both of these measures dissolved any
advantage associated with the use of a personalized prior in terms of test length reduction. For
example, utilizing an unbiased personalized prior with low precision (i.e., σ2p ¼ 1 in the first
simulation, or σ2p ¼ 0:6 in the second simulation) did not increase CAT efficiency over CATs
utilizing a standard normal prior. Equivalently, despite providing a better starting location, a
generic empirical prior with low precision did not improve CAT efficiency or reduce estimation
bias, compared to CATs utilizing a standard normal prior. Increasing the minimum number of
items administered in the CAT likewise diminished the differences between the prior conditions in
terms of test length and estimation bias. In short, using a low precision prior, or setting a constraint
on the minimum number of items are unsuitable, if one wants to preserve the benefits of a
personalized prior, while reducing the risks of biased estimates.
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The PROMIS item banks that form the basis for the item bank characteristics in the first study
are part of the most widely known CAT applications in health care. Combined with the shorter
clinical interview used in the second simulation, these findings are presumably relevant to a wide
range of clinical applications. However, given that the effect of a personalized prior on CAT
efficiency depends on the availability of informative items at the prior location, it is important to
carefully examine the properties of the item banks used, before attempting to generalize these
conclusions to other clinical item banks. Due to the small size of the item banks typical for applied
clinical settings, a percentage of CATs in our studies failed to reach the stopping precision before
depleting the item bank. This problem may be common in clinical contexts, and since the
percentage was small enough not to greatly influence the conclusions, we retained these cases in
our analyses.

Conclusion

Our results show that utilizing prior information in CAT is a relatively simple method to increase
CATefficiency that aligns with current clinical assessment practice. Although an average absolute
reduction in test length of 1–4 items might be considered negligible in the context of educational
measurement, this may still be considered a relevant reduction in the context of clinical as-
sessment. During the diagnostic phase, the clinician typically administers a range of instruments,
so time is very precious. If less time is used for the assessment procedure, this will directly impact
the length of time patients spend on waiting lists. The instrument referred to in the second
simulation typically takes 1–2 hours to complete; a 1-item reduction therefore equates to a re-
duction of about 5–10 minutes in administration time, which is considerable. The results of these
simulations provide a more complete picture of the risks and rewards of empirical priors in applied
CAT scenarios, and show that in general: (i) using a precise empirical prior can be rewarding in
terms of test length reduction; (ii) there is a risk that the latent trait estimate in a fixed-precision
CAT will not recover from a biased prior, particularly if this prior is highly precise.

Although there are risks involved, our second simulation showed that a personalized prior
could provide substantial benefits with minimal risk under less-than-ideal circumstances. Sim-
ilarly, the first simulation showed that a personalized prior performs comparably to a default
standard normal prior in the less extremely disadvantaged scenarios. If the quality of prior in-
formation is adequately incorporated in the precision of a personalized prior, the risks of a biased
starting location will be largely mitigated, while benefits to CAT efficiency will be retained.
Personalized priors provide an easily implementable way to increase efficiency in clinical CATs.
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Notes

1. Note that in the study by Paap et al. (2019), higher θ values reflected better functioning. In the current
study, higher theta values reflect higher levels of pathology, which is more consistent with the use of
assessment instruments in clinical practice.

2. Bank sizes for this database can be found at http://www.healthmeasures.net/explore-measurement-
systems/promis/intro-to-promis/list-of-adult-measures

3. Responses to each item were sampled based on the θ value for each simulee and the sampled item
parameters.

4. Relative estimation bias of the personalized prior compared to a generic clinical prior was similar to that
compared to a standard normal prior and was therefore omitted from Figure 2. While there was no overall
difference in estimation bias between the bank sizes, the different bank sizes are shown to facilitate
comparisons between Figures 1 and 2.
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