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Abstract More than 100 modifications have been found in RNA. Analogous to epigenetic DNA

methylation, epitranscriptomic modifications can be written, read, and erased by a complex

network of proteins. Apart from N6-methyladenosine (m6A), N1-methyladenosine (m1A) has been

found as a reversible modification in tRNA and mRNA. m1A occurs at positions 9, 14, and 58

of tRNA, with m1A58 being critical for tRNA stability. Other than the hundreds of m1A sites in

mRNA and long non-coding RNA transcripts, transcriptome-wide mapping of m1A also identifies

>20 m1A sites in mitochondrial genes. m1A in the coding region of mitochondrial transcripts can

inhibit the translation of the corresponding proteins. In this review, we summarize the current

understanding of m1A in mRNA and tRNA, covering high-throughput sequencing methods devel-

oped for m1A methylome, m1A-related enzymes (writers and erasers), as well as its functions in

mRNA and tRNA.
The RNA modification N1
-methyladenosine

Shortly after the discovery of the base N1-methyladenine

(m1A) in 1961 [1], Dunn et al. isolated 1-methyladenosine
mononucleotide from RNA [2]. m1A has been discovered in
tRNA [3], rRNA [4–6], mRNA [7–10], and mitochondrial
(mt) transcripts [9,10]. m1A, N3-methylcytidine (m3C), and
N7-methylguanosine (m7G) are the most commonly methy-
lated nucleotides with a positive electrostatic charge under

physiological conditions [11]. The electro-chemical interaction
resulting from the positive charge of m1A is critical for the
function and structure of tRNA [11]. The methyl group on
m1A in mRNA blocks the Watson-Crick base pairing, affect-

ing reverse transcription and protein translation [7–10].
m1A was first found in yeast tRNAPhe [3]. Decades later,

m1A has also been found in 264 out of 564 tRNA sequences

in bacteria, archaea, and eukaryota, which can occur at posi-
tions 9, 14, and 58 [12]. Among them, m1A58 is conserved in
bacteria, archaea, and eukaryota, and m1A58 is critical for
nces and
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tRNA stabilization [12,13]. A recent study has reported
that m1A58 can be reversed by the human AlkB homolog 1
(ALKBH1) demethylase [13].

In contrast to the high abundance of m1A in tRNA, m1A is
present in mammalian mRNA with a low abundance (m1A/A:
0.015%�0.054% in mammalian cells and up to 0.16% in

mammalian tissues) [7,8]. The development of m1A-
sequencing methods and new single-base resolution methods
[7–10] has facilitated unraveling the presence of m1A in

nuclear, cytosolic, and mt-encoded transcripts [9,10]. For
instance, Li et al. found 473 m1A sites in mRNA and
long non-coding (lncRNAs) transcripts in HEK293T
cells. The majority of these m1A sites are located within the

50-untranslated region (50 UTR) [9], which is consistent with
previous findings [7,8]. Interestingly, 22 m1A sites have been
identified in 10 of 13 mt transcripts, with 21 sites located in

the coding sequence (CDS) and one in the 30 UTR [9]. m1A
at CDS of mt transcripts affects mitochondrial translation,
suggesting that m1A might regulate the normal function of

mitochondria.
m
1
A sequencing

In order to comprehensively explore m1A methylation in tran-
scriptome, it is necessary to develop m1A high-throughput
sequencing. The low abundance of m1A in mRNAs necessi-

tates highly sensitive detection methods. In addition, m1A
can be rearranged to m6A under alkaline conditions (Dimroth
rearrangement) [14]. Therefore, the signature of m1A in

mRNA may disappear during the preparation of mRNA frag-
mentation or mRNA digestion, which makes it difficult to
reduce the noise in m1A measurement and sequencing. m1A

blocks the Watson-Crick interface and effectively stalls reverse
transcription (RT), thus inducing truncations or mutations in
RT products [15–18]. This feature can be employed to identify
m1A sites, and accordingly, the high-throughput m1A sequenc-

ing methods were developed based on this idea.
The first-generation m1A sequencing methods have been

reported by two independent groups [7,8] (Figure 1). The pro-

cedures of these two methods are largely similar. They both
use the m1A antibody to enrich m1A-modified mRNA frag-
ments and take advantage of the characteristics of m1A to

induce mismatch or truncation during the RT process. How-
ever, there are also differences between these two methods.
Dominissini et al. use Dimroth rearrangement to change

m1A to m6A and then analyze m1A sites based on mismatch
rates. Li et al. use E. coli AlkB to demethylate m1A to normal
A and then calculate m1A sites based on truncation position.
The resolution of the first generation sequencing method is

around 130 nucleotides [7,8]. To identify m1A sites more pre-
cisely for a more accurate picture of m1A distribution,
researchers have recently developed the second-generation

m1A sequencing method.
A highly processive reverse transcriptase thermostable

group II intron reverse transcriptase (TGIRT) is used in the

second-generation m1A sequencing method to optimize the
RT step [9,10] (Figure 1). TGIRT exhibits excellent read-
through efficiency and relatively high mutation frequency at
the site of m1A, resulting in a higher signal-to-noise ratio for

detecting the precise position of m1A, and therefore achieving
a single-base resolution.
Using the second-generation m1A sequencing method,
Li et al. [9] identified 740 m1A sites in the transcriptome of
293 T cells, including 418 and 55 sites found in mRNA and

lncRNA transcripts, respectively. The majority of these m1A
sites in mRNA are within the 50 UTR, which agrees with the
previous findings [7,8]. Interestingly, Li et al. find 24 m1A sites

at the first nucleotide (cap+1) and three sites at the second
nucleotide (cap+2) of 50 end of the transcripts. Ribosome pro-
filing demonstrates that sites in the 50 UTR and cap+1 posi-

tion, but not those in the CDS or 30 UTR, are correlated
with higher translation efficiency. This observation that there
is a correlation between m1A sites in the 50 UTR and transla-
tion efficiency is in agreement with a previous report [7].

According to the RNA location, writer enzyme involved,
and sequence-structural features, Li et al. divide the m1A sites
in mRNA transcripts into three categories. These include

tRNA methyltransferase 6/61A (TRMT6/61A)-dependent
m1A sites in nuclear-encoded mRNAs (53 sites),
TRMT6/61A-independent m1A sites in nuclear-encoded

mRNAs, and m1A sites in mt-encoded mRNAs (22 sites).
TRMT6/61A-dependent m1A sites are barely enriched in the
50 UTR and conform to a GUUCRA tRNA-like motif and

T-loop-like structures. m1A sites in mt-mRNAs are mainly
located in CDS, and play a role in inhibiting mitochondrial
translation. Among the ten m1A-modified mt-RNAs, m1A
modifications on 5 mt-RNAs are installed by mt-tRNA

methyltransferase TRMT61B. Would the random mismatches
occurring during the RT process of TGIRT yield false positive
results? Li et al. used a method called reverse calculation to test

this possibility. They take the sample of demethylase (�)
(i.e., m1A) as background and the sample of demethylase
(+) (i.e., A) as signal to call m1A peaks. As a result, they have

called 17 peaks, confirming the high accuracy of TGIRT
enzyme. Using primer extension assay, they also verify several
m1A sites in mt mRNA, confirming again the authenticity and

accuracy of their method [9].
Surprisingly, about the same time, another group adopted a

similar approach but reached a very different conclusion [10].
Safra et al. identified only 15 m1A sites in mRNAs and

lncRNAs, with 9 in cytosolic mRNAs, 1 in cytosolic lncRNAs,
and 5 in mt-mRNAs. The 10 m1A sites in cytosolic transcripts
are installed by TRMT6/61A, whereas one m1A site in mt-

mRNA ND5 is methylated by TRMT10C. They also find that
m1A within 50 UTR or CDS of cytosolic mRNAs leads to
translational repression, indicating that m1A might be related

to ribosomal scanning or translation.
These two studies share some similar findings, while dis-

agreement arises in terms of the number of m1A sites in human
mRNAs. Safra et al. suggest that m1A is a rare modification in

human mRNAs based on their observation that only a dozen
m1A sites have been identified using their method [10]. In con-
trast, Li et al. have identified hundreds of m1A sites, and thus

they consider m1A a prevalent modification in human mRNAs
[9]. Why do the numbers of m1A sites identified in these two
studies differ so much? As speculated in the technology pre-

view [19], differences in experimental procedures may confer
differences in the quality of sequencing datasets. For instance,
1) compared to AlkB demethylation, the alkaline conditions

used for Dimroth rearrangement might affect RNA integrity
and rearrangement efficiency of m1A to m6A; 2) a competitive
elution step at m1A antibody immunoprecipitation is omitted
in [10], together with the lack of optimization of the RT step



Figure 1 Schematic outline of the two generations of m1A sequencing methods

RT, reverse transcription; TGIRT, thermostable group II intron reverse transcriptase.
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of TGIRT; 3) a random 10-nt barcode (unique molecular iden-
tifier, UMI) in the DNA 30-adaptor is used in [9] to remove
repetition caused by PCR and improve the accuracy of detec-

tion, while lack of UMIs could lead to trouble in data analysis
and mutation rate calculation [10]. In addition, the lower num-
ber of raw sequencing reads in the study [10] could also explain

the fewer m1A sites identified.

m
1
A writers: m

1
A methyltransferases

tRNA m1A methyltransferase (MTase) has been extensively
studied, since m1A was first found in tRNA. Given m1A58 is
dominant and conserved across the three domains of life, stud-

ies of tRNA m1A MTases started from looking for m1A58
MTase.

tRNA m1A58 MTase was initially characterized using par-

tially purified protein fractions from bovine liver, which exhi-
bits m1A MTase activity in vitro toward E. coli tRNA2

Glu

[20]. The genes encoding m1A58 MTase were firstly identified

in Saccharomyces cerevisiae [21]. The S. cerevisiae m1A58
MTase comprises two subunits, tRNA adenine-N1-
methyltransferase non-catalytic subunit and tRNA adenine-
N1-methyltransferase catalytic subunit, encoded by two

essential genes Trm6 and Trm61, respectively [21]. Trm61 is
responsible for AdoMet-binding and catalytic function as an
enzyme, while Trm6 is critical for tRNA binding [22]. The

purification and characterization of the m1A58 MTase from
S. cerevisiae [21,22] has facilitated the identification of other
m1A58 MTases from humans and other organisms. In eukary-

ota, m1A58 MTase consists of Trm6 and Trm61 orthologs,
whereas prokaryotic m1A58 is installed by a single protein
encoded by orthologs of Trm61 [23]. TRMT61A and TRMT6

are the human othologs of yeast Trm61 and Trm6, respec-
tively, which are responsible for m1A58 modification of cyto-
plasmic tRNAs [24] (Figure 2).
Figure 2 The methylation and demethylation of m
1
A in tRNA and mR

In nucleus, m1A modifications in pre-tRNA and specific pre-mRNA ar

and erased by AlkB homolog proteins ALKBH1 and ALKBH3, respec

methylated by mt-tRNA m1A methyltransferase TRMT61B and TRM
Human mt-tRNAs are known to contain m1A at positions
9 and 58 [24], which are catalyzed by TRMT10C and
TRMT61B, respectively [25,26] (Figure 2). In addition, m1A

is also found at position 1322 of 28S rRNA, which is catalyzed
by the human nucleolar protein nucleomethylin (NML; also
known as RRP8) [27].

m1A is present in human nuclear-encoded mRNA and mt-
mRNA [9]. tRNA m1A MTases are found to be able to write
m1A in some mRNA transcripts as well. For instance,

TRMT6/61A can install m1A sites within a GUUCRA
tRNA-like motif with T-loop-like structure in some nuclear
mRNAs, whereas TRMT61B methylates half of the identified
m1A sites in mt-mRNA transcripts [9] (Figure 2). In addition,

TRMT10C can add m1A at the 1374 position of mt-mRNA
ND5 [10] (Figure 2). Apparently, more m1A mRNA MTases
may be identified in future.

m
1
A erasers: m

1
A demethylases

m1A is discovered to be the second reversible RNA
modification. The first reversible RNA modification, m6A, is
demethylated by two AlkB family proteins, i.e., fat mass and
obesity-associated (FTO) and ALKBH5 [28,29]. Similarly,

two AlkB family proteins ALKBH3 and ALKBH1 have been
found to demethylate m1A [8,13] (Figure 2).

E. coli AlkB is an FeII/a-ketoglutarate (a-KG)-dependent

dioxygenase that repairs N-alkylated DNA lesions [30,31]. In
mammals, nine homologs of AlkB, i.e., ALKBH1-ALKBH8
and FTO, have been identified [32,33]. ALKBH3 and

ALKBH2 are known DNA-repair proteins that protect the
genomic integrity of mammalian cells [34,35]. Unlike
ALKBH2 that repairs DNA alkylation lesions in double-

stranded DNA (dsDNA), ALKBH3 repairs N-methylated
bases, for instance, m1A, m3C, N3-methylthymine (m3T), and
N1-methylguanine (m1G), in single-stranded DNA (ssDNA)
NA

e installed by tRNA m1A methyltransferase complex TRMT6/61A

tively. In mitochondrion, mt-tRNA and a subset of mt-mRNA are

T10C. mt, mitochondrial.
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or ssRNA [35]. ALKBH3 is coupled with the helicase activat-
ing signal cointegrator 1 complex subunit 3 (ASCC3) to
unwind dsDNA for dealkylation [36]. ALKBH3, also known

as prostate cancer antigen-1 (PCA-1), is highly expressed in a
few human cancers and promotes apoptotic resistance and
angiogenesis in prostate cancer and pancreatic cancer [37,38].

Due to its demethylation activity of m1A in vitro, expectedly,
ALKBH3 is confirmed to function as an m1A mRNA
demethylase in vivo [8]. Notably, a recent study reports that

ALKBH3 can function as a tRNA demethylase to promote
protein synthesis in cancer cells [39]. ALKBH3 displays
demethylation activities toward m1A, m3C, and m6A in tRNA
to enhance protein translation efficiency in vitro, whereas

knockdown of ALKBH3 increases m1A levels in tRNA and
decreases protein synthesis in cancer cells [39].

ALKBH1 shows the highest sequence homology with

E. coli AlkB and exhibits enzymatic activities toward a wide
range of substrates. For instance, ALKBH1 has weak
demethylation activity toward m3C in ssDNA [40]. ALKBH1

also acts as a histone dioxygenase during neural development,
which specifically removes the dimethylation of K118 or K119
on histone H2A [41]. However, Wu et al. did not observe the

demethylation activity on histone H2A in ALKBH1�/� embry-
onic stem cell lines. Rather, they found ALKBH1 is a DNA
N6-methyladenine (m6dA) demethylase that regulates epige-
netic gene silencing [42]. ALKBH1 also exhibits apurinic/

apyrimidinic (AP) lyase activity, cleaving DNA at abasic sites
via a b-elimination mechanism [43]. Interestingly, ALKBH1
has been recently identified as an m1A demethylase in cellular

tRNAs [13]. Knockdown of ALKBH1 increases the m1A
methylation level and the cellular level of the targeted tRNAi

Met.
These data indicate that the function of m1A58 is to stabilize

tRNAi
Met, leading to the attenuated initiation of protein trans-

lation. Demethylation of other targeted tRNAs by ALKBH1
affects translation elongation by decreasing the usage of

tRNAs in protein synthesis [13]. Furthermore, ALKBH1 can
hydroxylate 5-methylcytosine (m5C) to 5-formylcytosine
(f5C) in cytoplasmic tRNALeu and mt-tRNAi

Met, resulting in
an increase in mitochondrial protein translation [44,45]. The

diverse roles and enzymatic activities of ALKBH1 are in agree-
ment with its multiple cellular localizations in the nucleus,
cytoplasm, and mitochondria.
Roles of m
1
A in mRNA and tRNA

m1dA in DNA is considered as a form of DNA damage modifi-
cation, which leads to false base pairing and genomicmutations,
and thus it has to be repaired [46]. On the other hand, endoge-
nous enzymes are present to install the modification of m1A in

RNA and play important roles in tRNAs and mRNAs.
The idea that m1A58 might be vital to tRNA structure was

first proposed in studies on the 3-dimensional structure of

S. cerevisiae initiator tRNAi
Met [47]. Hydrogen bonds between

adenosines A20, A54, and A60 play important roles in stabiliz-
ing yeast tRNAi

Met. In this substructure, m1A58 is linked to

A54 and A60 via hydrogen bonds, which is also structurally
critical for stabilization [47]. The presence of m1A58 in all
eukaryotic initiator tRNAs implies that m1A58 is indispens-
able for tRNA structure and stability [12], which has been

experimentally validated in human cells [13]. Knockdown of
ALKBH1, the m1A58 eraser, increases the cellular level of
tRNAi
Met [13], supporting the function of m1A58 to maintain

a stable structure of tRNAi
Met. Furthermore, m1A58 in human

tRNA3
Lys is important for HIV replication. An 18-nucleotide

sequence in the HIV-1 genome (GenBank accession No.: NC
001802) is complementary to the last 18 nucleotides of human
tRNA3

Lys. This sequence can be used as the primer binding site

(PBS) for a virus to form a hybrid with tRNA3
Lys and synthe-

size its minus strand cDNA in the presence of reverse tran-
scriptase. To precisely reproduce the 18 nucleotides of

tRNA3
Lys in mature cDNA, m1A58 tRNA3

Lys is required to ter-
minate the reverse transcription process when the last 18
nucleotides of tRNA3

Lys have been copied [48–50].
As m1A is a newly-discovered modification in mRNA and

lncRNA, its function has not been extensively explored yet.
Up till now, only the function of m1A at CDS in mt-mRNA
has been confirmed in preventing the effective translation of

modified codons due to the Watson-Crick disruptive nature
of m1A [9,10]. Ribosome profiling data analysis suggest that
m1A at 50 cap and 50 UTR in nuclear mRNA might play a role

in promoting translation [9].

Conclusion and perspective

The reversible m1A modification in tRNA and mRNA uncov-
ers new mechanisms underlying the epitranscriptomic regula-
tion of gene expression. The presence and functions of m1A

in nuclear transcripts had been a subject of debate lately.
Hopefully, the discovery of new m1A writers, erasers, and
readers in the future will provide convincing evidence to help

resolving such argument. Although tRNA MTases have been
found to modify a subset of m1A sites in mRNA, the writer
responsible for the majority of m1A sites in mRNA is still

unknown. Since ALKBH3 is a demethylase of mRNA m1A,
it is interesting to investigate whether its function in cancers
is related to its demethylation activity toward mRNA m1A,
and whether other erasers for mRNA m1A exist. Analogous

to the positive charged cap m7G modification bound by a
specific RNA-binding protein, mRNA m1A could be recog-
nized by reader proteins as well [51]. Compared to the

extensively-studied m6A modification, our knowledge about
m1A in mRNA is limited. Functions of m1A in mRNA and
the underlying mechanisms need to be further investigated. It

is anticipated that m1A in mRNA and lncRNA might regulate
RNA processing or protein translation in various manners: 1)
m1A is specifically bound by a reader; 2) m1A controls RNA

structure to affect protein-RNA interaction; 3) m1A at CDS
affects the base-pairing between codon and anticodon. It
might be worth exploring whether m1A occurs and plays
important regulatory roles in other types of RNAs as well.
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