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Abstract

In a conceptual study of drug resistance we have used a preclinical model of malignant B-cell lines by combining drug
induced growth inhibition and gene expression profiling. In the current report a melphalan resistance profile of 19 genes
were weighted by microarray data from the MRC Myeloma IX trial and time to progression following high dose melphalan,
to generate an individual melphalan resistance index. The resistance index was subsequently validated in the HOVON65/
GMMG-HD4 trial data set to prove the concept. Biologically, the assigned resistance indices were differentially distributed
among translocations and cyclin D expression classes. Clinically, the 25% most melphalan resistant, the intermediate 50%
and the 25% most sensitive patients had a median progression free survival of 18, 32 and 28 months, respectively (log-rank
P-value = 0.05). Furthermore, the median overall survival was 45 months for the resistant group and not reached for the
intermediate and sensitive groups (log-rank P-value = 0.003) following 38 months median observation. In a multivariate
analysis, correcting for age, sex and ISS-staging, we found a high resistance index to be an independent variable associated
with inferior progression free survival and overall survival. This study provides clinical proof of concept to use in vitro drug
screen for identification of melphalan resistance gene signatures for future functional analysis.
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Introduction

Multiple Myeloma (MM) is an incurable B-cell malignancy that

ultimately relapses due to resistant disease despite advances in

therapeutic approaches [1,2]. Improved molecular profiling

technologies [3] have advanced the pathogenetic understanding

[4] and introduced the concept of targeted therapy, challenging

existing strategies. The transition from the long-established one-

size-fits all approach to new strategies, based on individual genetic

and gene expression profiles, provides an opportunity to transform

current diagnostics into individual prognostic or even predictive

classifications.

The ultimate goal for an individualized treatment strategy is to

have diagnostic tests predicting drug specific resistance. However,

this is currently not state of the art in MM where a number of

prognostic systems exist. The most commonly used is the

international staging system (ISS) based on clinical features [5].

It has been shown that ISS can be improved by the integration of

cytogenetic findings, which are independently associated with poor

prognosis [6–10]. These observations underline the importance of

genetic biomarkers in determining the optimal treatment ap-

proach in MM, and constitute the first step towards a personalised

treatment approach, but do not constitute true prediction of the

individual response to a single drug.

Different mechanisms of resistance to therapy have been

described; first, intrinsic genetic resistance associated with the

t(4;14), t(14;16), t(14;20) or the presence of 17p deletion; secondly,

acquired resistance upon treatment; thirdly, cell adhesion medi-

ated drug resistance (CAMDR) and finally, inherited genetic

variation. Understanding the mechanisms at a molecular level

remains a pivotal issue, requiring biological models and global

expression profiling, gene mapping, methylation mapping, muta-

tion detection and miRNA assays for biomarker discovery.

It is our concept that malignant B-cell lines can be used as a

preclinical model for B-cell malignancies as they have evolved

from intrinsic and acquired genetic events, and therefore harbour

the most extensive molecular mechanisms of resistance. The

availability of these cell lines may accelerate the therapeutic
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advancements towards individualised therapy and we have

recently suggested a list of 19 genes with potential impact on

resistance to melphalan treatment based on an in vitro drug screen

set up mimicking the NCI60 cell line based screening platform

[11,12]. Similar studies have been published for cell lines derived

from breast and lung cancer [13,14].

In the current study we have addressed the approach presented

by Lee and co-workers [15], adjusting the aforementioned in vitro

cell line based drug resistance gene list to the range of molecular

expression in newly diagnosed tumours. The outcome of such a

strategy may be an improved patient weighted gene index

predictive for melphalan resistance. Importantly, such a resistance

index should be validated in an independent set of clinical studies

to support the above mentioned concept. The data sets used in this

analysis are derived from the recently published HOVON65/

GMMG-HD4 trial [16] and MRC Myeloma IX trial [17].

A successful validation of our strategy will allow us to select

genes that may be involved in the molecular mechanisms of

resistance and perform biological or functional studies. Ultimately,

such results may identify a panel of potential genes and reverse

translate these into a predictive diagnostic platform for prospective

studies.

Patients, Materials and Methods

Retrospective data from newly diagnosed MM patients includ-

ing clinical characteristics, follow-up data and diagnostic global

gene expression profile (GEP) analysis were available for 263

patients entering the HOVON65/GMMG-HD4 [16] and 94

patients from Royal Marsden Hospital London entering the MRC

Myeloma IX [17] clinical trials approved by the local institutional

review boards as stated in references 16 and 17. Both clinical trials

were randomized multicenter studies comparing different induc-

tion chemotherapy regimens prior to high dose melphalan (HDM)

and both trials included maintenance therapy randomizations.

Patients were selected for diagnostic global GEP analysis on

plasma cells and a set of classical prognostic and clinical outcome

variables were recorded. The characteristics of the two indepen-

dent trials, including median follow up time, are given in Table 1.

In brief, the HOVON65/GMMG-HD4 trial evaluated the

efficacy of bortezomib induction and maintenance therapy in

newly diagnosed MM patients eligible for HDM therapy. A total

of 827 patients were randomly assigned to induction with

vincristine, adriamycin and dexamethasone (VAD) vs. bortezomib,

adriamycin and dexamethasone (PAD). Subsequently patients

received one or two cycles of HDM 200 mg/m2 depending on

local policy. Patients assigned to the PAD arm received two years

of bortezomib maintenance post-HDM whereas patients random-

ized to the VAD arm received two years of thalidomide

maintenance [16]. The MRC Myeloma IX randomized a total

of 1960 newly diagnosed MM patients to induction with

cyclophosphamide, vincristine, doxorubicin and dexamethasone

(CVAD) vs. cyclophosphamide, thalidomide and dexamethasone

(CTD) regimen followed by one cycle of HDM 200 mg/m2. After,

HDM patients were secondarily randomized to thalidomide

maintenance vs. no maintenance [17]. Thus, both trials contained

HDM as a mainstay in the therapy for all patients enrolled.

Finally, available on-line data was included from 156 patients in

the APEX phase-3 trial investigating the efficacy of bortezomib

vs. high-dose dexamethasone for relapsed MM patients. This trial

acted as a negative control cohort in order to exclude the RI

predicted response to treatments not containing HDM [18,19].

Response to treatment was defined primarily by the European

Group for Blood and Marrow Transplantation (EBMT) criteria

for evaluating disease response and progression in patients treated

by high-dose therapy and haemopoietic stem cell transplantation

[20], but with the International Myeloma Working Group

(IMWG) criteria for very good partial response (VGPR) added

[21].

Myeloma plasma cell purification and gene expression
microarray analysis

All included patients had bone marrow plasma cell (PC)

enrichment, RNA extraction, cDNA processing, labelling, hybrid-

ization and microarray analysis performed as previously described

[16,17]. In brief, bone marrow CD138 positive PCs were enriched

by positive magnetic micro beads selection (MACS) (Miltenyi

Biotec B.V., Utrecht). Samples were qualified by .80% purity

and viability following flow cytometry analysis using the EMN

recommendations. RNA was isolated by a DNA/RNA prep kit

(Qiagen, Venlo) and concentration measured using the NanoDrop

spectrophotometer (Thermo Fisher Scientific). RNA quality and

purity were assessed and RNA processing, labelling and hybrid-

ization to microarrays were performed at the Erasmus Medical

Center, Rotterdam NL [16] or Institute of Cancer Research,

London UK [17] and deposited on-line as described below. In the

APEX data set myeloma cells were enriched via negative selection

using magnetic assisted cell sorting (MACS) and deposited as

described [18].

Microarray data available on line
Details of on-line information used in the present manuscript

are described below.

1) The HOVON65/GMMG-HD4 data originate from Affymetrix

U133 plus 2.0 microarrays. The .CEL files for the gene

expression data are available at http://www.ncbi.nlm.nih.

gov/geo/ as GEO accession number GSE19784.

2) The MRC Myeloma IX data originate from Affymetrix U133

plus 2.0 microarrays. The .CEL files for the gene expression

data are available at http://www.ncbi.nlm.nih.gov/geo/ as

GEO accession number GSE15695.

3) The APEX data, used as the negative control, originate from

Affymetrix U133A microarrays and are available at http://

www.ncbi.nlm.nih.gov/geo/ as GEO Series Accession Num-

ber GSE9782. However, this data is MAS 5.0 normalized, so

we obtained access to the original .CEL-files and used them

for further analysis [18; Mulligan, Personal Communication).

4) The B Cell Gene Expression Data contain .CEL files for the 18

malignant B-cell line microarrays which have been deposited

at http://www.ncbi.nlm.nih.gov/geo/ under GEO accession

number GSE22759.

Molecular classification of MM
The pattern of translocations and cyclin D expression (TC) and

the University of Arkansas for Medical Sciences (UAMS) risk

classification based on Affymetrix gene expression microarray data

was done on the available data set according to procedures

described by Bergsagel and Shaughnessy and co-workers, respec-

tively [4,22].

Strategy for the generation of amelphalan RI
Global GEPs for the 18 B-cell myeloma, plasmacytoma and

lymphoma cancer cell lines prior to a melphalan 50% growth

inhibition (GI50) screen was conducted as described [11]. The

Melphalan Screen in B Cell Cancer Cell Lines
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GEP and drug screen were used according to the following work

plan as illustrated in Figure 1.

First, a sparse partial least squares algorithm (SPLS) was used to

build a predictive melphalan resistant gene list based on the GI50

values of the cell line panel - a step which can be regarded as

biomarker discovery (Figure 1 left).

Second, the 19 candidate genes were used as predictors in a

multivariate Cox regression model with the PFS from the MRC

Myeloma IX data as endpoint. The coefficients of the resulting

linear predictor were used to form an in vivo weighted gene list to

derive a gene signature model, predictive of resistance to

melphalan – a step which is regarded as biomarker weighting

(Figure 1 left).

Third, this gene signature was used to assign a melphalan RI for

each tumour from the clinical trial HOVON65/GMMG-HD4

based on the individual GEP data (Figure 1 right). The RIs were

defined to be the linear predictor of the multivariate Cox

regression, i.e. calculated for each individual clinical sample by a

linear combination of the 19 gene expressions using the weights

from the multivariate Cox regression model.

Finally, the molecular prediction of the expected outcome

following melphalan therapy was examined with respect to PFS

and OS – a step regarded as implementation and evaluation (Figure 1

right).

Statistical analysis
All statistical analyses were done with R version 2.13.10 [23]

and Bioconductor [24]. The .CEL files were background corrected

and normalized for each study by the just.rma function from the

Affymetrix package. Kaplan-Meier survival analysis, log-rank tests

and Cox proportional hazards models were calculated with

the built-in R-package survival. A nonlinear relationship between

the predicted response to treatment and the RI was noticed and

the relationship was estimated by restricted cubic splines (RCS) by

Table 1. Characterisation of the clinical trial data sets.

Patient Characteristics HOVON65/GMMG-HD4 MRC Myeloma IX P-value

n 263 94

Age 0.023

Median 56 57

Range (27,65) (35,69)

Sex 0.62

Female 116 (44%) 38 (40%)

Male 147 (56%) 56 (60%)

ISS 0.46

I 96 (39%) 24 (32%)

II 88 (36%) 30 (39%)

III 60 (25%) 22 (29%)

TC class 0.54

11q13 34 (13%) 16 (17%)

4p16 39 (15%) 20 (21%)

6p21 4 (2%) 1 (1%)

D1 103 (39%) 36 (38%)

D1plusD2 7 (3%) 2 (2%)

D2 35 (13%) 6 (6%)

MAF 12 (5%) 3 (3%)

none 29 (11%) 10 (11%)

Follow up time

median 37.98 49.5

Survival

median OS NA NA

(0.95LCL,0.95UCL) OS (NA,NA) (51.8,NA)

median PFS 26.7 23.5

(0.95LCL,0.95UCL) PFS (22.8,31.5) (17.8,30.3)

Treatment

VAD: 124 (47%) CVAD: 38 (40%)

PAD: 139 (53%) CTD: 56 (60%)

Comparison of the two independent HOVON65/GMMG-HD4 and MRC Myeloma IX cohorts with respect to demographic data, ISS staging, TC classification and time to
disease progression (PFS) suggesting that clinical expression of resistance was identical. Both trials contained high dose melphalan as a mainstay in the standard
therapy for all patients enrolled.
VAD = Induction with vincristine, adriamycin and dexamethasone. PAD = Induction with bortezomib, adriamycin and dexamethasone. CVAD = Induction with
cyclophosphamide, vincristine, doxorubicin and dexamethasone. CTD = Induction with cyclophosphamide, thalidomide and dexamethasone.
doi:10.1371/journal.pone.0083252.t001

Melphalan Screen in B Cell Cancer Cell Lines
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means of the R-package Design. The significance level is set to

0.05 and the hazard ratios (HR) are given with 95% confidence

intervals. We have calculated time dependent receiver operating

characteristics (ROC) curves for cumulative PFS and OS to

illustrate sensitivity and specificity of the RIs. ROC curve analysis

was included by means of the R package survcomp [25].

Results

Comparison of the clinical data sets
The available trial data sets used in the present analysis included

patients treated with one or two high doses of melphalan,

supported by autologous stem cell transplantation as standard

therapy [16,17]. Comparison of the two independent cohorts for

demographic as well as ISS staging did not reveal clinical

differences between the trial sets. There was no difference in

PFS as given in Table 1, suggesting that clinical expression of

resistance was identical.

Patients included in the present analysis all had a bone marrow

malignant plasma cell purification step performed for global GEP

analysis. Of special interest, no significant difference was observed

between the two datasets comparing the TC classification based

on the GEP analysis as shown in Table 1, suggesting an identical

distribution of biological subgroups defined by early genetic events

in pathogenesis.

Reweight of the melphalan resistance gene list
As illustrated in Figure 1, the first step regarded as ‘‘biomarker

discovery’’ included the identification of candidate genes following

correlation of gene expression data and melphalan sensitive of the

B cell lines [11]. During the next step regarded as ‘‘biomarker

weight’’ the resistance gene list was modified by the approach of

Lee and co-workers [15] with the aim of adjusting the impact of

each gene discovered in vitro by the time to disease progression

from HDM as an indicator for clinical resistance.

The in vivo modified or reweighted gene list from adjustment in

the MRC Myeloma IX trial data set is shown in Table 2 and was

subsequently used for assignment of an individual melphalan RI

for each patient in the HOVON65/GMMG-HD4 data set

available for validation as described below.

The melphalan RI differs between TC classes
The biological TC classification defined by early oncogenic

events was applied to the HOVON65/GMMG-HD4 data set and

each class of tumours compared to the RI assigned level of

melphalan resistance. The comparison indicates a difference

Figure 1. Summary of the stepwise development, adjustment and validation of the resistance gene list. Numbers relate to step 1–6 as
illustrated in the figure. 1) First, The analysis starts by identification of candidate biomarkers by a sparse partial least squares algorithm (SPLS) to build
a predictive gene list based on correlations with the GI50 values of the cell line panel, regarded as ‘‘biomarker discovery’’. 2) Second, the candidate
genes were trained to ensure weighted expression in the myeloma data set from the patient cohort in the clinical trial MRC Myeloma IX, to derive a
gene signature model, predictive of resistance to melphalan – a step which is regarded as biomarker weighting. The weighting was performed by
multivariate Cox regression with PFS as dependent variable and gene expression of the 19 genes as independent variables resulting in a weighted
gene signature. 3) The weighted melphalan resistance gene signature is used to define a melphalan RI. 4) The signature is used to classify each
tumour from the clinical trial HOVON65/GMMG-HD4 based on the individual GEP data. 5) The RIs were defined to be the linear predictor of the
multivariate Cox regression, i.e. calculated for each individual clinical sample by a linear combination of the 19 gene expressions using the weights
from the multivariate Cox regression model. 6) Finally, the molecular prediction of resistance to melphalan therapy was compared to the actual
observed PFS and OS. – a step regarded as implementation and evaluation.
doi:10.1371/journal.pone.0083252.g001

Melphalan Screen in B Cell Cancer Cell Lines
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between the predefined classes ranked from 11q, 6p, MAF, D2,

D1, 4p, D1+2 and unclassified as illustrated in Figure 2A. In

addition the TC classes could be divided into poor and good risk

groups as defined previously [22] and we found these groups had a

significantly different RI level (P-value = 0.0028) as illustrated in

Figure 2B.

We also observed varying levels of resistance by comparing the

eleven classes defined by the UAMS classification of 8 main

subgroups (CD1, CD2, MF, MS, PR, HY, LB, MY) and the 3

additional subgroups (NFKB, CTA, and PRL-3) [22,16] (results

not shown). Finally we compared the RI with the UAMS risk score

[26] and documented a significant correlation as illustrated in

Figure S1.

Melphalan RI validation by clinical outcome
As indicated in Figure 1, we continued with the fourth

‘‘implementation step’’, where an individual RI was assigned

based on each patients’ gene expression data in the HOVON 65/

GMMG-HD4 trial, dividing tumor samples into groups of

sensitive patients with low 0–25% RI, intermediate RI from 25–

75% and resistant patients with the highest RI of 75–100%. The

impact of this assignment was subsequently evaluated with respects

to PFS and OS as illustrated in Figure 3. The log relative hazard

curves for PFS and OS, given as a function of the RI, is illustrated

by the upper part and Kaplan-Meier survival curves for the

assigned groups is illustrated by the lower part. The figure shows

that the resistant group (highest RI) has a significant inferior PFS

(Figure 3C, P-value = 0.05) and OS (Figure 3D, P-value = 0.003)

compared to the intermediate and sensitive groups. The present

landmark analysis was performed from the time of HDM and we

found that resistant, intermediate and sensitive patient groups had

a median PFS of 18, 32 and 28 months, respectively. The median

OS for the resistant group was 45 months but not reached for the

intermediate and resistant groups following a median observation

time of 38 months.

The diagnostic accuracy of the RI to predict PFS and OS was

evaluated by ROC curves. The sensitivity was plotted as a function

of the specificity for a single cut-off point dividing the samples into

a sensitive and resistant group. The results illustrate a poor

discrimination capacity by the area under curve (AUC) being

between 58 and 62% for OS and 62–69% for PFS, as illustrated in

Figure 4.

Based on the log-relative HR plots in Figure 3A and 3B, which

indicated that the sensitive and intermediate groups have identical

resistance profiles, we decided to merge the two groups for further

analysis of the clinical impact of the melphalan RI. The merged

sensitive group with RI from 0–75% and the resistant group with

RI .75% were analysed by univariate (P-value = 0.003 for PFS

and P-value = 0.00089 for OS) as well as a multivariate Cox

proportional hazard models (P-value = 0.0063 for PFS and P-

value = 0.0025 for OS). This documented an association between

the melphalan RI and PFS as well as OS, independent of the ISS

staging as shown in Table 3. The best described prognostic and

public available gene signatures seem to be from the University of

Arkansas for Medical Sciences (UAMS), the Intergroup Franco-

phone du Myeloma (IFM) and the HOVON prognostic classifi-

cation gene lists [22,26]. Therefore we compared the melphalan

RI with the UAMS risk score documenting a significant

correlation as illustrated in Figure S1. This forced us to perform

an extended multivariate Cox proportional hazard analysis with

the UAMS high risk signature as a variable indicating that the

melphalan RI is also independent of this signature for PFS and OS

as shown in Table S1. The appropriateness of the Cox

proportional hazard models using the dichotomized resistance

index were checked using cumulative martingale residuals (data

not shown).

Of importance, we also evaluated the impact of RI assignment

on remission status following HDM in the HOVON65/GMMG-

HD4 trial which revealed no significant difference with respect to

obtained complete remission (CR), very good partial response

(VGPR), PR, near complete remission (NCR) and progressive

disease (PD) three months post transplant (results not shown).

Finally, in order to document that the reweighted gene list was

better than pure chance; we randomly selected 1000 lists of 19

probe sets, reweighted the probe sets in MRC Myeloma IX by

multivariate Cox regression and tested the predictive properties in

the HOVON65/GMMG-HD4 data set. It turned out that 20

(2.0%) of the 1000 random lists in terms of P-values performed

better (P-value lower than 0.003) than the reweighted RI in

univariate Cox regression and 19 (1.9%) of the 1000 random lists

performed better (P-value lower than 0.0063) with respect to

multivariate Cox regression. To test the melphalan specificity of

the 2% better performing random lists we used them to predict the

melphalan resistance of the cell lines. It turned out that 0 and 2 of

the lists had significant correlation with the GI50 value for the

univariate and multivariate regressions, respectively, supporting

that the reweighted gene list was better than pure chance and that

the randomly generated lists with good prognostic performance

had no correlation with melphalan resistance.

Table 2. Generated probe sets for melphalan resistance
weighted and re-weighted.

Probe ID Gene Symbol Location Weight
New
Weights

204204_at SLC31A2 9q31-q32 20.025 20.507

219748_at TREML2 6p21.1 20.033 20.38

203708_at PDE4B 1p31 20.053 20.319

201990_s_at CREBL2 12p13 20.046 20.314

219049_at CSGALNACT1 8p21.3 20.037 20.226

218751_s_at FBXW7 4q31.3 20.044 20.184

212055_at C18orf10 18q12.2 0.025 20.184

205990_s_at WNT5A 3p21-p14 20.065 20.077

204786_s_at IFNAR2 21q22.1,
21q22.11

20.033 20.0522

217825_s_at UBE2J1 6q15 20.02 0.0401

201889_at FAM3C 7q31 20.039 0.074

206405_x_at USP6 17p13 20.038 0.0888

203895_at PLCB4 20p12 20.015 0.0982

212122_at RHOQ 2p21 20.016 0.137

205862_at GREB1 2p25.1 20.034 0.187

221210_s_at NPL 1q25 0.032 0.189

213555_at RWDD2A 6q14.2 20.019 0.195

217104_at ST20 15q25.1 0.012 0.201

202043_s_at SMS Xp22.1 0.011 0.486

The first four columns contain a list of probes, genes, location and weights for
candidate biomarkers obtained by comparing gene expression data between
melphalan sensitive and resistant B cell lines (11). In the fifth column the
candidate gene list has undergone an in vivo disease reweighting by PFS in the
MRC Myeloma IX training set.
doi:10.1371/journal.pone.0083252.t002

Melphalan Screen in B Cell Cancer Cell Lines
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Melphalan resistance index in patients not treated with
HDM

We also sought to negatively validate the approach in a trial set

of data from patients treated without HDM. Therefore we

analysed data from 156 relapsed MM patients enrolled into the

APEX trial that compared single-agent bortezomib to high-dose

dexamethasone [18]. Following melphalan RI classification for

each patient we showed no impact in this data set with respect to

the prediction of PFS as well as OS from time of relapse therapy

(Figure 5).

Selection of resistance genes for future studies
The resistance gene list comprised 19 genes with corresponding

weights and reweights (Table 2). The genes were ranked according

to weight, where negative values give the most sensitive marker

genes for melphalan and positives values give the most resistance

marker genes for melphalan. Interestingly, the list includes the

gene SLC31A2 a membrane pump involved in resistance to

alkylating drugs; FBXW7, USP6, UBE2J1 and Wnt-5a involved in

ubiquitin proteasome pathways known to affect myeloma biology.

Another interesting candidate for further investigation is CSGAL-

NACT1 which encodes a protein involved in the initial synthesis of

chondroitin sulphate, a component of Syndecan-1 (CD138), also

known as a central player in multiple myeloma pathogenesis.

Further network analysis and functional studies are planned and

warranted.

Discussion

The concept of the in vitro drug screen strategy and its
limitations

It is our concept that malignant B-cell lines can be used as a

preclinical model, as they have evolved from intrinsic and

acquired genetic events in a stepwise process of driver and

passenger mutations involved in the molecular mechanisms of

resistance. This concept is based on recent work from the

Myeloma Stem Cell Network (MSCNET) consortium making

well characterized B-cell lines available for further studies, with the

limitation that it only detects genetic resistance associated to

oncogenesis and does not consider CAMDR or inherited genetic

variations also expected to contribute to the resistance phenotype.

The availability may accelerate our therapeutic advancements

towards individualised therapy as we have recently suggested a list

of 19 genes with potential impact on resistance to melphalan [11]

following in vitro drug screen strategy mimicking the NCI60 cell

line based screening platform [12]. Similar studies have been

published for cell lines derived from breast and lung cancer

[13,14].

We have now extended this strategy by an in vivo modification

step including reweight of the resistance gene list in a gene

expression data set from the MRC Myeloma IX trial [17] by

taking into consideration the grade of clinical resistance by PFS

following HDM [15,27,28]. We have used this approach to

generate a resistance gene index, which we aim to validate in the

independent HOVON65/GMMG-HD4 trial [16], by its ability to

predict patient outcome by relevant clinical endpoints defining the

response to HDM. If successfully validated, this will provide proof

of concept to use the panel of malignant B cell lines in a drug

screen strategy to identify a range of genes involved in melphalan

resistance.

In this report we present results supporting that diagnostic

melphalan RI assignments predict PFS and OS in HDM treated

patients (Figure 3A–D) – and the melphalan specificity of the RI

indicated by analysis of the APEX data, from a clinical trial not

including patients treated with HDM during second line therapy

(Figure 5A–D). The observation that RI predicted not only PFS

but also OS supports that HDM is a cornerstone in the MM

therapy, not yet replaced by the new drugs. It must however, be

noted that the MM patients in the APEX study were all treated

with melphalan during first line induction therapy. The subse-

quent relapsed disease could thus be interpreted as being caused

Figure 2. The melphalan RI differ between TC classes. The translocation and cyclin D defined TC classification involving early oncogenic events
were applied to the HOVON65/GMMG-HD4 data set and in panel A) each of the 8 classes of tumours showed different melphalan RI levels (P-value
= 0.00025). In panel B) these classes were grouped into two groups with good or poor prognosis with different melphalan RI levels (P-value = 0.0028).
doi:10.1371/journal.pone.0083252.g002
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by melphalan resistant plasma cells that scores high when assigned

by the melphalan RI.

One important question in relation to the present work has been

the impact of adjustment of the gene list weight to the molecular

expression in newly diagnosed tumours. Although this study has

validated our RI model it has to be mentioned that the original

weighted gene list [11] had a poor performance in the present data

sets, with no impact on PFS (P = 0.2) but significant impact in

prediction of OS (P = 0.002) in the HOVON65/GMMG-HD4

data set (data not shown). In our mind this observation supports

the rationale for adjustment of pure bench generated data by

reweighting each gene impact in data sets of newly diagnosed MM

patients representing on one hand the biological spectrum of the

disease at the time when patients need therapy and on the other

Figure 3. Melphalan resistance gene index validation by clinical outcome. The individual RIs were assigned from gene expression data of
the HOVON 65/GMMG-HD4 trial dividing tumor samples into groups of sensitive patients with low 0–25% RI, intermediate RI from 25–75% and
resistant patients with the highest 75–100% RI. The impact of this assignment was subsequently evaluated with respect to PFS and overall OS as
illustrated by log relative hazard for PFS (1A) and OS (1B) as a function of the individual RI levels. The P-values are the maximum likelihood tests for no
RCS-association between log Relative Hazard and the RI and the dashed lines represent 95% confidence intervals. A landmark Kaplan-Meier analysis
was performed from the time of HDM and we found that resistant, intermediate and sensitive patient groups had a median PFS of 18, 32 and 28
months, respectively (1C). The OS for the resistant group had a median of 45 months but not reached for the intermediate and resistant groups (1D)
following a median observation time of 38 months. The P-values are the log-rank-test results for no difference between the estimated survival curves.
doi:10.1371/journal.pone.0083252.g003
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Figure 4. The poor diagnostic accuracy illustrated by ROC curves. The diagnostic accuracy of the RI to predict the PFS and OS was evaluated
by ROC curves. The true positive rate (sensitivity) was plotted as a function of the false positive rate (1- specificity) for a series of time dependent cut-
off points illustrating the level of discrimination is quantified by area under curve (AUC) for OS and PFS being poor between 60–70%.
doi:10.1371/journal.pone.0083252.g004

Table 3. Univariate and multivariate Cox proportional hazard models.

Univariate Multivariate

Hazard ratio 95%CI P-value Hazard ratio 95%CI P-value

PFS

Age 0.989 (0.97, 1.01) 0.31 0.987 (0.97, 1.01) 0.2

SexFemale 1 - - 1 - -

SexMale 1.07 (0.78, 1.48) 0.67 1.06 (0.77, 1.47) 0.71

ISS1 1 - - 1 - -

ISS2 1.45 (0.99, 2.14) 0.058 1.43 (0.97, 2.1) 0.069

ISS3 1.97 (1.31, 2.96) 0.0011 1.91 (1.27, 2.88) 0.0019

RI(0,75] 1 - - 1 - -

RI(75,100] 1.73 (1.2, 2.47) 0.003 1.65 (1.15, 2.37) 0.0063

OS

Age 0.991 (0.96, 1.02) 0.57 1.17 (0.7, 1.97) 0.55

SexFemale 1 - - 1 - -

SexMale 1.28 (0.77, 2.15) 0.34 2.36 (1.16, 4.79) 0.017

ISS1 1 - - 1 - -

ISS2 2.35 (1.16, 4.76) 0.018 4.01 (1.98, 8.11) 0.00011

ISS3 4.28 (2.13, 8.63) 4.7e-05 2.28 (1.33, 3.88) 0.0025

RI(0,75] 1 - - 1 - -

RI(75,100] 2.45 (1.44, 4.14) 0.00089 2.28 (1.33, 3.88) 0.0025

The sensitive and intermediate RI groups were merged into a common non-resistant group of patients. The redefined non-resistant (RI 0–75%) and resistant (RI 75–
100%) groups were analysed by univariate (P-value = 0.003 for PFS and P-value = 0.00089 for OS) as well as a multivariate Cox proportional hazard models documenting
an association with PFS and OS (P-value of 0.0063 and 0.0025), independent of age, sex and ISS staging. The appropriateness of the Cox proportional hazard models
using the dichotomized resistance index was checked using cumulative martingale residuals.
doi:10.1371/journal.pone.0083252.t003
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hand reduce the influence from late genetic events and the

complex genetic picture present in the B-cell lines.

Several other aspects of our current in vitro concept need to be

studied in the future, first of all the use of inhibition of cell

proliferation and growth as an indicator for in vitro drug screen

outcome. Selection of end points, like grade of apoptosis or

estimated number of culture initiating cells, should be considered

to improve the preclinical model, depending on the drug in

question. Clinically our prediction needs to be studied in vivo in

relation to known prognostic variables including plasma cell

heterogeneity, hyperdiploidy, cytogenetics, gene mapping, meth-

ylation mapping, mutations and miRNA assays and of course

Figure 5. The melphalan RI in patients treated without HDM. Illustration of the negative validation of the approach in a data set from156
relapsed MM patients treated without HDM by inclusion into the APEX trial (18) that compared single-agent bortezomib to high-dose
dexamethasone. The individual RIs were assigned from each patients’ gene expression data of the APEX trial dividing tumor samples into groups of
sensitive patients with the low 0–25% RI, intermediate RI between 25–75% and resistant patients with the highest 75–100% RI. The impact of this
assignment was subsequently evaluated with respects to PFS and overall OS as illustrated by log relative hazard for PFS (5A) and OS (5B) as a function
of the individual RI levels. The P-values are the maximum likelihood tests for no RCS-association between log Relative Hazard and the RI and the
dashed lines represent 95% confidence intervals. A landmark Kaplan-Meier analysis was performed from the time of treatment start which found that
resistant, intermediate and sensitive patient groups had no significant differences with respect to the prediction of PFS as well as OS from time of
relapse therapy. The P-values are the log-rank-test results for no difference in survival curves.
doi:10.1371/journal.pone.0083252.g005
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other biologically or prognostic classification systems and high risk

signatures. Finally, the impact of different drug regimens may also

be taken into consideration – especially for cross reacting drugs.

A major concern in our validation strategy was that the RI had

no impact on remission status 3 months post HDM, indicating that

such a validation may need prospective designed studies with focus

on exact quantitation of minimal residual disease as proposed by

the recent defined stringent CR [21]. It has to be recognized that

the remission status post HDM is a difficult end point to evaluate

for the effect of HDM as it is also influenced by the induction

therapy. Furthermore, CR is a marker of profound tumour

reduction depending on the time of follow up and tumour biology

as e.g. proliferation status. It has been accepted that CR is a

dynamic condition because most CR patients will relapse with

time. Finally, we now know from recent studies [37) that patients

with standard-risk MM have the same survival regardless of CR

status [38), whereas achieving a CR appears to be critical for

patients with high-risk disease [39).

Another important objective in the development of our gene list

was to demonstrate that the performance of the list is better than

pure chance [40, 41). We tested this and noted there is a 2%

chance that a random probe set list performs better than the

reweighted RI in univariate Cox regression and a 2% chance that

a random probe set list perform better with respect to multivariate

Cox regression. These findings support that the generated and

reweighted gene list was better than pure chance. The 2% random

gene lists with better performance and other gene combinations

might well have prognostic power but will most probably have no

correlation or connection to melphalan specific resistance as it is

well-known that many gene lists exist with a spurious correlation

with outcome [41]. The latter is also supported as only 0 and 2

gene list predictors of melphalan resistance, identified by uni and

mulitvariant cox analysis, were correlated to the GI50 value of the

cell lines.

Finally, and most importantly for the clinical limitation of our

current findings was the evaluation of the poor diagnostic

performance by ROC curves (Figure 4A–B), which concludes

that the present output of genes need improvements before clinical

implementation. This will include laboratory studies of highly

selected genes for in vitro function and pathway analysis in order to

understand the molecular mechanisms underlying the prepared-

ness to melphalan effect in vivo. The ultimate and future goal will

be to build a more accurate diagnostic tool by an improved drug

screen strategy combined with bioinformatics modelling linking

oncogenesis to molecular resistance.

Resistance and myeloma classification systems
During the last decade more sophisticated and microarray data

based classification systems have been described as it was recently

reviewed by the International Myeloma Working Group [3]. The

original biological classification was based on pathogenetic

understanding e.g. hyperdiploid versus non-hyperdiploid or TC

classification. One important issue in our work programme was to

analyse the level of melphalan resistance in the different biological

TC classes. Our present analyses indicate that the melphalan

resistances differ between the classes and prognostic groups

(Figure 2) indicating that drug resistance in plasma cells may be

a consequence of the primary intrinsic events of recurrent gene

translocations and cyclin D dysregulation. The prognostic

classifications, discriminating outcome in groups of patients

treated with multiple drug modalities, based on classical prognostic

variables as best illustrated by the ISS prognostic staging system

[5]. Here we have documented (Table 3) that the prognosis for

patients assigned with a melphalan RI .75% was independent of

the ISS prognostic staging system [5]. The best described

prognostic gene signatures seem to be from the University of

Arkansas for Medical Sciences (UAMS), the Intergroup Franco-

phone du Myeloma (IFM) and the HOVON prognostic classifi-

cation gene lists [16,26,29–31] and we extended the multivariate

Cox proportional hazard analysis by including the UAMS high

risk signature as a variable and showed that the melphalan RI is

also independent of this index when considering outcome as PFS

and OS (Table S1). Finally and most importantly, the so-called

predictive classification should be able to estimate individual

outcome of a specific therapeutic intervention and allow for

selection and elimination of specific drugs. The UAMS group has

reported post drug genomic data identifying patterns associated

with drug specific responses [32,33] and in our ongoing process we

have planned pharmacogenetic microdosis studies for specific

drugs [34–36]. Such data, in parallel with the present programme,

are expected to evolve into a useful drug specific and predictive

classification system. The range of such a predictive classification

system will follow logically from the specific therapy available

especially in selection of second line therapy.

Identification of melphalan resistance gene
One major goal for the present study was to identify genes

involved in melphalan resistance. In general, the gene list (Table 2)

presents a diverse group of genes involved in numerous key

pathways. This indicates that several factors may be involved in

determining the level of preparedness of a malignant cell to resist

melphalan cytotoxic stress. Of interest in the context of resistance,

the gene SLC31A2 is involved in copper transportation and limited

uptake and sensitivity to carboplatin [42], the genes FBXW7,

USP6, and UBE2J1 are involved in ubiquitin regulated pathways

[43–45] essential in maintaining cellular homeostasis through

dynamic switches in protein functions including cell-cycle regula-

tion, proliferation, apoptosis, drug toxicity, and DNA repair and

may significantly affect cancer development and the generation of

drug resistance [46]. Additionally, the function of Wnt-5a is highly

dependent upon ubiquitin proteasome pathways and the gene is

active during stem cell growth, cell differentiation and organo-

genesis and found of biological relevance in MM [47,48]. A most

interesting candidate for further investigation includes CSGAL-

NACT1 which encodes a protein involved in the synthesis of

chondroitin sulphate, a component of Syndecan-1 (CD138)

involved in myeloma pathogenesis [49–52].

Overall, there is a range of interesting genes to be functionally

studied in search of the mechanism(s) involved in both intrinsic

and treatment induced resistance to design strategies to overcome

it. Such laboratory studies will have benefit from the already

available panel of B-cell cancer cell lines defining the preclinical

model for malignant B-cell disorders. The ultimate goal is that the

programme may lead to the identification of a well documented

signature of resistance genes that can ‘‘feed forward’’ into the

clinic.

The main conclusions and future research
This study provides proof of concept to use an in vitro drug

screen of cancer cell lines for identification of drug resistance genes

for further functional analysis and biological behaviour [53,54].

We expect to identify a range of biological mechanisms involved at

different stages of disease progression, thereby making the model

useful for better understanding the course of MM. This may in the

future help to explain heterogeneity, particularly where there is

genetic selection and risk for acquired drug resistance present at

relapse or refractory disease [55,56], with the ultimate goal to
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improve diagnostic classification and design of mathematical

models for evaluation of non-standard personalized medicine [57].

Supporting Information

Figure S1 UAMS risk score (RS) and melphalan RI.
Individual correlation between the melphalan RI and the UAMS

risk index as defined (26) within the HOVON65/GMMG-HD4

trial data revealed a Pearson correlation coefficient of r = 0.332 (P-

value ,0.001).

(TIF)

Table S1 Evaluation of the association between the
melphalan RI impact and HDM responses by multivar-
iate Cox proportional hazard models. The redefined non-

resistant (RI 0–74%) and resistant (RI 75–100%) groups were

analysed by univariate as well as a multivariate Cox proportional

hazard models documenting impact on PFS and OS (P-value of

0.039 and 0.05), independent of age, sex, ISS and the UAMS risk

index. The appropriateness of the Cox proportional hazard

models using the dichotomized resistance index was checked using

cumulative martingale residuals.

(XLSX)
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