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Sports-related concussion is a significant health concern affecting approximately 1.6–3.8 million people in the
USA each year [1]. Although male athletes are exposed to more contact in sports [2], rates of concussion are higher
for female athletes in sex-comparable sports at both the high school and collegiate level [2–4]. Furthermore, female
athletes tend to report a greater number of symptoms and take longer to recover from concussion compared with
male athletes [4–6]. Impaired cognitive function and alterations in brain structure and function have been noted in
the acute phase after injury in both males and females, and it has been reviewed in depth recently [5,7,8]. However,
the majority of research assessing the long-term implications of mild traumatic brain injury (TBI) or sports-related
concussion has been limited to male athletes.

Past studies have suggested that a history of TBI increases the risk of a number of neurodegenerative diseases,
including Alzheimer’s disease [9,10], Parkinson’s disease [11], amyotrophic lateral sclerosis [12,13], frontotemporal
dementia [14] and chronic traumatic encephalopathy (CTE) [15–17]. With the discovery of CTE in male athletes
with a history of repetitive brain trauma [15–17], considerable focus has been placed on the link between sports-related
concussions and the development of CTE.

CTE, originally termed dementia pugilistica, was first discovered by Harrison Martland in boxers, whom he
described as being punch drunk [18]. A further series of cases described by Corsellis and colleagues noted a similar
pattern of histological and cerebral changes in boxers [19]. In 2005, Dr. Bennet Omalu discovered neuropathological
changes characteristic of CTE in a retired professional football player, who died due to myocardial infarction [15]. A
recent postmortem study found CTE in 177 of the 202 brains examined, all of whom were deceased subjects who
participated in contact sport with repetitive exposure to brain trauma [20]. Furthermore, a retrospective autopsy
series of individuals whose brains were donated to a neuropathology brain bank found that a third of individuals
with a history of participation in contact sports showed evidence of CTE; no autopsies on individuals without a
history of contact sports showed evidence of CTE [21]. It should be noted that recent work has also found CTE
pathology in those without a history of repetitive brain trauma [22,23]

CTE is characterized by the accumulation of hyperphosphorylated tau in the depths of sulci, that progresses
from the frontal to temporal cortical regions [17]. A thorough discussion of CTE pathology can be found in the
following references [16,17,20,24]. Although CTE cannot yet be diagnosed in the living, retrospective medical and
mental health histories from family members of those diagnosed with CTE suggests that there is a characteristic
cognitive and behavioral profile of impairments dependent upon when disease progression begins [25]. However, to
date, no female athlete has been diagnosed with CTE, and furthermore, no prospective in vivo or neuropathological
studies have assessed the overall long-term effects of concussions in female athletes. Thus, we cannot begin to assess
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whether women are at risk of developing CTE. Given the prevalence of concussion in female athletes, it would be
expected that female athletes are just as susceptible to multiple or repetitive concussions as male athletes. Therefore,
unless women possess a universal protective factor that decreases their risk of developing CTE, one can assume that
female athletes are also at risk.

In addition to females having higher rates of sports-related concussions, women also have higher rates of
neurodegenerative disease, particularly Alzheimer’s disease, relative to men [26]. A recent meta-analysis found that
35.6 million people are living with dementia worldwide, with a higher prevalence of dementia found in women [27].
With the number of individuals living with dementia projected to increase to 115 million by 2050 [27], there will be
a significant indirect and direct burden of dementia on society. Although TBI has been identified as one risk factor
affecting the development and age of the onset of dementia [28], no research has examined the interaction between
sports-related concussion and the development of neurodegenerative disease in women. However, a recent cohort
study found that the history of TBI was associated with increased odds of developing dementia which was higher in
those with repetitive TBI; the odds of developing dementia after TBI was similar in males and females [29]. As such,
one can expect a similar relationship occurring for males and females with a history of sports-related concussion,
particularly when repetitive injuries have occurred, again highlighting the importance of examining the long-term
effects of these injuries in women.

Past research has also examined the relationship between concussions and later-life psychiatric, cognitive, and
neurological impairments, with studies to date showing mixed results. However, one significant limitation of this
research is that it has all been done in male athletes. Nonetheless, these studies suggest that remote concussion is
associated with an increased risk of mild cognitive impairment [30], depression [31], and psychiatric symptoms [32]

during aging. Similarly, a history of subconcussive impacts has been associated with later-life cognitive impairments
in retired American professional football players [33]. In addition, earlier life exposure to head impacts may also
be associated with greater later-life cognitive impairment and altered white matter integrity [34,35]. Yet, other work
has suggested a limited relationship between the history of repetitive concussions and cognitive impairments in
later-life in former international rugby [36] and professional hockey players [32], or found no significant association
between playing high school football and cognitive impairment and depression during aging [37].

Concussions also seem to have subsequent downstream consequences on brain function and structure during
aging; yet again, these studies are similarly limited in that all have been done in male athletes. Still, these studies
have shown alterations in brain function [38–40], evidence of volumetric changes such as cortical thinning [41,42],
and loss of white matter integrity [42,43] in male athletes years after concussion. Alterations in brain function and
structure have also been shown in former American high school and college football players with cognitive deficits
and depression, although these changes were not related to concussion history [44]. However, recent work from Terry
and colleagues did not find a relationship between mild TBIs in high school football players and brain atrophy in
later life [45].

Together, the literature suggests a potential synergistic relationship between repetitive brain trauma and later-life
brain and behavioral outcomes in male athletes who participated in collegiate or professional sports; however,
our knowledge of the long-term consequences of sports-related concussion on brain and behavioral function in
female athletes is severely lacking. As it stands, we are ignoring a significant proportion of the population in studies
conducted thus far assessing the interaction between repetitive brain trauma and aging. This topic can no longer
be ignored, particularly given the known sex-related physiological differences that occur during aging, as well as
reports that females have longer standing post-concussion symptoms compared to males [4,6–8,46,47].

Considering the higher rates of sports-related concussion in females competing in sex-comparable sports, coupled
with women having an increased risk of developing dementia, we advocate for the development of prospective
studies specifically targeting women to assess the interaction between concussion, repetitive exposure to brain
trauma, and the potential brain and behavioral changes that occur across the lifespan. Such studies should include
comprehensive neuropsychological and neurological evaluations, which also consider genetic risk factors, tracking
of menstrual cycle function post-injury, and the age of injury, to better inform the long-term implications of these
injuries, as well as their impact on sex-specific health outcomes, such as fertility and/or childbearing.

Based on past research, we highlight a few specific factors that should be incorporated in prospective studies
aimed at understanding the mechanisms underlying sex differences in sports-related concussion outcomes, as well
as their long-term effects. The first factor is the role specific genetic polymorphisms play in this relationship, given
that genetic polymorphisms have been linked to concussion recovery and long-term outcomes, with most work
focusing on ApoE. In particular, presence of the ApoE ε4 allele has been linked to poorer outcomes following
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concussion and TBI [48]. In college athletes, the presence of the ApoE ε4 allele was also associated with impaired
neurocognitive function in concussed athletes [49], as well as a greater number of symptoms post-concussion [50].
Other studies, however, have failed to find an association between ApoE ε4 and outcomes following concussion and
TBI [51–53]. Recent work has also shown that genetic polymorphisms other than the ApoE ε4 allele may be linked
to concussion outcomes. For example, there is evidence that BDNF, ApoE promotor –219 G/T and GRIN2A gene
promoter may be associated with poorer prognosis following concussion [53–56]. However, the influence specific
genetic polymorphisms have on concussion outcomes and their long-term effects, dependent on sex, have not been
examined.

In addition, specific genotypes, such as the presence of the ApoE ε4 allele, may also increase the risk of developing
dementia in individuals with remote history of TBI [57–59]. ApoE ε4 on its own has been shown to increase the risk
of developing dementia twofold, with the risk increasing to tenfold in individuals who possess the ApoE ε4 allele
with a history of TBI [57]. However, in the seminal work from McKee and colleagues, the proportion of athletes
with CTE with at least one ApoE ε4 allele did not differ from the general population, although this association
was examined in a small number of samples [17]. Furthermore, Esopenko and colleagues found that having at least
one copy of the ApoE ε4 allele was associated with increased psychiatric complaints in a small sample of retired
professional male hockey players [32]. Although there seems to be a stronger relationship between the ApoE ε4 allele
and the development of Alzheimer’s disease in women [60,61], the interaction between sports-related concussion,
genetic polymorphisms, and sex on the development of dementia has not been explored.

The influence of gonadal sex hormones is another factor that we believe to be of significance, both in under-
standing acute and chronic concussion outcomes, but also in the long-term effects of these injuries. Although
limited, past research suggests that sex hormones may influence symptom prevalence and severity in females post-
concussion, with anterior pituitary deficiencies [62], disruption of the hypothalamic-pituitary-ovarian axis [63], and
progesterone withdrawal [64] being proposed as potential mechanisms. A recent study by Snook and colleagues iden-
tified abnormal menstrual patterns in young women after concussion, which they propose is due to disruption of
the hypothalamic-pituitary-ovarian axis [63]. Furthermore, others have shown poorer outcomes when TBI occurred
during the follicular phase of the menstrual cycle, an environment of high progesterone levels, compared with the
luteal phase, when progesterone levels are low [64]. Wunderle and colleagues suggest that poorer outcomes are the
result of progesterone withdrawal due to the large decrease in progesterone when injury occurs in the follicular
phase compared with the luteal phase. Furthermore, past studies have shown that estrogen and progesterone affect
outcomes following moderate-to-severe TBI, with the age of injury affecting the influence of these hormones on
recovery [65,66]. Other studies postulate that progesterone is protective in TBI and it has been suggested as a potential
treatment following TBI [67,68]. Moreover, gonadal sex hormones are thought to play a role in the development of
dementia, either through protection or enhanced risk [69,70]. As such, future research should assess the influence
of sex hormones on acute concussion outcomes, as well as consider the role of these hormones on the long-term
outcomes of concussion during aging. These studies will also need to account for the age of injury, given changes
in sex hormones across the lifespan (i.e., menopause).

Finally, there has been a strong push to have current and former athletes donate their brains for future research
through the development of brain banks. Brain banks examine neuropathological changes in the brain postmortem
in those who have either donated their brains during life, or have had their brains donated by family members
upon their death. Although brain banks provide incredibly important insights into the neuropathology of disease,
they tend to lack prospective measures of factors underlying the development of disease and disease progression
(e.g., substance use, undiagnosed mental illness). So far, most neuropathological studies have attempted to account
for these factors through responses from family members of the deceased; however, these responses are inherently
biased, particularly from family members who have donated their loved ones’ brains due to fear that they had CTE
or dementia. Nonetheless, brain banks have been extremely important in understanding CTE, developing stages of
disease progression, and identifying potential clinical and behavioral complaints in those with CTE, but again, the
outcomes from these studies have all been limited to male athletes. We are, however, making positive strides in this
area, as recently it was announced that a female brain bank would be initiated through the National Posttraumatic
Stress Disorder Brain Bank to examine the relationship between head injury and dementia, specifically in women.
Further, a number of current and former female athletes have agreed to donate their brains for autopsy studies. As
in men, this will yield important insights into the effect concussions and TBI have during aging, and, importantly,
whether CTE pathology occurs in women. While these developments represent a movement in the right direction,
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we should also be ensuring that males and females who agree to donate their brains participate in longitudinal
studies to collect information about in vivo factors that influence the development and progression of disease.

Taken together, although our understanding of how concussions affect the aging process is still in its infancy,
there is limited evidence to suggest a synergistic effect between concussions and aging on risk of neurodegenerative
disease, as well as alterations in brain and behavioral function in later-life. Yet, as it stands, a significant proportion
of the population who have exposure to concussion, and who, based on past research, may be at a heightened risk
of experiencing long-term impairments from these injuries, have been ignored. As such, it is imperative that future
research employs prospective studies to not only determine whether concussions are associated with different brain
and behavioral outcomes in male and female athletes, but also how concussions affect women longitudinally.
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