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Abstract: Fungal strains isolated from the rhizosphere of healthy Solanum lycopersicum were examined
to mitigate symptoms of drought and salinity stresses. The fungal strains were identified as Actino-
mucor elegans and Podospora bulbillosa based on their DNA sequencing and morphological analysis.
Additionally, the fungal strains were assayed for a number of plant growth promoting traits and abi-
otic stresses on solid media. Moreover, a greenhouse experiment was conducted and tomato seedlings
were treated with 25% PEG or 1.5% NaCl for 12 days, and the impact of plant growth promoting fungi
(PGPF) on tomato seedling performance under these conditions was examined. PGPF application
raised the survival of the stressed tomato plants, which was evidenced by higher physiological and
biochemical processes. The PGPF-inoculated plants exhibited higher chlorophyll, carotenoid, protein,
amino acid, antioxidant activities, salicylic acid, glucose, fructose, and sucrose contents, and showed
lower hydrogen peroxide, and lipid metabolism relative to control plants under stress. Analysis using
gene expression showed enhanced expression of SlF3H gene and reduced expression of SlNCED1,
SlDEAD31, SlbZIP38, and SlGRAS10 genes following PGPFs application. Overall, the outcomes
of this study elucidate the function of these fungal strains and present candidates with potential
implementation as biofertilizers and in promoting plant stress endurance.

Keywords: lipid metabolism; hydrogen peroxide; amino acid; antioxidant enzymes; sugar; phytohor-
mone; salicylic acid

1. Introduction

Plants, as sessile organisms in nature, are continuously exposed to myriads of environ-
mental stresses. As a consequence, plants have evolved arrays of adaptive mechanisms such
as hormone regulation, changing morphological structure, osmotic regulation, and scaveng-
ing mechanisms to acclimatize to detrimental conditions [1]. Environmental stresses in the
shape of extreme temperature, salinity, chill, flood, and water deficit severely impair plant
performance and development and restrain plant production [2–5]. Salinity is a devastating
ecological and agronomical matter, which has been magnified by the intensive salinization
of lands [6]. Variable intensities of salt cause photosynthetic inhibition, nutrient disorder,
oxidative injury, membrane incompetence, enzyme damage, premature senescence, and
metabolic toxicity [7,8], which interferes with all growth stages, comprising seed germi-
nation, seedling formation, and fertility ratio [9]. Drought, known as water stress, is one
of the serious challenges to crop production around the world [7]. It has been anticipated
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that water stress prevalence and intensity will surge in diverse zones in the future due to
global climate change, deforestation, and urbanization [10,11]. This abiotic stress negatively
influences the world’s food security, and its impact has rapidly been accentuated following
the decreased approachability of surface water resources [12,13].

The rhizosphere region around plants’ roots has a high diversity of microorganisms
including beneficial and pathogens [14]. Plant growth-promoting fungi (PGPF) are a diverse
group of nonpathogenic fungi that are associated with plants and have beneficial effects on
plants [15]. They usually colonize the root system to improve growth, development, and
protection [16]. Extensive research data have shown that PGPF can produce plant growth
regulators, solubilize phosphate, mobilize nutrients, solubilize metal, and produce organic
acid and extracellular enzymes [17–19]. Moreover, PGPF has the ability to detoxify and
fasten the degradation of toxic compounds in soils that have harmful effects on plants [19]
and confer plant tolerance to harsh environmental conditions such as salinity, drought, and
flooding [20].

Tomato (Solanum lycopersicum L.), is one of the top-produced vegetables with high
economic value in the world [21]. Tomato is a great source of phytochemicals and nutrients
including vitamins, minerals, and antioxidants, which have been connected to numerous
health benefits [22]. However, tomato is not classified as a resistant plant in reaction to many
abiotic stresses and its production has been drastically reduced by adverse environmental
conditions, in particular drought and salinity [23].

Actinomucor elegans (order Mucorales), a fast-growing and enzyme-producing fungus,
was earlier isolated from soil samples [24]. This fungal species is known for its connection
with the production of soy-based products, providing flavor and texture to food [25].
Similarly, Podospora bulbillosa belongs to the order Sordariales. Fungi belonging to this order
are a famous source of secondary metabolites with potential beneficial applications. They
are commonly found in soil and other habitats such as wood, animal dung, or herbaceous
plants [26]. Despite some knowledge available about these fungal species, no reports exist
on their ability to mitigate salinity and drought stress in tomatoes or other plants.

Due to the fact that climate change has increased the frequency and intensity of
varied abiotic stresses, it is crucial to provide crops with multiple stress endurance to
reduce the pressure of environmental changes and fulfill the demand of the rapid growth
of the human population. It was hypothesized that Actinomucor elegans and Podospora
bulbillosa could promote water deficit and salinity endurance in tomato. Hence, this
study was conducted to investigate whether the application of A. elegans and P. bulbillosa
could improve recovery ability and support the growth of tomatoes under selected abiotic
stresses. Specific objectives of the study include: (1) to investigate the ability of A. elegans
and P. bulbillosa to support tomato growth under salinity and drought stresses; (2) to assess
the impacts of A. elegans and P. bulbillosa applications on varied physiochemical traits such
as agronomic attributes, antioxidant operations, amino acid contents, and phytohormone
content in drought and salinity-stressed plants; (3) to clarify the regulatory functions of
A. elegans and P. bulbillosa in tomato plants under normal growth/stress conditions; and
(4) to authenticate our physiochemical results through the expression patterns of varied
stress-responsive genes including SlF3H, SlNCED1, SlDEAD31, SlbZIP38, and SlGRAS10.

2. Materials and Methods
2.1. Sampling of Rhizosphere Soil and Isolation of Rhizospheric Fungi

Soil samples were collected from the rhizosphere zone of tomato plants grown on
an agricultural farm located in Gunwi-gun district (36◦06′48.5′′ N 128◦38′26.4′′ E) (Daegu,
South Korea). Samples were collected from randomly chosen healthy tomato plants. The
collected samples, comprising roots and root-adhered soil, were subjected to serial dilution
for the isolation of fungi following a method described previously [27,28]. Root samples
were vortexed at high speed (90 s) to remove adhered soil from the root. The collected
adhered soil was subjected to serial dilution. Moreover, root samples were vortexed
in sterile distilled water (2 times) and surface-sterilized with 1.6% sodium hypochlorite
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(16 min) and 95% ethanol (1 min), followed by three times washing with sterile distilled
water. After that, root samples were macerated in sterile distilled water using a sterile
pestle and mortar, diluted and 100 µL of it was added to the prepared media and incubated
at 27 ◦C for 7 days. Finally, the pure cultures of isolated fungi were preserved on potato
dextrose agar (PDA) slants and used for further studies.

2.2. Evaluation of Fungal Strains for Plant-Growth Promotion Activities

Selected fungal strains were screened for some plant growth-promoting properties.
Production of indole-3-Acetic Acid (IAA) by fungal strains was evaluated by growing the
strains in a medium amended with/without L-tryptophan (5 mM) [29]. After incubation
(48 h, 27 ◦C), Salkowski’s reagent (4 mL) was added to supernatant (1 mL) and incubated
in the darkness for 30 min. The development of pink to red color demonstrates IAA
production by fungal strains. Chrome azurol S (CAS) agar medium was used to examine
siderophore production by the fungal strains [30]. The reaction was contemplated positive
when a yellow-orange halo surrounding the fungal colony emerged as a result of the iron
removal from CAS by the siderophore. To examine ammonia production, the fungal strains
were grown in peptone broth for 48–72 h at 27 ◦C. Afterward, Nessler’s reagent was added
to the fungal suspension and the emergence of yellow to brown color confirmed ammonia
production [29].

2.3. Assessment of Fungal Strains for Stress Tolerance under Laboratory Condition

A diverse range of abiotic stress tolerance tests (salinity, drought, and pH) was per-
formed on different levels with a fresh culture of the isolated fungi. The unaltered medium
served as a control. Salinity tolerance stress was checked by growing the fungal strains on
the PDA media, which was amended with diverse concentrations (0.5%; 0.086 M, 2.5%;
0.43 M, 5%; 0.86 M, 7.5%; 1.29 M, and 10%; 1.72 M w/v) of sodium chloride (NaCl). The
plates were incubated for 7 d at 25 ± 2 ◦C. Tolerance to drought stress was examined
by observing the growth of fungal strains on PDA plates supplemented with various
osmotic potentials (−0.05, −0.15, −0.3, −0.49, and −0.73 MPa) of polyethylene glycol
(PEG 6000 Da) [31]. The pH resistance of fungal strains was evaluated on a PDA medium
amended with various pH regimes (2, 5, 8, and 12) at 25 ◦C for 7 d.

2.4. Molecular Identification and Phylogenetic Analysis of the Fungal Strains

Genomic DNA was extracted from fresh fungal cultures (seven days old) following
the protocol described previously [32]. Molecular identification was performed on the
basis of fungal internal transcribed spacer (ITS) rDNA for Actinomucor elegans and (ITS)
rDNA + LSU for Podospora bulbillosa. Amplification of fungal ITS and LSU regions was
conducted using the BioFACT™ 2X Multi-Star PCR Master Mix (BIOFACT, Daejeon, Korea)
and a combination of ITS1/ITS4 and LR7/LR0R, respectively [33–35]. PCR products were
examined for the expected size on 1% agarose gel and sequenced by SolGent Co., Ltd.
(Daejeon, Korea). The sequences of the fungal strains (PGPF1 and PGPF2) reported in
this study were submitted to GenBank. Phylogenetic analyses were implemented using
the RAxML GUI v.1.3 [36] and a Phylogenetic tree was constructed using FigTree v. 1.4.0
(http://tree.bio.ed.ac.uk/software/figtree/, accessed on 11 May 2022).

2.5. Effect of the Fungal Strains on Tomato Growth under Drought, and Salinity

Seeds of tomato, Solanum lycopersicum (rendered by Danong Co., Ltd., Namyangju,
South Korea) were surface-sterilized with 70% ethanol (3 min) and 1% sodium hypochlorite
(10 min), followed by four times washing with sterile distilled water. Seeds were sown in pot
trays containing sterilized horticultural soil (pH ~ 7, and EC ≤ 1.2) (Shinsung Mineral Co.,
Ltd., Daegu, Chungcheongbuk-do, Republic of Korea). Soil sterilization was carried out by
autoclaving at 15 lbs/121 ◦C for 3 h. Seedlings were pre-grown under standard greenhouse
conditions (24 ± 2 ◦C, 70% relative humidity, and 14 h/10 h light/dark regime). When
the germinated seeds had grown for three weeks, tomato seedlings with uniform growth
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were used to perform varied treatments (Table 1). One plant per pot was allowed and
transplanted to a pot containing sterilized soil. Before stress treatments, they were divided
into three groups: control, PGPF1, PGPF2, and all groups were treated equally (50 mL/pot).
The control group was irrigated daily only with sterile distilled water, while the PGPF1
and PGPF2 groups were irrigated with chosen fungal suspensions for 12 days. Briefly, the
inoculum suspension was prepared from 7-day-old cultures of the fungal strains based
on a previously described method by Zhang, et al. [37]. The spore density was examined
with a hemocytometer, and the final suspension (1.0 × 108 spore/mL) was maintained at
4 ◦C. Then, PGPF treated and untreated seedlings were separated into different groups
and received various treatments including 1.5% sodium chloride (1.5% NaCl) and 25%
polyethylene glycol 6000 (25% PEG6000; −0.73 Mpa) for 12 days (50 mL/pot). In each case,
tomato seedlings were tested for each treatment in five replicates. Eventually, tomato leaves
(third or fourth leaf from the growing tip) were taken from 47-day-old seedlings (between
9:30 and 11:00 a.m.), and flash-frozen in liquid nitrogen prior to maintaining at −80 ◦C.

Table 1. Experimental work plan.

Symbol Treatment

Cont irrigated with sterile distilled water
PGPF1 irrigated with Actinomucor elegans
PGPF2 irrigated with Podospora bulbillosa

Dr irrigated with 25%PEG (−0.73 Mpa)
Dr + PGPF1 irrigated with 25%PEG (−0.73 Mpa) + Actinomucor elegans
Dr + PGPF2 irrigated with 25%PEG (−0.73 Mpa) + Podospora bulbillosa

S irrigated with 1.5% NaCl
S + PGPF1 irrigated with 1.5% NaCl + Actinomucor elegans
S + PGPF2 irrigated with 1.5% NaCl + Podospora bulbillosa

2.6. Growth Parameter and Photosynthetic Pigment Assessment

At the completion of the treatment period, varied agronomic traits were measured to
investigate the influence of each treatment on the seedlings. The following measurements
consisted of plant height, root length, stem diameter, leaf area, plant fresh/dry weight,
and root fresh/dry weight, which were recorded at 12 days post-treatment and compared
with control seedlings. Plant height and root length were measured using a ruler. A
digital Vernier caliper was used to measure stem diameter, leaf length, and leaf width.
Aboveground parts and roots were thoroughly cleaned and oven-dried at 60 ◦C for 48 h to
determine their dry weights.

Chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoid were estimated in tomato
leaves using a method by Bharti, et al. [38], Pan, et al. [39]. Photosynthetic pigments were
extracted from fresh tomato leaves with 80% acetone via centrifugation (10,000 rpm, 10 min).
The spectral absorbance of the supernatant was determined at 663, 646, and 470 nm with a
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Estimation of Salicylic Acid (SA) Content

Briefly, SA extraction was carried out by adding 80% ice-cold methanol (0.5 mL) to a
freeze-dried sample (0.1 g) and shaking at 4 ◦C for 30 min [40]. Afterward, the solution
was centrifuged (12,000 rpm, 30 min, 4 ◦C) and the collected supernatant was used for SA
quantification via high-performance liquid chromatography (HPLC).

2.8. Examination of Amino Acid Composition

Then, 50 mg of freeze-dried sample were macerated with an acidic mixture comprising
2 mL hydrochloric acid (6 M HCl), 1 mL anhydrous trifluoroacetic acid (TFA), and 0.5%
2-mercaptoethanol (2-ME). Hydrolysis was done for 40 min at 170 ◦C under N2 in sealed
ampules [41]. The obtained hydrolysate was dried out with an evaporator, dissolved
in distilled water (1 mL), and centrifuged (12,000 rpm, 2 min, 4 ◦C). The amino acid
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composition was evaluated with an Amino Acid analyzer (Hitachi High-Technologies
Corporation, Tokyo, Japan).

2.9. Determination of Soluble Protein and Sugar Concentrations

Estimation of protein concentration in tomato leaves was carried out according to
the described procedure of Bradford [42], following minor modification as indicated by
Kazerooni, et al. [43]. The leaf tissues were homogenized in 80% (v/v) ethanol and the
extraction procedure for soluble sugar was carried out following the protocol of Zhu,
et al. [44]. The obtained extraction was dried and the dehydrated remnant was dissolved
in 50% acetonitrile and preserved at −20 ◦C. The extracts were passed through a filter
(0.45 µm) before HPLC (high-performance liquid chromatography) injection (Millipore Co.,
Waters Chromatography, Milford, MA, USA).

2.10. Enzyme Assay in Tomato Plants

The superoxide dismutase (SOD) and catalase (CAT) enzymes were extracted by
the defined method by Du, et al. [45]. Polyphenol oxidase (PPO) and peroxidase (POD)
contents were ascertained in plant leaves using Catechol (50 mM) and pyrogallol (50 mM),
respectively, based on the protocol proposed by Soffan, et al. [46]. The procedure of
Zhou, et al. [47] was used for the determination of flavonoids and DPPH (2,2-diphenyl-
1-picrylhydrazyl) activity. The absorbance of the resulting mixtures was read at specific
wavelengths by a spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.11. Detection of Hydrogen Peroxide (H2O2) and Malondialdehyde in Tomato Plants

The method described by Batista-Silva, et al. [48] was followed to measure hydrogen
peroxide content (H2O2) in plant extracts. Briefly, freeze-dried plant samples (30 mg) were
dissolved in 1 mL of 0.6% TBA (thiobarbituric acid) in 10% TCA (trichloroacetic acid).
Afterward, the mixture was heated (100 ◦C, 15 min) and centrifuged (12,000 rpm, 20 min).
Then, the supernatant (20 µL) was mixed with 100 mM phosphate buffer (200 µL) and 1%
potassium iodide (80 µL). Eventually, the mixture absorbance was recorded at 390 nm by a
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

The amount of lipid peroxidation was estimated by referring to the malondialdehyde
(MDA) content in tomato plants. Leaf samples (0.2 g) of each treatment were homogenized
in 1.0% TCA (4 mL) and centrifuged at room temperature (12,000 rpm, 5 min). Then,
1 mL of supernatant was added to 20% TCA (4 mL) containing 0.5% TBA (thiobarbituric
acid). The mixture was heated using boiling water (95 ◦C, 30 min), and then cooled in an
ice bath (10 min). Subsequently, the mixture was centrifuged (12,000 rpm, 10 min) and
the supernatant absorbance was recorded at 532 and 600 nm with a spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA).

2.12. Quantification of Nutrient Content in Tomato Plants and Fungal Mycelia

Plants grown under varied treatments were freeze-dried and processed into powder
to determine their nutrient contents. Plant samples were prepared based on the described
method by Choi, et al. [49]. Briefly, the powdered sample was digested in nitric acid
(0.6 mL) in a glass test tube at 120 ◦C for 2 h followed by additional digestion in 60%
HClO4 (0.4 mL, 150–180 ◦C, 2 h). The resulting sample was cooled to room temperature
and diluted in Nanopure water (5 mL). Moreover, fungal strains were grown in potato
dextrose broth containing 1.5% sodium chloride (1.5% NaCl) and 25% polyethylene glycol
6000 (25% PEG6000). After that, the obtained fungal mycelia were processed for nutrient
analysis [50]. Eventually, sodium (Na), potassium (K), phosphorus (P), and calcium (Ca)
contents were measured in plant and fungal mycelia with an inductively coupled plasma
mass spectrometer (Optima 7900DV, Perkin-Elmer, Akron, OH, USA).
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2.13. RNA Isolation and Gene Expression by Quantitative Real-Time PCR

Total RNA was extracted from the tomato leaves receiving various treatments using
the Trizol reagent (Sigma-Aldrich Inc., St. Louis, MO, USA) [51]. RNA quality and quantity
was checked by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, USA). The RNA was reverse transcribed to cDNA and used for quantitative real-
time PCR (qRT-PCR) assay. For each sample, 1 µg of total RNA was used to generate
cDNA by employing a BioFACT RT-Kit (BIOFACT, Daejeon, Korea), and qRT-PCR was
performed on an Illumina’s Eco Real-Time PCR System (llumina, San Diego, CA, USA). The
relative expression of stress-related genes was detected by qRT-PCR employing the primers
described in Table S1. We examined the expression patterns of varied genes including
SlF3H [52,53], SlNCED1 [54], SlDEAD31 [55], SlbZIP38 [39], and SlGRAS10 [56].

2.14. Data Analysis

SAS statistical software (version 9.4, SAS institute, Cary, NC, USA) was employed
to evaluate the data via ONE-way analysis of variance (ANOVA) by examining the effect
of the two fungal strains in improving growth, photosynthesis, and other parameters in
tomato plants under stress conditions. Tukey’s test at p < 0.05 was used to define substantial
contrasts among treatments. Meaningful differences are depicted by varied letters above
the bars in each figure. Graphs were portrayed with Origin Pro (version 9.85, Northampton,
MA, USA). The data exhibited are means of five replicates for treatments and control.

3. Results
3.1. Phylogenetic Analysis and Plant Growth-Promoting Traits of Fungal Strains

The ITS tree for Actinomucor and related taxa consisted of 17 taxa including Umbelopsis
dimorpha (CBS 110039) as the out-group taxon. The Actinomucor isolate (PGPF1, GenBank
accession for ITS: ON817258) obtained in this study clustered with previously published
species of Actinomucor elegans, with 100% ML support (Figure 1). The ITS + LSU tree for Po-
dospora and related taxa in Sordariaceae consisted of 15 taxa including Chaetomium globosum
(CBS 160.62) as the out-group taxon. The Podospora isolate (PGPF2, GenBank accession for
ITS: ON817257, LSU: ON817270) obtained in this study clustered with previously published
isolates of Podospora bulbillosa (Figure 2).
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Plant growth-promoting traits such as IAA and ammonia productions were found to
be positive for both fungal strains (Figure S1). However, the fungal strains were found to
be negative for siderophore production.

3.2. In-Vitro Resistance of Fungal Strains to Drought, Salinity, and pH

The fungal strains were evaluated for their capabilities to endure abiotic stresses by
examination of their growth under various levels of drought, salt, and pH. The fungal
strain PGPF1 was proved to be resistant to all the ranges of PEG concentrations (−0.05 to
−0.73 MPa) (Figure S2) while, the fungal strain PGPF2 was found to be sensitive to the PEG
concentration (−0.73 MPa). The strain PGPF1 was observed to be resistant against 0.5%,
2.5% and 5% NaCl concentrations and growing slowly at 7.5% and 10% NaCl concentrations
(Figure S2). Noticeable growth was detected in the presence of 0.5%, 2.5%, and 5% NaCl
concentrations for the strain PGPF2, whereas at 7.5% and 10% NaCl concentrations the
growth was absolutely eliminated for this strain. Thereby, we can affirm that the strain
PGPF2 can contribute to tolerating salt stress to a specific extent. Furthermore, this study
revealed that strain PGPF1 was able to endure pH in variable ranges (2–12 pH), However,
strain PGPF2 was growing slowly at some pH ranges (2 and 12 pH) compared to strain
PGPF1 (Figure S3).

3.3. Tomato Plants Response to PGPF1 (A. elegans) and PGPF2 (P. bulbillosa) Inoculants under
Varied Abiotic Stresses
3.3.1. Effect of PGPF on Plant Growth under Abiotic Stresses

The effect of PGPF1 and PGPF2 inoculations on tomato growth was studied in both
stress and non-stress environments. Drought and salinity stress caused a reduction in
several growth parameters compared to unstressed and un-inoculated tomato plants
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(Figures 3 and S4). A significant enhancement in the growth of PGPF1 and PGPF2 in-
oculated tomato was observed compared to un-inoculated tomato under both non-stress
and stress conditions. PGPF1 and PGPF2 treated plants recorded enhanced growth parameters
in terms of plant height and plant fresh weight. Plant height was improved by 24.34% (PGPF1)
and 35.02% (PGPF2) under drought, and 28.66% (PGPF1) and 31.28% (PGPF2) under salt
treatments, as compared to the related heights of un-inoculated stressed plants (p < 0.05)
(Figure S4A). PGPF-inoculated plants recorded higher plant fresh weight (PGPF1, 43.64%;
PGPF2, 61.19%) under drought and (PGPF1, 49.21%; PGPF2, 44.31%) under salt treatments, in
contrast to the plant fresh weight of the un-inoculated stressed plants (Figure S4F).
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Figure 3. Effects of PGPF inoculation on tomato plant (A–D) and root (E–H) growth under normal and
stress conditions after 12 days of treatment. Treatments: Cont (control), PGPF1 (Actinomucor elegans),
PGPF2 (Podospora bulbillosa), Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1
(Actinomucor elegans), Dr (25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5 sodium
chloride), S (1.5% sodium chloride) + PGPF1 (Actinomucor elegans), and S (1.5% sodium chloride) +
PGPF2 (Podospora bulbillosa).
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3.3.2. PGPF Modulates Photosynthetic Pigments under Abiotic Stresses

A marked influence of fungal inoculation as well as drought and salinity stresses
on photosynthetic pigments of tomato plants was observed (Figure 4A,B). A significant
enhancement in photosynthetic pigments (Chla, Chlb, and carotenoid) was detected in
stressed plants subjected to PGPF inoculations in comparison to the un-inoculated stressed
plants (Figure 4A). Similarly, PGPF-inoculated stressed plants demonstrated enhanced total
chlorophyll contents (Total Chl) in comparison to plants under stress conditions (Figure 4A).
A significant reduction in total chlorophyll contents was observed in un-inoculated plants
under both drought (26.90%) and salinity (43.59%) conditions. In contrast, PGPF-inoculated
plants exhibited an increase in total chlorophyll contents under drought (PGPF1, 23.76%;
PGPF2, 25.18%), and salinity (PGPF1, 16.49%; PGPF2, 30.92%) stresses in comparison to the
un-inoculated stressed plants (Figure 4A).
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Figure 4. Effects of PGPF inoculation on tomato plant photosynthetic parameters “chlorophyll a;
Chla, chlorophyll b; Chlb, total chlorophyll; total Chl, and carotenoid contents” under normal and
stress conditions after 12 days of treatment (A,B). Treatments: Cont (control), PGPF1 (Actinomucor
elegans), PGPF2 (Podospora bulbillosa), Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) +
PGPF1 (Actinomucor elegans), Dr (25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5%
sodium chloride), S (1.5% sodium chloride) + PGPF1 (Actinomucor elegans), and S (1.5% sodium
chloride) + PGPF2 (Podospora bulbillosa). Values are shown as the means ± SD (n = 5) and significant
differences at p < 0.05 (Tukey test) are indicated by different lowercase letters above the columns.

3.3.3. Salicylic Acid (SA) Metabolism in Response to PGPF Inoculations and Abiotic Stresses

Analysis of salicylic acid (SA) levels showed considerable SA reductions under drought
and Salinity stresses (Figure 5). Application of PGPF1 and PGPF2 on stressed plants
increased SA levels in comparison to the un-inoculated stressed plants. Among the stressed
plants, PGPF-inoculated plants showed noticeably higher levels of SA, that is, drought
(PGPF1, 49.57%; PGPF2, 46.05%), and salinity stresses (PGPF1, 37.13%; PGPF2, 30.94%)
compared to the un-inoculated stressed plants (Figure 5).
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over, 12 days after the application of PGPF1 and PGPF2 on stressed plants, amino acid 
contents (arginine, asparagine, glutamic acid, glycine, leucine, lysine, methionine, phenyl-
alanine, and proline) were increased compared to un-inoculated stressed plants (Figure 
6A–I). Under stress conditions, proline contents increased in PGPF-inoculated plants un-
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52.56%) stresses compared to un-inoculated stressed plants (Figure 6I).  

Figure 5. SA content in leaves of tomato plants grown under normal and stress conditions and
inoculated with PGPF for 12 days. Treatments: Cont (control), PGPF1 (Actinomucor elegans), PGPF2
(Podospora bulbillosa), Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1 (Actinomu-
cor elegans), Dr (25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5% sodium chloride),
S (1.5% sodium chloride) + PGPF1 (Actinomucor elegans), and S (1.5% sodium chloride) + PGPF2
(Podospora bulbillosa). Values are shown as the means ± SD (n = 5) and significant differences at
p < 0.05 (Tukey test) are indicated by different lowercase letters above the columns.

3.3.4. Effect of PGPF Inoculations and Abiotic Stresses on Amino Acid Content

Drought and salinity stresses caused obvious decreases in amino acid content in
tomato plants over 12 days (Figure 6A–I). They also reduced the proline contents by
44.93%, and 43.57%, respectively, in un-inoculated control plants. However, drought and
salt stresses could not negatively affect the proline contents in PGPF-inoculated plants.
Moreover, 12 days after the application of PGPF1 and PGPF2 on stressed plants, amino
acid contents (arginine, asparagine, glutamic acid, glycine, leucine, lysine, methionine,
phenylalanine, and proline) were increased compared to un-inoculated stressed plants
(Figure 6A–I). Under stress conditions, proline contents increased in PGPF-inoculated
plants under drought (PGPF1, 49.94%; PGPF2, 47.87%) and salinity (PGPF1, 46.41%; PGPF2,
52.56%) stresses compared to un-inoculated stressed plants (Figure 6I).
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hanced by 70.93% and 70.16% under drought and salt stresses, respectively, as compared 
with non-stressed plants. There was a significant change in the H2O2 content between un-
inoculated as well as PGPF inoculated plants under stress conditions (Figure 7A). Consid-
erable reductions in H2O2 contents were recorded in PGPF applied plants under drought 
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Figure 6. Changes in amino acid contents ((A) Arginine, (B) Asparagine, (C) Glutamic acid,
(D) Glycine, (E) Leucine, (F) Lysine, (G) Methionine, (H) Phenylalanine, (I) Proline) in leaves of
tomato plants grown under normal and stress conditions and inoculated with PGPF for 12 days.
Treatments: Cont (control), PGPF1 (Actinomucor elegans), PGPF2 (Podospora bulbillosa), Dr (25%
Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1 (Actinomucor elegans), Dr (25% Polyethy-
lene glycol) + PGPF2 (Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium chloride) +
PGPF1 (Actinomucor elegans), and S (1.5% sodium chloride) + PGPF2 (Podospora bulbillosa). Values are
shown as the means ± SD (n = 5) and significant differences at p < 0.05 (Tukey test) are indicated by
different lowercase letters above the columns.

3.3.5. Hydrogen Peroxide and Malondialdehyde Contents in Tomato Plants Subjected to
Varied Treatments

Marked increases were recorded in the hydrogen peroxide (H2O2) content when
plants were exposed to drought and salinity stresses (Figure 7A). H2O2 contents were
enhanced by 70.93% and 70.16% under drought and salt stresses, respectively, as compared
with non-stressed plants. There was a significant change in the H2O2 content between
un-inoculated as well as PGPF inoculated plants under stress conditions (Figure 7A).
Considerable reductions in H2O2 contents were recorded in PGPF applied plants under
drought (PGPF1, 75.85%; PGPF2, 73.63%), and salinity (PGPF1, 70.02%; PGPF2, 73.12%)
stresses (p < 0.05).
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Figure 7. (A) H2O2, and (B) Lipid peroxidation contents in leaves of tomato plants grown under
normal and stress conditions and inoculated with PGPF for 12 days. Treatments: Cont (control),
PGPF1 (Actinomucor elegans), PGPF2 (Podospora bulbillosa), Dr (25% Polyethylene glycol), Dr (25%
Polyethylene glycol) + PGPF1 (Actinomucor elegans), Dr (25% Polyethylene glycol) + PGPF2 (Podospora
bulbillosa), S (1.5% sodium chloride), S (1.5% sodium chloride) + PGPF1 (Actinomucor elegans), and S
(1.5% sodium chloride) + PGPF2 (Podospora bulbillosa). Values are shown as the means ± SD (n = 5)
and significant differences at p < 0.05 (Tukey test) are indicated by different lowercase letters above
the columns.

Application of drought and salinity stresses increased the malondialdehyde (MDA) lev-
els irrespective of the PGPF treatments (Figure 7B). MDA levels raised by 23.40% and 10.08%
under drought and salinity stress conditions, respectively. However, PGPF-inoculated
plants recorded lower MDA levels under drought (PGPF1, 26.12%; PGPF2, 28.51%), and
salinity (PGPF1, 5.59%; PGPF2, 5.44%) in comparison to un-inoculated plants under stress
conditions (p < 0.05).

3.3.6. Changes in Protein and Sugar Contents

Protein contents in tomato plants escalated upon PGPF (PGPF1, 17.18%; PGPF2, 7.22%)
applications as compared with un-inoculated plants. However, drought and salt-stressed
plants recorded a 12.47%, and 21.84% decrease in protein contents, respectively, compared
with the unstressed plants (p < 0.05) (Figure 8A). On the other hand, PGPF-inoculated
stressed plants recorded improvements in protein contents under drought (PGPF1, 22.08%;
PGPF2, 29.62%) and salinity (PGPF1, 26.40%; PGPF2, 26.03%) stresses as compared to the
un-inoculated stressed plants.

Under stress conditions, significant reductions in sucrose, fructose, and glucose levels
were observed in tomato plants (Figure 8B–D). For instance, drought and salt-stressed
plants recorded lower sucrose levels (drought, 35.47%; salt, 21.37%) in comparison to
non-stressed control plants (Figure 8B). However, sucrose, glucose, and fructose levels
were highest in PGPF applied plants in both non-stress and stress conditions. For example,
PGPF-inoculated stressed plants showed enhanced sucrose levels under drought (PGPF1,
37.81%; PGPF2, 50.39%) and salinity (PGPF1, 43.55%; PGPF2, 25.90%) stresses, compared
to that of un-inoculated stressed plants (Figure 8B).
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(Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium chloride) + PGPF1 (Actinomucor ele-
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± SD (n = 5) and significant differences at p < 0.05 (Tukey test) are indicated by different lowercase 
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ing DPPH (2,2-diphenyl-1-picrylhydrazyl), flavonoid, PPO (Polyphenol oxidase), and en-
zymatic antioxidants such as POD (Peroxidase), CAT (Catalase), and SOD (Superoxide 
dismutase) in the PGPF inoculated and un-inoculated plants under non-stress and stress 
conditions (Figure 9A–F). Tomato seedlings showed decreased DPPH activity under 
stress conditions, while seedlings inoculated with fungal strains demonstrated enhanced 
DPPH activity under stress conditions. For instance, DPPH activity significantly increased 
in PGPF1-inoculated plants by 74.84%, and 83.20% under drought and salinity stresses, 
respectively, as compared to the DPPH activity detected in un-inoculated stressed plants 
(Figure 9A).  

Figure 8. (A) Protein, (B) Sucrose, (C) Fructose, and (D) Glucose contents in leaves of tomato plants
grown under normal and stress conditions and inoculated with PGPF for 12 days. Treatments: Cont
(control), PGPF1 (Actinomucor elegans), PGPF2 (Podospora bulbillosa), Dr (25% Polyethylene glycol),
Dr (25% Polyethylene glycol) + PGPF1 (Actinomucor elegans), Dr (25% Polyethylene glycol) + PGPF2
(Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium chloride) + PGPF1 (Actinomucor
elegans), and S (1.5% sodium chloride) + PGPF2 (Podospora bulbillosa). Values are shown as the
means ± SD (n = 5) and significant differences at p < 0.05 (Tukey test) are indicated by different
lowercase letters above the columns.

3.3.7. The Activity of Non-Enzymatic and Enzymatic Antioxidants

In the current study, we evaluated the status of non-enzymatic antioxidants includ-
ing DPPH (2,2-diphenyl-1-picrylhydrazyl), flavonoid, PPO (Polyphenol oxidase), and
enzymatic antioxidants such as POD (Peroxidase), CAT (Catalase), and SOD (Superoxide
dismutase) in the PGPF inoculated and un-inoculated plants under non-stress and stress
conditions (Figure 9A–F). Tomato seedlings showed decreased DPPH activity under stress
conditions, while seedlings inoculated with fungal strains demonstrated enhanced DPPH
activity under stress conditions. For instance, DPPH activity significantly increased in
PGPF1-inoculated plants by 74.84%, and 83.20% under drought and salinity stresses, re-
spectively, as compared to the DPPH activity detected in un-inoculated stressed plants
(Figure 9A).
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losa), Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1 (Actinomucor elegans), Dr 
(25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium 
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In the case of flavonoids, a considerable reduction of flavonoid activity was evident 
in stressed plants. However, treatment with the fungal strains increased flavonoid activity 
in tomato plants under stress conditions (p < 0.05) (Figure 9B). Furthermore, the same 

Figure 9. Antioxidant contents ((A) DPPH (2,2-diphenyl-1-picrylhydrazyl), (B) flavonoid, (C) PPO
(Polyphenol oxidase), (D) POD (Peroxidase), (E) CAT (Catalase) and (F) SOD (Superoxide dismutase))
in leaves of tomato plants grown under normal and stress conditions and inoculated with PGPF
for 12 days. Treatments: Cont (control), PGPF1 (Actinomucor elegans), PGPF2 (Podospora bulbillosa),
Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1 (Actinomucor elegans), Dr
(25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium
chloride) + PGPF1 (Actinomucor elegans), and S (1.5% sodium chloride) + PGPF2 (Podospora bulbillosa).
Values are shown as the means ± SD (n = 5) and significant differences at p < 0.05 (Tukey test) are
indicated by different lowercase letters above the columns.

In the case of flavonoids, a considerable reduction of flavonoid activity was evident in
stressed plants. However, treatment with the fungal strains increased flavonoid activity in
tomato plants under stress conditions (p < 0.05) (Figure 9B). Furthermore, the same trend
was observed with PPO and POD activities, which reduced clearly under drought and
salinity stresses. Contrary to this, the stressed plants showed a substantial enhancement of
the PPO and POD activities following treatments with fungal strains (PGPF1 and PGPF2).
For example, PGPF2 treatment resulted in increased POD activity in drought (38.99%) and
salinity (46.95%) in the stressed plants (p < 0.05) (Figure 9D).
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Drought and salinity stresses caused a significant reduction in CAT and SOD activity
in tomato plants. However, the fungal strains were found to cause significant increase
in CAT and SOD activity in inoculated plants compared to un-inoculated stressed plants
(Figure 9E,F).

3.3.8. PGPF Modifies Nutrient and Sodium Contents in Tomato Plants

The concentration of Ca, K, P, and Na was determined in tomato plants in the absence
and presence of the fungal strains (PGPF1 and PGPF2) under non-stress and stress con-
ditions (Figure 10A–D). Increased Ca, K, and P contents were observed in the unstressed
plants inoculated with fungal strains compared to the relevant contents in control plants.
Moreover, PGPF-inoculated plants showed improved K and P contents and reduced Ca
content under stress conditions. Salt-stressed plants had accumulated higher contents
of Na compared with unstressed control plants. Interestingly, PGPF-inoculated plants
demonstrated lower Na accumulation compared to the plants under salt stress conditions
(Figure 10D). Na uptake by fungal mycelia is presented in Figure 11D; these results validate
the recovery role of PGPF1 and PGPF2. The removal efficiency of Na by fungal strains was
96.79% (PGPF1), and 96.0% (PGPF2).
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Figure 10. Nutrient contents ((A) Ca (Calcium), (B) K (Potassium), (C) P (Phosphorous) and (D)
Na (Sodium)) in leaves of tomato plants grown under normal and stress conditions and inoculated
with PGPF for 12 days. Treatments: Cont (control), PGPF1 (Actinomucor elegans), PGPF2 (Podospora
bulbillosa), Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1 (Actinomucor elegans),
Dr (25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium
chloride) + PGPF1 (Actinomucor elegans), and S (1.5% sodium chloride) + PGPF2 (Podospora bulbillosa).
Values are shown as the means ± SD (n = 5) and significant differences at p < 0.05 (Tukey test) are
indicated by different lowercase letters above the columns.
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3.4. Expression Pattern of Drought and Salinity Responsive Genes in Tomato Plants in Response to
Application of PGPFs and Abiotic Stresses

In the current experiment, SlbZIP38 transcription was induced and highly expressed
in tomato plants after drought and salt stresses as compared with unstressed plants. The
results indicate that the expression of SlbZIP38 was upregulated by both abiotic stresses.
When treated with PGPFs, SlbZIP38 transcripts were downregulated under drought and
salinity. The PGPFs implementation reduced SlbZIP38 expression under drought (PGPF1,
90.87%; PGPF2, 91.67%) and salt (PGPF1, 88.68%; PGPF2, 91.44%) stresses (Figure 12A).
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Figure 12. Real-time expression analysis of (A) SlbZIP38, (B) SlDEAD31, (C) SlF3H, (D) SlGRAS10,
and (E) SlNCED1 in leaves of tomato plants grown under normal and stress conditions and inoculated
with PGPF for 12 days. Treatments: Cont (control), PGPF1 (Actinomucor elegans), PGPF2 (Podospora
bulbillosa), Dr (25% Polyethylene glycol), Dr (25% Polyethylene glycol) + PGPF1 (Actinomucor elegans),
Dr (25% Polyethylene glycol) + PGPF2 (Podospora bulbillosa), S (1.5% sodium chloride), S (1.5% sodium
chloride) + PGPF1 (Actinomucor elegans), and S (1.5% sodium chloride) + PGPF2 (Podospora bulbillosa).
Values are shown as the means ± SD (n = 5) and significant differences at p < 0.05 (Tukey test) are
indicated by different lowercase letters above the columns.
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Quantitative RT-PCR analysis demonstrated that SlDEAD31 expression was promoted
apparently in stressed tomato plants. In addition, the expression of SlDEAD31 was affected
by PGPF treatments and downregulated under both stresses (Figure 12B). For instance,
PGPF1 implementation reduced SlDEAD31 transcripts by about 47.63%, and 37.16% under
drought and salinity stresses, respectively, in comparison to stressed plants alone.

To evaluate the effect of PGPF application on SlF3H, we examined the level of SlF3H
in tomato plants subjected to abiotic stresses and normal conditions (Figure 12C). During
unstressed conditions, variations were shown in the SlF3H gene expression in control
and PGPF-treated plants. The change was more pronounced in stressed plants. The
SlF3H expression dramatically declined in tomato plants following drought and salinity
treatments. Plants treated with PGPF displayed a rise in SlF3H expression as compared
to untreated stressed plants under drought (PGPF1, 86.60%; PGPF2, 84.80%), and salinity
(PGPF1, 87.29%; PGPF2, 84.74%).

As shown in Figure 12D, SlGRAS10 expression was relatively higher in drought and
salinity-stressed plants, by 84.64%, and 82.09% respectively, in contrast with the expression
discerned in the control plants. On the other hand, weak expression of SlGRAS10 was
recorded in PGPF-treated plants affected by abiotic stresses. SlGRAS10 was expressed at
a lower level in PGPF-treated plants under drought (PGPF1, 58.0%; PGPF2, 67.48%), and
salinity (PGPF1, 67.62%; PGPF2, 62.09%) (Figure 12D).

To confirm whether the expression of SlNCED1 was affected in tomato plants, we
thus analyzed its transcription pattern under normal and stress conditions. The results
showed that SlNCED1 expression level fluctuated under varied treatments (Figure 12E).
The expression of SlNCED1 increased sharply and was highest in drought (77.98%), and
salt (73.09%) stressed plants. Conversely, SlNCED1 expression declined to a low level after
the application of PGPF1 and PGPF2. The SlNCED1 expression was downregulated in
PGPF-treated plants under both drought (PGPF1, 52.95%; PGPF2, 64.38%), and salt PGPF1,
69.16%; PGPF2, 56.47%) stresses.

4. Discussion

Research in the last couple of years has shown that plant growth-promoting fungi
(PGPF) play an indispensable function in the modulation of plant acclimatization to en-
vironmental stresses [57]. This study focused on investigating the effects of Actinomucor
elegans and Podospora bulbillosa on tomato seedlings under stress and non-stress conditions.
PGPF-inoculated seedlings were found to be recovered, and both PGPFs enhanced drought
and salt endurance as noticed from the improved growth traits. Plant growth assessment
experiments using fungal strains demonstrated that the application of both fungi had
enhanced plant biometric parameters (height, lateral root branching, stem diameter, leaf
area, plant fresh/dry weight, and root fresh/dry weight) of unstressed/stressed seedlings
compared to stressed plants in the absence of the fungal strains. In addition, chlorophyll
and carotenoid contents were raised in the PGPF-treated plants. It should be noted that
our in vitro studies confirmed IAA and ammonia production by both fungal strains. It has
been confirmed that ammonia, as a main inorganic nitrogen source, improves plant growth,
influences genes involved in metabolic processes and scavenging of reactive oxygen species
(ROS), and triggers phosphorylation events that affect enzymes involved in amino acid and
protein synthesis [58]. Moreover, ammonia changes root system architecture by hindering
root elongation, inducing lateral root branching and root hair development [59]. Sun,
et al. [60] indicated that fungal-produced IAA can stimulate lateral root formation and
root hair development which led to increased nutrient absorption by the associated plant.
PGPF-inoculated plants exhibited enhanced K and P contents and alleviated Ca, and Na
contents relative to the effects detected in un-inoculated stressed plants. Calcium (Ca),
recognized as an essential second manager in plants, controls plant growth and responses
to abiotic stresses, pathogens, and mechanical wounds [61]. Moreover, calcium signals are
involved in numerous responses to plant hormones such as abscisic acid, jasmonic acid,
and gibberellic acid [62]. Overall, these improvements in non-stressed and stressed plants
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could be due to fungal metabolite production, elevated absorption of nutrients from the
rhizosphere, and the impact of obtained nutrients on varied biosynthetic pathways.

DEAD-box proteins are conserved RNA helicases that are associated with RNA
metabolism and have roles in varied cellular mechanisms such as plant growth, develop-
ment, and response to abiotic stresses [63,64]. It has been demonstrated that these proteins
take part in plant responses to abiotic stresses such as salt, drought, temperature, and
cold [63,65]. We explored the expression pattern of SlDEAD31 during tomato development
in response to drought and salinity stresses. Zhu, et al. [55] reported high expression of
SlDEAD31 in tomato plants exposed to salinity and drought stresses, which was consistent
with our findings. On the other hand, PGPF-inoculated plants showed reduced expres-
sion of SlDEAD31 under stress conditions. This could be due to the stress soothing effect
of PGPF.

Osmotic stress elicitation of ABA aggregation is a distinguished fact [13]. Abscisic
acid has extensive roles in plant growth, one of which is managing plant water balance and
response to stresses [66]. The expression of varied plant genes has been demonstrated to be
modulated by water deficit and salt stress. A considerable group of these gens is respon-
sive to ABA regulation as well [13]. Zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid
dioxygenase (NCED), and abscisic aldehyde oxidase (AAO) are the most ABA biosynthesis
genes [67,68]. Previous studies have shown that the endogenous concentration of ABA
in plants is enhanced via two distinct pathways [69]. 9-cis-epoxycarotenoid dioxygenase
(NCED) has been recognized as the primary pathway and key regulatory enzyme in ABA
biosynthetic pathway [68,70,71]. Evidence indicates that enhanced NCED expression level
improves ABA biosynthesis, raises ABA accumulation under abiotic stresses, and increases
stress endurance in plants [72–74]. In this study, SlNCED1 was rapidly induced by drought
and salinity stresses, which led to an elevated accumulation of ABA in stressed plants. On
the other hand, PGPF-inoculated plants showed reduced expression of SlNCED1 and sub-
sequently decreased ABA levels under stress conditions. Numerous studies have reported
reduced ABA levels in stressed plants associated with fungi [75–78]. It is reasonable to
hypothesize that PGPF (A. elegans and P. bulbillosa) repressed ABA-dependent transcription
factors and stimulated ABA-independent pathways to mediate stress responses and combat
abiotic stresses.

Salicylic acid, an intrinsically occurring phenolic compound, plays a role in several
plant physiological and metabolic responses, such as photosynthesis, flowering, root
initiation and growth, protection responses, seed germination, proline metabolism, and
respiration [72,79,80]. It has been shown that salicylic acid is primarily a phytohormone
associated with responses to abiotic stress and promotes plant tolerance to abiotic stresses
such as ozone, heat, salt, cold, drought, UV radiation, and metal [80–85]. Salicylic acid
works with the other plant hormones by triggering antioxidants and enzymes to suppress
varied abiotic stresses and increase plant tolerance to them [80]. In this study, we observed
enhanced salicylic acid production in PGPF-inoculated plants under non-stress and stress
conditions. Miura and Tada [86] reported that the cell redox reactions are modulated
by salicylic acid with reduced augmentation of reactive oxygen species (ROS). Reactive
oxygen species (ROS) mainly act as signal transduction molecules that manage varied
pathways throughout plant adaptation to stress [87]. Water deficit and salinity result in the
augmentation of considerable amounts of reactive oxygen species (ROS) generation [88]. At
excessive production, ROS are toxic and can induce oxidative damage, modify DNA, cause
membrane peroxidation and protein degradation, obstruct metabolic functions, actuate
program cell death, and hinder enzymes [89]. Indeed, we observed a higher accumulation
of H2O2 and MDA in stressed plants, which can be attributed to the unbalance rate of ROS
generation and elimination [90,91]. Moreover, analyses revealed that PGPF inoculation
influences the content of H2O2 and MDA and significantly reduced their accumulation
in stressed plants at later stages, which agrees with previous studies [92–95]. This ROS
reduction could be due to elevated salicylic acid production in PGPF-inoculated stressed
plants to modulate ROS accumulation, leading to decreased ROS content.
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The basic leucine zipper (bZIP) family is considered one of the biggest transcription
factor families in plants. Various studies have demonstrated that transcription factor
(bZIP) has an important role in plant responses to abiotic stresses [39,96,97]. It has been
confirmed that bZIP genes act in ABA-regulated responses to varied stresses such as
drought and salinity [96]. In this study, the expression of SlbZIP38 was strongly induced
by drought and salinity stresses and led to its accumulation. Pan, et al. [39] indicated that
enhanced upregulation of SlbZIP38 led to decreased drought and salinity endurance in
tomato plants. Moreover, they observed reduced chlorophyll and proline contents but
increased malondialdehyde content in stressed plants, which goes along with our results.
On the other hand, PGPF-inoculated plants exhibited repressed SlbZIP38 under stress
conditions. It is reasonable to assume that PGPF downregulated SlbZIP38 expression and
subsequently decreased ABA content, increased chlorophyll and proline contents and
reduced malondialdehyde content in plants subjected to drought and salinity stresses.

Plants are commonly confronted with an extensive range of harsh environmental
conditions such as salinity, drought, or heat. These stresses happen not one by one but
in combination and they may co-occur with assaults by varied pathogens [98]. Therefore,
plants have established sophisticated ways to evade or persist in the disastrous conse-
quences. The GRAS protein family (name derived from GAI, RGA, SCR) usually functions
as a transcription factor and plays a significant role under abiotic and biotic stresses [99].
The GRAS family genes have a role in plant growth, gibberellins signal transduction, shoot
meristem maintenance, and root radial organization [100–103]. Moreover, they manage
plant retorts to abiotic and biotic stresses [104–106]. We observed enhanced expression
of GRAS under drought and salinity stresses, whereas PGPF application reduced GRAS
accumulation in stressed plants. Habib, et al. [56] showed that reduced expression of GRAS
enhances tomato plant endurance to salt and drought stresses by improved chlorophyll
content, flavonoid biosynthesis, and ROS scavenging enzymes. In this study, PGPF (A. ele-
gans and P. bulbillosa) reduced GRAS expression in stressed plants which led to enhanced
chlorophyll and antioxidant activities. Consequently, theses physiological changes promote
the plant’s ability to endure under environmental stresses.

Stress occurrence, duration, and intensity are completely unpredictable and therefore
plants have devised procedures to sustain their growth, metabolism, and productivity in
response to environmental stresses [107]. To detoxify excess ROS and restore the redox
balance, plants trigger endogenous procedures that engage enzymatic and non-enzymatic
defense mechanisms [108,109]. In this study, the antioxidants’ function declined in stressed
plants but improved following the use of PGPF in stressed plants. It has been found
that plant colonization by fungal strains increases the efficiency of the host antioxidative
system by controlling the production or activity of varied antioxidants [110]. Ancreased
level of antioxidants is positively conformed to greater endurance and protection levels
against abiotic stresses. Caverzan, et al. [111] indicated that enhancement in antioxidant
activity and reduction in oxidative damage are closely connected. This rise in antioxidant
activity implies the important role of PGPFs in regulating plant responses to water deficit
and salinity by scavenging excessive ROS, alleviating oxidative harm, and ameliorating
endurance to oxidative stress.

Flavanone 3-hydroxylase (F3H) is a key enzyme that catalyzes a crucial stage in
flavonoid biosynthesis [112]. Previous studies have demonstrated that F3H not only
manages flavonoid quantities but also takes part in endurance to stresses [52,113]. To
evaluate the response of F3H to selected abiotic stresses, we evaluated the effects of drought
and salinity on its transcription pattern in tomato plants. We detected noticeable reduction
in F3H expression levels in salinity and drought-stressed plants. However, PGPF-inoculated
plants exhibited enhanced expression of F3H. Our biochemical and molecular analyses
showed that PFPF-inoculated plants displayed enhanced flavonoid content at the end of the
experiment. Meng, et al. [53] reported that F3H upregulation led to higher flavonoid content,
better growth/survival, and lower H2O2/MDA accumulation in stressed plants. Due to
performing as a ROS scavenging antioxidant, flavonoid assists plants to withstand varied
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abiotic stress conditions [111,114]. These findings suggest that PGPF upregulated F3H
expression and subsequently F3H induces flavonoid biosynthesis and increases tolerance
to drought and salinity stresses.

Sugars are crucial biomolecules working as the main carbon reservoir in plants [115].
They participate in varied physiological procedures such as growth, development, metabolism,
and reproduction [116]. They also function as osmolytes and sustain the osmotic capability
and turgor of plant cells during abiotic stresses [115]. Adverse environmental conditions
can dwindle leaf sugar content and as a consequence provoke physiochemical modifica-
tions [117]. In the present study, the soluble sugar content (glucose, fructose, and sucrose)
was high in tomato plants in presence of PGPF. A marked increase in glucose, fructose, and
sucrose was discerned in tomato seedlings inoculated with PGPF under non-stress and
stress conditions. Vergara, et al. [118] reported higher sugar content in rice plants inocu-
lated with dark septate fungus from order Pleosporales. It has been confirmed that the high
escalation of sugar in plants demonstrates an immensely protective mechanism against
oxidative damage caused by unfavorable conditions [119,120]. Therefore, this indicates
that A. elegans and P. bulbillosa had a noticeable influence on the sugar accumulation in
stressed seedlings, which act as an osmolyte to govern osmotic adjustments, scavenge ROS
and generate tolerance in plants.

Amino acids participate in the metabolism of varied secondary products in plants
to eliminate stress-caused damage in plants and bestow endurance in them [121]. The
findings from the current study showed reduced amino acid content in tomato under
abiotic stresses. The application of PGPF improved amino acid values in stressed seedlings
within the rehabilitation time. This amino acid augmentation may take part in several
processes [48,122]. It has been demonstrated that proline takes part as osmoprotecting
molecules in higher plants [123]. An increased level of proline was observed in PGPF-
treated seedlings in response to water stress and salinity which was in agreement with
previous studies [114,124]. This enhanced proline content could be the A. elegans and
P. bulbillosa strategy to confer protection from these stresses and reduce unfavorable effects
of free radical activity in stressed plants. It has been confirmed that the awakening of
proline biosynthesis ameliorates protein turnover, scavenges reactive oxygen species, and
helps plants to withstand abiotic stress [125–127]. Bettered proline content has been tightly
engaged in stabilized membrane and protein structure, minimized cell impairment, and
restored plant growth under environmental stress [128,129]. Our results suggest that PGPF
application generated enhanced amino acids, and eminently proline content to protect
plants from stress conditions.

5. Conclusions

The utilization of A. elegans and P. bulbillosa not only exacerbated tomato liveliness
under water deficit and salinity but also unquestionably actuated tomato tolerance to these
abiotic stresses. The potential of A. elegans and P. bulbillosa under abiotic generated stress
governed host growth by means of relieving water deficit and salinity escalation in tomato
plants. Likewise, A. elegans and P. bulbillosa execution transformed host biochemistry to
eliminate the disastrous consequences of abiotic stresses. In this report, water deficit and
salt stresses restrained some genes, albeit A. elegans and P. bulbillosa was apt for confronting
the repression consequence of drought and salt stresses and revived of varied repressed
genes. A. elegans and P. bulbillosa affected the expression of stress-related genes explicitly
SlbZIP38, SlDEAD31, SlF3H, SlGRAS10, and SlNCED1. Generally, the information provided
in this study demonstrated that A. elegans and P. bulbillosa take part in the modulation
of adaptive developmental responses to detrimental stresses. This makes A. elegans and
P. bulbillosa suitable candidates which potentially can be used to improve the agronomic
performance and adaptation of tomato and other important crops.
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