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Neuroimaging holds the promise that it may one day aid the clinical assessment of individ-
ual psychiatric patients. However, the vast majority of studies published so far have been
based on average differences between groups, which do not permit accurate inferences
at the level of the individual. We examined the potential of structural Magnetic Resonance
Imaging (MRI) data for making accurate quantitative predictions about symptom progres-
sion in individuals at ultra-high risk for developing psychosis. Forty people at ultra-high risk
for psychosis were scanned using structural MRI at first clinical presentation and assessed
over a period of 2 years using the Positive and Negative Syndrome Scale. Using a multivari-
ate machine learning method known as relevance vector regression (RVR), we examined
the relationship between brain structure at first clinical presentation, characterized in terms
of gray matter (GM) volume and cortical thickness (CT), and symptom progression at 2-year
follow-up. The application of RVR to whole-brain CT MRI data allowed quantitative predic-
tion of clinical scores with statistically significant accuracy (correlation=0.34, p=0.026;
Mean Squared-Error=249.63, p=0.024). This prediction was informed by regions tradi-
tionally associated with schizophrenia, namely the right lateral and medial temporal cortex
and the left insular cortex. In contrast, the application of RVR to GM volume did not allow
prediction of symptom progression with statistically significant accuracy.These results pro-
vide proof-of-concept that it could be possible to use structural MRI to inform quantitative
prediction of symptom progression in individuals at ultra-high risk of developing psychosis.
This would enable clinicians to target those individuals at greatest need of preventative
interventions thereby resulting in a more efficient use of health care resources.

Keywords: relevance vector regression, magnetic resonance imaging, cortical thickness, ultra-high risk, psychosis,
symptom progression, prediction

INTRODUCTION
The first full-blown psychotic episode is usually preceded by a
prodromal phase which is characterized by a progressive decline
in functioning and the emergence of attenuated psychotic symp-
toms. Individuals with these clinical features are said to be at
ultra-high risk (UHR) for developing psychosis. Results from a
recent meta-analysis suggest that about 18–36% of the UHR pop-
ulation will develop a psychotic disorder within 3 years from first
clinical presentation (1). Thus, the study of the UHR population
offers a window into the early stages of the illness under minimal
influence of confounding factors such as medication and chronic-
ity, and may inform the development of new early interventions
aimed at delaying or preventing the onset of the illness.

Neuroimaging offers a promising translational tool for the
characterization of brain abnormalities in individuals at UHR for
psychosis; in particular, it has been suggested that neuroanatomical
and neurofunctional measures could eventually be used to make
individualized predictions of clinical outcome in this population.

Consistent with this notion, a growing number of studies using
structural Magnetic Resonance Imaging (MRI) have identified
neuroanatomical differences between individuals at UHR who
subsequently did and did not develop psychotic symptoms. Below
we provide a brief overview of these studies, and then report
the results of a novel investigation that examined whether struc-
tural MRI allows accurate quantitative predictions about symptom
progression in individuals at UHR for psychosis.

Structural MRI has revealed a number of neuroanatomical
differences at first clinical presentation between individuals who
subsequently make transition to psychosis (UHR-T) and those
who do not (UHR-NT). In whole-brain voxel-based morphome-
try (VBM) studies, UHR-T relative to UHR-NT subjects showed
reduced gray matter (GM) volume of the inferior frontal cor-
tex, medial and lateral temporal, anterior cingulate cortex (ACC),
insular, inferior and superior frontal cortices (2), and reduced GM
density of the left temporal lobe and right cerebellum (3). In addi-
tion, VBM studies employing a region of interest (ROI) approach
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indicated that individuals who subsequently make transition to
psychosis show reduced volume in the left parahippocampal gyrus
(4), the bilateral insula (5) and the left ACC (6), and increased vol-
ume of the pituitary gland (7,8) and the hippocampus (9). A recent
VBM investigation has also shown that, in individuals at UHR for
psychosis, lower scores on a semantic fluency task are associated
with reduced GM density in a distributed network including the
right superior/middle temporal gyrus, the right insula, and the left
ACC, suggesting that the combination of these two types of data
could inform outcome prediction in this population (10).

Neuroanatomical alterations in psychosis may be expressed
not only in terms of alterations in GM volume or density but
also as changes in regional cortical thickness (CT) (11–15) and
the degree of CT asymmetry (16). Consistent with this notion,
UHR-T compared to UHR-NT have been found to show corti-
cal thinning of the ACC (17). However, a few subsequent ROI
studies did not find any significant differences in CT between
individuals who subsequently did and did not make conversion
to psychosis (9, 18–23).

While the above studies used a cross-sectional design, a number
of investigations have employed a within-subject design to exam-
ine the neuroanatomical changes that occur in individuals at UHR
around the time of illness onset. These studies have reported pro-
gressive reductions in the GM volume of the orbitofrontal and
cerebellar cortices (2, 24), fusiform and parahippocampal cor-
tices and cingulate gyrus (24); superior frontal, inferior temporal,
superior parietal cortices, and precuneus (2) in UHR-T compared
to UHR-NT. In addition, using an ROI approach, within-subject
studies have found greater progressive reductions in the GM vol-
ume of the insula (5), planum polare, planum temporale, and
caudal region (22) in UHR-T compared to UHR-NT (22). Using
cortical pattern matching techniques, Sun and colleagues (25) have
also revealed volumetric reductions in the prefrontal cortex in
UHR-T compared to UHR-NT (25). With respect to CT, the only
longitudinal study published so far has reported progressive thin-
ning of the anterior cingulate, precuneus, and temporal-parieto-
occipital cortex in UHR-T compared to UHR-NT and healthy
controls (26).

A small fraction of studies of the UHR population have inves-
tigated white matter (WM) abnormalities associated with transi-
tion to psychosis using either VBM or diffusion tensor magnetic
resonance imaging (DTI). With respect to VBM, only two stud-
ies have investigated WM abnormalities in UHR subjects as a
function of clinical outcome (26, 27). In the first study, UHR-
T subjects showed increased WM volume in the left frontal lobe
and a progressive decrease in the left fronto-occipital fasciculus
(27). In the second study, UHR-T subjects showed a decrease in
total WM volume relative to healthy controls but not relative to
UHR-NT, in addition to which the comparison between UHR-
NT and controls was also not significant (26). With respect to
DTI, a large number of studies have compared individuals at
UHR against healthy controls (28–34) but only three of them
have subdivided the UHR group according to clinical outcome
(30–32). One of these studies revealed that UHR-T had lower
fractional anisotropy (FA), an index of WM integrity, at base-
line compared to healthy controls in the medial frontal region
(30). In addition, UHR-T had lower FA in the WM lateral to

the right putamen and in the left superior temporal gyrus but
higher FA in the left posterior temporal WM, compared to UHR-
NT (30). Finally, in UHR-T, the FA in the left middle temporal
lobe was negatively associated with the severity of positive symp-
toms (30). The remaining two studies reported no cross-sectional
differences in WM integrity between UHR-T and UHR-NT (31,
32). However, Carletti and colleagues (31) reported a progressive
reduction of left frontal WM in UHR-T which was not evident in
UHR-NT (31).

Taken collectively, the above studies provide evidence for dif-
ferences in brain structure between individuals at ultra-high risk
for psychosis who subsequently do and do not develop the ill-
ness, particularly in the prefrontal and temporal cortices. These
studies, however, each reported significant effects only at a group
level, whereas clinicians treating psychosis have to make decisions
about the individual in front of them. Because effects that are
significant at a group level do not necessarily permit accurate
inferences about individuals, the translational potential of the
above findings for everyday clinical practice is unclear. In addi-
tion, these studies were conducted using a standard univariate
analytical approach in which each voxel is considered indepen-
dently. This approach is well suited to detect effects that are
robust and localized; however, it is not very sensitive to differ-
ences that are subtle and highly distributed across the brain. For
these reasons, an increasing number of recent studies of psychi-
atric disorders have adopted an alternative approach based on
multivariate machine learning methods (35, 36). A key bene-
fit of multivariate machine learning methods is that they allow
one to make predictions that are specific to a given individual,
rather than providing an average estimate for a group. This greatly
increases the likelihood that the results can be translated into a
tool that is useful in a real world clinical setting. A further ben-
efit of multivariate machine learning methods is that they take
into account the inter-relationship between different measures
(e.g., GM volume across different voxels), and therefore are bet-
ter suited for detecting subtle and spatially distributed patterns
of alteration. The vast majority of multivariate machine learn-
ing studies of psychiatric disorders published so far have been
limited to categorical decisions such as whether an individual
belongs to a patient or control group; whether an individual
will respond to treatment or not; or whether an individual will
develop a disorder or not (35). Within this context, studies of
the UHR population employing multivariate machine learning
methods have typically focused on prediction of clinical outcome
in terms of transition/non-transition to psychosis. For example,
Koutsouleris and colleagues (37) demonstrated that a distributed
network of abnormalities in GM volume allows prediction of sub-
sequent transition to psychosis with an accuracy of 82% (37).
This notable finding was replicated in an independent cohort by a
subsequent investigation (38). However, follow-up studies of indi-
viduals at UHR have shown substantial heterogeneity in symptom
progression both among those who develop psychosis and those
who do not (39, 40). For instance, a recent investigation showed
that about 75% of those individuals who do not develop psy-
chosis present with symptoms remission after 3 years while the
remaining 25% are still showing sub-threshold symptoms (40). In
addition, even those individuals at UHR who show full or partial
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remission of positive symptoms remain at a lower level of func-
tioning compared to non-psychiatric comparison individuals (41).
Another study reported that only 30% of those individuals who
do not develop psychosis experience a full symptomatic and func-
tional recovery (42). Despite the high degree of heterogeneity in
clinical outcome beyond and above transition of psychosis, none
of the multivariate machine learning studies of the UHR popu-
lation published so far have focused on quantitative changes in
symptomatology.

Here we sought to expand the existing literature by investi-
gating the potential of structural MRI for predicting the course
of clinical symptomatology at 2-year follow-up in individuals at
ultra-high risk for psychosis using Relevance Vector Regression
(RVR) (43). The advantage of RVR relative to other multivari-
ate machine learning techniques, such as Support Vector Machine
(35), is that it allows the quantitative prediction of a variable of
interest (e.g., a patient’s score on a clinical scale) at individual
level, without the need for a discrete categorical decision (e.g.,
patients vs. controls). In recent years, RVR has been successfully
used in several neuroimaging studies of healthy people (44, 45) and
patients with psychiatric (46, 47) or neurological disorders (48).
We therefore hypothesized that the application of RVR to neu-
roanatomical data, particularly GM volume and CT, would allow
quantitative prediction of symptom progression at individual level
with statistically significant accuracy.

MATERIALS AND METHODS
SUBJECTS
The total sample consisted of 40 subjects at ultra-high risk for
psychosis (UHR), recruited at first presentation from consecutive
referrals to the Outreach and Support in South London (OASIS)
service in London, UK (49). OASIS is a clinical service located
in Lambeth, South London, that offers treatment to individuals
between 14 and 35 years of age who meet the ultra-high risk crite-
ria for psychosis. Individuals at ultra-high risk for psychosis were
identified based on the Personal Assessment and Crisis Evaluation
(PACE) criteria (50).

Subsequent to MRI scanning, the UHR subjects were mon-
itored for at least 2 years. Over the 2-year follow-up, 7 UHR
individuals developed psychosis (UHR-T) and the remaining 33
did not (UHR-NT). Transition to psychosis during the follow-up
period was established according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria
based on clinical consensus between at least two experienced psy-
chiatrists. Most of the UHR group (31/44; 70%) were naïve to
antipsychotics at the time of scanning; the remaining 13 (30%)
had been exposed to antipsychotics for an average of 9.7 weeks
(SD= 13.3).

SOCIO-DEMOGRAPHIC AND CLINICAL MEASURES
Socio-demographic measures included age, gender, and years of
education. Clinical symptoms were assessed in all participants at
the time of scanning and at 2-year follow-up using the Positive
and Negative Syndrome Scale (PANSS) (51). Symptoms in the
UHR participants were also assessed using the Comprehensive
Assessment of At-Risk Mental States (CAARMS) (50). Socio-
demographic and clinical variables were analyzed using Student’s

t -test for continuous data and a chi square test for ordinal data.
These statistical analyses were performed using the Statistical Pack-
age for the Social Sciences 19.0 (SPSS 19.0 for Windows, Chicago,
IL, USA).

ACQUISITION OF NEUROANATOMICAL DATA
Neuroanatomical images were acquired using a 1.5-T GE NV/I
Signa LX Horizon system (General Electric, Milwaukee, WI, USA)
at the Center for Neuroimaging Sciences, King’s College Lon-
don. T1-weighted Inversion Recovery Spoiled Gradient struc-
tural images were acquired with the following acquisition para-
meters: TE= 5200 ms, TR= 15900 ms, flip angle= 20°, field of
view= 220 mm× 176 mm, slice thickness= 1.5 mm, number of
slices= 124, image matrix= 256× 256× 124.

ANALYSIS OF NEUROANATOMICAL DATA
The analysis of the MRI data comprised of three main compo-
nents. Firstly, the unified segmentation procedure (52) imple-
mented in SPM81 was used to segment all the images into GM,
WM, and cerebrospinal fluid (CSF) partitions. We then pre-
processed the images using two alternative approaches that allowed
us to extract information on GM volume and CT respectively.
Secondly, we used multivariate RVR (43) as implemented in
the Pattern Recognition for Neuroimaging Toolbox2 (PRoNTo).
Thirdly, we performed a standard univariate analysis as imple-
mented in Statistical Parametric Mapping (SPM8) software. Below
we describe each component in more detail.

Creation of voxel-based gray matter volume maps
A fast diffeomorphic image registration algorithm (DARTEL) was
used to warp the GM partitions into a new study-specific reference
space with an isotropic spatial resolution of 1.5 mm3 (53–55). The
warped GM partitions were then affine transformed into the MNI
space. An additional “modulation” step (56) was used to scale the
GM probability values by the Jacobian determinants of the defor-
mations to ensure that the total amount of GM in each voxel was
conserved after the registration. As a final step the GM probability
values were smoothed using a 8-mm FWHM Gaussian kernel.

Creation of voxel-based cortical thickness maps
A voxel-based Laplacian method (57, 58) was used to create a
voxel-based cortical thickness (VBCT) map for each subject using
the GM, WM, and CSF partitions created in the segmentation
step. The resulting VBCT maps contained CT values within voxels
identified as GM and zeros outside the cortex and were saved in
the native space of the input images (0.5 mm3 resolution). Each
VBCT map was warped into the new DARTEL reference space
by applying the corresponding subject-specific deformation field
and resampled to an isotropic voxel size of 1.5 mm3. The warped
images were then scaled by the Jacobian determinant of the defor-
mation and smoothed with a 6-mm Gaussian kernel. The same
warps, modulation and smoothing were also applied to a binary
mask created from each original VBCT map. Subsequently the
warped, scaled, and smoothed VBCT maps were divided by the

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.mlnl.cs.ucl.ac.uk/pronto/
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corresponding warped, scaled, and smoothed mask. The effect
of this procedure was to project the Gaussian smoothing kernel
applied to the warped images, into the native space of the sub-
ject while preserving the CT value over a region the size of the
smoothing kernel.

Multivariate RVR analyses
We examined the relationship between brain structure and
changes in PANSS total score from baseline to 2 years follow-up
using multivariate RVR as implemented in PRoNTo (see text foot-
note 2) running under Matlab (Mathworks, 2010 release) (59).
This method has been described elsewhere (47). In brief, RVR is
a sparse kernel learning multivariate regression method set in a
fully probabilistic Bayesian framework. Under this framework, a
zero-mean Gaussian prior is introduced over the model weights,
governed by a set of hyperparameters – one for each weight. The
most probable values for these hyperparameters are then itera-
tively estimated from the training data, with sparseness achieved
due to the posterior distributions of many of the weights peaking
sharply around zero; those training vectors associated with non-
zero weights are referred to as “relevance” vectors. The optimized
posterior distribution over the weights can then be used to predict
the target value (e.g., PANSS score) for a previously unseen input
vector (e.g., CT map) by computing the predictive distribution
[for a more in-depth and detailed description see Tipping (43)].

In the current study, the input vectors (i.e., each subjects CT
map) were mean centered using the training data, and an estimate
for the model’s generalizability obtained via leave-one-out cross
validation, indexed using the Pearson correlation coefficient and
mean square error (MSE) between actual and predicted difference
between baseline and follow-up on PANSS total scores. The sig-
nificance of both the correlation coefficient and the MSE score
was estimated using a permutation test whereby the input-target
data were randomly paired and the RVR re-run 1000 times. This
created a distribution of correlation and MSE values reflecting the
null hypothesis that the model did not exceed chance. The num-
ber of times the permuted value was greater than (or with respect
to MSE values, less than), or equal to, the true value, was then
divided by 1000 providing an estimated p-value for both the cor-
relation coefficient and observed MSE. For ease of visualization,
a table was also created using an arbitrary 70% threshold for all

successful RVR derived weight maps, showing those regions with
weight vector values in the upper, and lower, 30% of the absolute
maximum weight vector values across all regions. These values
represent the relative contribution of each voxel to the regression
function, in the context of every other voxel.

Univariate SPM analyses
We also examined the relationship between brain structure and
changes in PANSS total score from baseline to follow-up using a
standard, univariate approach. A multiple regression model was
performed in SPM8 software to identify any voxels in the GM
volume and CT maps respectively that showed a significant asso-
ciation with PANSS total scores. Statistical inferences were made at
p < 0.05 [corrected for multiple comparisons using Family-Wise
Error (FWE)]. For completeness, when no significant effects were
found, we also examined trends at p < 0.001 uncorrected.

RESULTS
SOCIO-DEMOGRAPHIC AND CLINICAL CHARACTERISTICS
Socio-demographic and clinical variables are reported in Table 1
for all participants as well as for the sub-groups that did and did
not make transition to psychosis separately. It can be seen that, on
average, participants showed clinical improvement at follow-up
relative to baseline (t =−2.555; p= 0.015; df= 39). Examina-
tion of the subject-specific scores revealed that 26 individuals
improved, 3 remained stable, and 11 worsened over the 2-years
follow-up time. No significant association were found between
the change in PANSS total scores from baseline to follow-up and
antipsychotic medication (t =−0.269, df= 38, p= 0.789).

MULTIVARIATE RVR ANALYSIS
The application of RVR to whole-brain CT images allowed
quantitative prediction of symptom progression with statistically
significant accuracy (correlation= 0.34, p-value= 0.026; Mean
Squared-Error= 249.63, p-value= 0.024, see Figure 1). The use
of an arbitrary threshold corresponding to the top, or bottom,
30% of the maximum weight vector score showed that the pre-
diction appeared to be based on a distributed pattern of CT
including, in particular, the left insular cortex and lateral and
medial regions of the right temporal cortex (see Table 2; Figure 1).
In contrast, the application of RVR to the whole-brain GM
volume images did not allow accurate prediction of symptoms

Table 1 | Demographic and clinical variables by group.

Groups Group comparison

UHR (N = 40) UHR-NT (N = 33) UHR-T (N = 7)

Age (years) 23.90 (4.50) 24.06 (4.61) 23.14 (4.18) t =0.48, p=0.63 df=38

N male/female 25/15 20/13 5/2 χ2
=0.29, p=0.59

Years of education 12.82 (2.31) 12.88 (2.31) 12.50 (2.51) t =0.36, p=0.72, df=36

PANSS total baseline 53.30 (14.95) 50.27 (12.02) 67.57 (19.85) t =−3.06, p=0.004, df=38

PANSS total follow-up 46.50 (13.34) 43.61 (10.25) 60.14 (18.27) t =−3.34, p=0.002, df=38

Difference PANSS

follow-up – baseline

−6.80 (16.83); t =−2.555;

p=0.015; df=39

6.67 (15.16) 7.43 (24.78) t =−0.10, p=0.91, df=38

Data reflect mean (and standard deviation). df, Degrees of freedom; PANSS, positive and negative syndrome scale.
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Actual difference between baseline and follow-up total PANSS score
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FIGURE 1 | (A) Red/Blue circles show voxels with a weight score in the
top/bottom 30% of the maximum (range −0.011608 to –0.026588). Axial
Slices (MNI) Left-Right: −65, −49, −40, −23, −17, 16, 25.

(B) Scatter plot showing the predicted difference between baseline and
follow-up total PANSS score for each subject derived from their cortical
thickness data using RVR vs. the actual difference.

Table 2 | Neuroanatomical regions with a weight vector score in the top and in the bottom 30% of the maximum weight vector score across all

regions for the cortical thickness based RVR used to accurately predict the difference between baseline and follow up total PANSS score.

Region Number of

voxels

MNI coordinate

(x, y, z)

wi

REGIONS WITH POSITIVE wi SCORES

Right Temporal Fusiform Cortex 27 28.5, −9, −46.5 0.0266

Right Temporal Pole 8 25.5, 6, −48 0.0213

REGIONS WITH NEGATIVE wi SCORES

Right Temporal Pole 29 58.5, 6, −22.5 0.0115

Left Insular Cortex 26 −39, 6, −4.5 0.0112

20 −42, −6, −1.4 0.0116

Right Parahippocampal Gyrus (anterior division) 9 10.5, −12, −21 0.00954

Right Inferior Temporal Gyrus (posterior division) 7 60, −27, −30 0.00882

MNI, Montreal Neurological Institute; RVR, relevance rector regression; PANSS, positive and negative syndrome scale; wi, weight vector score indicating the relative

contribution of each voxel to the regression function.

wi and MNI coordinates refer to the peak weight vector score in each cluster.

progression (correlation= 0.14, p-value= 0.627; Mean Sum of
Squares= 369.50, p-value= 0.621).

UNIVARIATE SPM ANALYSIS
Whole-brain analysis of the GM volume and CT data did not detect
any regions that showed a significant positive or negative associa-
tion with the change in PANSS total scores from baseline to follow-
up at p < 0.05 (FWE corrected). With a less conservative statisti-
cal threshold (p < 0.001 uncorrected), we detected a number of
regions showing a positive association with the change in PANSS
total scores. With respect to GM volume, the right middle frontal
gyrus (MNI coordinates: 39, 15, 37.5; p= 0.929; z-score= 3.266)
was associated with changes in PANSS scores. With respect to
CT, the right inferior parietal lobule (MNI coordinates: 61.5,
−34.5, 25.5; p= 0.802; z-score= 3.659), left cingulate gyrus (MNI

coordinates:−9, 1.5, 46.5; p= 0.986; z-score= 3.340), right mid-
dle temporal gyrus (MNI coordinates: 49.5, −63, 4.5; p= 0.992;
z-score= 3.295) and left insula (MNI coordinates: −34.5, −15,
16.5; p= 0.998; z-score= 3.197) were associated with changes in
PANSS scores.

DISCUSSION
At present it is difficult to use clinical data acquired at first clin-
ical presentation to predict subsequent progression of symptoms
in individuals at UHR for psychosis. This prevents the selective
delivery of potentially preventative interventions to those who
are most likely to develop persistent symptoms. Recent studies
have shown that the application of multivariate machine learning
methods to structural neuroimaging data allows accurate cate-
gorical prediction of which individuals at UHR will and will not
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make transition to psychosis (37). However, as discussed in the
introduction, within the UHR population there is a substantial
heterogeneity in symptom progression above and beyond tran-
sition to psychosis (40–42). We therefore examined for the first
time whether it is possible to use neuroanatomical information to
make accurate quantitative predictions of symptom progression
in individuals at UHR. Our results indicate that the application of
RVR to whole-brain CT MRI data allows quantitative prediction
of symptom progression (i.e., both the magnitude and direction of
change for each individual) at 2-year follow-up with statistically
significant accuracy. To our knowledge, this is the first evidence
that neuroimaging techniques may inform the clinical assessment
of UHR individuals by allowing quantitative estimation of the
course of clinical psychopathology. In contrast, GM volume did
not allow accurate prediction of symptoms progression at individ-
ual level despite two previous reports that this information allows
categorical prediction of transition to psychosis (37, 38).

What is the implication of our differential finding for CT and
GM volume? GM volume is thought to depend on local CT as
well as cortical folding and gyrification (i.e., cortical surface area),
while CT does not include measures of local surface (57). A recent
investigation has also shown that CT and cortical surface area are
genetically and phenotypically independent, and that regional GM
volume is more closely related to the latter than the former (60). It
follows that the two approaches provide complementary informa-
tion, and that one can be more or less than the other depending
on the nature of the neuroanatomical changes being examined. In
the context of our investigation, the fact that symptom progression
was predicted by CT but not GM volume indicates that changes in
symptomatology are specifically associated with differences in CT
as opposed to cortical folding and gyrification.

Examination of the regions that provided the greatest contri-
bution to prediction of symptom progression identified specific
areas amongst others traditionally associated with schizophrenia,
namely the right temporal fusiform cortex, the right temporal pole,
the right parahippocampal gyrus, the inferior temporal gyrus,
and the left insular cortex (see Table 2; Figure 1). The tempo-
ral fusiform cortex and temporal pole have been reported to show
CT differences over time between UHR-T and controls but not
between UHR-NT and controls (26). The temporal pole is thought
to be implicated in different cognitive functions such as emotion,
attention, behavior, and memory (61). In people with schizophre-
nia, abnormalities in this region have been associated with a range
of clinical symptoms including, amongst others, auditory hallu-
cinations and thought disorder (62, 63). The temporal fusiform
cortex plays a central role in facial configuration processing in
the healthy brain (64). Deficits in this domain have been recently
reported in the UHR population, and may be one of the fac-
tors that underlie social dysfunction in schizophrenia (65). The
parahippocampal gyrus has also been reported to show reduced
thickness both in the UHR (20, 66) and first episode psychosis
(67). Specifically, this area has been identified as a site of robust
structural and functional alteration in individuals at ultra-high
risk for psychosis (68) and those who have developed the disorder
(69, 70). The right inferior temporal gyrus volume has also been
reported as progressively reduced overtime in UHR-T compared
to UHR-NT (2). Finally the left insular cortex plays a key role in

emotional regulation, which is typically altered in psychosis, and
has been found to show reduced volume in UHR-T compared to
UHR-NT (2, 5).

While the results of our investigation provide further evidence
for the implication of the above regions in schizophrenia, it should
be noted that in multivariate methods an individual region may
display high discriminative power due to two possible reasons:
(i) a difference in volume between groups in that region; (ii) a
difference in the correlation between that region and other areas
between groups. Thus, the regions identified in our investigation
should be interpreted as parts of a spatially distributed pattern
rather than as independent areas. In addition, it should be noted
that these regions were identified using an arbitrary threshold of
30% based on previous studies (71, 72), and that prediction of
symptom progression was to some extent informed by all voxels
in the brain since no feature extraction was employed.

In contrast to the results obtained using RVR, the univariate
analysis of the structural MRI data, in which each voxel is con-
sidered as a spatially independent unit, did not detect any regions
that showed a significant association with progression of symp-
toms after correction for multiple comparisons. This supports the
idea that multivariate methods such as RVR are more sensitive
to the subtle and spatially diffuse alterations typically observed in
psychiatric disorders, and therefore may be better suited to the
possible development of clinical diagnostic tools, than standard
mass-univariate techniques (73).

The present study has four main limitations. Firstly, the number
of subjects included in the study was relatively small and therefore
the generalizability of the results is unclear. Multi-center stud-
ies would be needed in order to better characterize the predictive
value of structural neuroimaging for predicting symptom progres-
sion in real-life clinical practice. Secondly, 30% of our participants
had been exposed to antipsychotic medication which might have
influenced our results for instance by resulting in changes in brain
structure while also influencing symptom progression. Neverthe-
less, as we report in the Results, we found no evidence for an
association between antipsychotic medication at first clinical pre-
sentation (i.e., yes/no) and progression of illness. Thirdly, there are
a number of potential sources of individual variability in symp-
tom progression that were not included in our statistical model;
these include, for example, socio-demographic variables such as
age, gender, and ethnicity, and treatment course variables such as
life events and psychosocial interventions during the follow-up
period. We expect that the integration of this information within
the same statistical model would improve prediction of symptom
progression. Fourthly, in the present investigation we examined
the predictive value of gray rather than WM as the former could
be estimated more accurately than the latter. However, given the
number of studies reporting an association between WM integrity
and clinical outcome in the UHR population (26, 27, 30–32), it
would be interesting to use DTI scans in future studies.

In conclusion, the results of the present study provide proof-of-
concept that it might be possible to use structural neuroimaging
to inform quantitative prediction of subsequent progression of
symptoms in individuals at UHR for psychosis. This would enable
clinicians to target those individuals at greatest need of preven-
tative interventions thereby resulting in a more efficient use of
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health care resources. It should be noted, however, that daily clin-
ical practice often requires clinicians to make prompt treatment
decisions, and delaying the decisional process in order to acquire
and analyze structural neuroimaging data could be impractical and
potentially harmful to a patient. A possible solution would be the
development of a practical and flexible analytical tool for clinical
use that does not require the manual implementation of a lengthy
pipeline. In addition, it is likely that the use of structural neu-
roimaging in everyday clinical practice would ultimately require a
greater accuracy of prediction than that found in the present study.
Such accuracy might be improved, for example, by combining
structural neuroimaging with other types of data, an integrative
approach which was successfully applied to an investigation of
mild cognitive impairment (74).
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