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Abstract
Aggression is a phylogenetically stable behavior, and attacks on
conspecifics are observed in most animal species. In this review, we
discuss translational models as they relate to pathological forms of
offensive aggression and the brain mechanisms that underlie these
behaviors. Quantifiable escalations in attack or the development of an
atypical sequence of attacks and threats is useful for characterizing
abnormal variations in aggression across species. Aggression that serves
as a reinforcer can be excessive, and certain schedules of reinforcement
that allow aggression rewards also allow for examining brain and behavior
during the anticipation of a fight. Ethological attempts to capture and
measure offensive aggression point to two prominent hypotheses for the
neural basis of violence. First, pathological aggression may be due to an
exaggeration of activity in subcortical circuits that mediate adaptive
aggressive behaviors as they are triggered by environmental or
endogenous cues at vulnerable time points. Indeed, repeated fighting
experiences occur with plasticity in brain areas once considered hardwired.
Alternatively, a separate “violence network” may converge on aggression
circuitry that disinhibits pathological aggression (for example, via disrupted
cortical inhibition). Advancing animal models that capture the motivation to
commit pathological aggression remains important to fully distinguish the
neural architecture of violence as it differs from adaptive competition among
conspecifics.
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The adaptive significance of aggressive acts has been criti-
cally examined for more than a century now1, revealing neural  
substrates of agonistic behaviors, including excitatory and inhibi-
tory amino acids, monoamines, and neuropeptides, in inverte-
brates, reptiles, fish, rodents, and non-human primates. Such 
efforts piece together the progression of phylogenetically con-
served behaviors beginning with social pursuit and culminating  
in forceful attacks. The framework provided by these studies on 
species-typical aggression has allowed us to characterize devia-
tions from adaptive agonistic encounters with the potential to 
identify the neurobiology of pathological aggression as it pertains 
to human and veterinary medicine and the criminal justice  
system. These discoveries guide ongoing and future scientific 
endeavors that will clarify the neuroplastic events that ultimately  
promote maladaptive aggression and violence.

Adaptive aggression
Defense of one’s territory, resources, social position, and group 
identity depends on the activation of neural circuits that over-
lap and interact with those involved in many other prominent 
adaptive social behaviors, including sex, parenting, bond-
ing, and play2–4. Mammalian aggression is rooted in limbic 
and diencephalic circuits, including connections between the 
medial amygdala (MeA), preoptic area, bed nucleus of the stria  
terminalis (BNST), lateral septum (LS), ventral portion of the  
premammillary nucleus (PMv), ventral lateral portion of the 
ventromedial hypothalamus (VMHvl), supramammillary nuclei  
(SUM), anterior hypothalamic nucleus, and paraventricular 
nucleus of the hypothalamus5. Evidence suggests that these areas  
collectively encompass a hierarchical role in the generation 
of attack sequences, and they also appear in a generalized  
social network in the brain6.

For many species, pheromonal cues from hostile social targets are 
coded by the depolarization of Gα

O
-containing vomerosensory 

neurons (VSNs) in the basal vomeronasal organ7, triggering 
a distinctive pattern of activation across cortical, limbic, and 
brain stem nuclei to initiate or inhibit an attack8. Here, evidence 
favors parallel processing of pro- and anti-social information 
to yield an adaptive behavioral output. Co-activation of Gα

i
- 

positive VSNs by alternative non-volatile pheromonal signals  
can modulate the pro-aggressive actions of Gα

O
-positive cells9,10.

Sensory signals carried by VSNs terminate in the accessory 
olfactory bulb where the topographical organization of odor 
information is relayed to the MeA and other limbic structures 
(for example, BNST) according to a social stimulus–dependent 
activational pattern11. Inputs from the amygdala, BNST, and  
LS to the hypothalamus further coordinate the production of 
autonomic and somatic attack elements12–16. The PMv pro-
vides excitatory stimulation of the murine SUM and VMHvl,  
which modulate attack duration and the total number of attacks 
during a fight, respectively17. Steroid receptor–expressing  
neurons (that is, ESR1+ cells) in the VMHvl appear to shape  
the strength and quality of these attacks18–20. Indeed, the excit-
ability of hypothalamic nuclei adapts to repeated fighting experi-
ences21. Specifically, daily bouts of aggression fine-tune ensem-
bles of ESR1+ VMHvl neurons in mice, suggesting that cell 

populations active during the execution of a fight are recipro-
cally modified by these behavioral outputs22. Significant meas-
ures of plasticity, including changes in catecholamine uptake, 
have also been demonstrated in cerebral cortex of mice with  
only a single aggressive experience23,24.

Winning social confrontations or territorial fights largely 
depends on the functional integrity of these limbic and hypotha-
lamic brain areas. The mesocorticolimbic dopamine system 
further encodes information about the outcome of these 
social encounters. This action–outcome link is evident in the  
maintenance of social status and contributes to the motivation 
to engage in or instigate future fights17,25–29. The expression of  
neuropeptides and their receptors (that is, corticotropin- 
releasing factor, oxytocin, and vasopressin) that modulate 
monoaminergic neurons is equally important for stabilizing 
patterns of aggressive behavior30,31. These fighting-induced 
patterns of neural activity are accompanied by generalized 
increases in arousal and by elevations in serum corticosterone  
concentrations indicating instant sympathetic activity followed 
by glucocorticoid activation. Furthermore, these systems are 
influenced by endogenous anabolic steroids. Testosterone levels 
in male marine iguanas of the Galápagos rise significantly 
during the mating season, when their hostility toward other 
males also escalates; when hormone levels dip, the males  
cohabitate peacefully. Similar observations for species-typical 
aggression have been measured in fighting fish, roosters, rodents, 
and primates32–36.

Current neuron-specific viral manipulations are guided by evi-
dence from early electrical recording and stimulation work with 
microelectrodes aimed at cell clusters in the medial and lateral 
hypothalamus37–42 as well as the central and periaqueductal  
gray43,44. Pioneering work by Chi and Flynn points to a modula-
tory role of cortical and limbic structures over hypothalami-
cally triggered aggressive behaviors45, including a hippoc-
ampal–septal–hypothalamic circuit46. Leroy et al.47 recently 
corroborated and extended this proposal, showing that the  
dorsal CA2 region of the hippocampus provides excitatory tone  
over the dorsal LS. This glutamatergic pathway disinhibits the 
VMHvl through GABAergic modulation of the ventral LS, 
which was found to directly reduce the tonic activity of VMH  
ESR1+ neurons activated during a fight. Efforts like these that 
dissect the complex circuitry underlying specific motivational, 
hedonic, and adaptive determinants of aggression will provide 
critical insight about potentially pathological reactive and cold 
forms of agonistic behaviors.

Evidence for a hierarchical neural organization of species- 
typical aggression is further supported by studies targeting  
midbrain structures, including the central gray at the level of the 
superior colliculus. Recordings from the dorsal periaqueductal 
gray (PAG) reveal its functional activation during fights and 
electrical stimulation of this region rapidly generates intense  
affective defense48,49. Tracing studies have identified descend-
ing second-order glutamatergic PAG projections to the pontine  
nucleus, raphe magnus, and locus coeruleus that modulate arousal, 
sympathetic tone, and motor aspects of the well-characterized 
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feline defensive attack44. Ascending attack-promoting tracts 
densely target areas of the VMH, which, as mentioned above, 
also coordinates elements of attack performance through recip-
rocal PAG innervations. Much less is known about upstream 
telencephalic modulators of species-typical aggression, 
although changes in functional activity within the neocortex 
have been observed after fighting in rodents and hamsters50–52.  
In addition, the initiation of attack, execution patterns, and  
cessation of an aggressive bout can be significantly modulated 
by descending cortical projections targeting limbic and brain 
stem areas. Such observations point to a possible source of 
input for “top-down” dysregulation of what is typically adaptive  
fighting53.

Aggressive behaviors, even in contests without physical con-
tact, can be advantageous and may be the basis for the “winner 
effect”, particularly when resources are scarce. When aggres-
sive displays lead to physical attacks, dominant and subordi-
nate profiles emerge quickly and often result in the formation 
of a social hierarchy54. Such encounters are a normal part of  
daily intercourse for most gregarious animals. Thus, it is 
necessary to consider efficient fighting in the context of a  
specific species’ adaptive behavioral repertoire. Understanding 
the cortical and subcortical mechanisms that are fundamental 
to orchestrating species-typical adaptive aggression is essen-
tial for characterizing the pathological origins and neurobiology  
of excessive aggression55,56. Effective models of pathological 
aggression should, in simple terms, be capable of identifying 
the neural processes that motivate organisms to fight excessively 
under conditions that would not typically produce intense or 
prolonged attacks. It is important to consider that even the most  
excessive forms of fighting can be circumstantially adaptive.

Modeling pathological aggression
According to classic ethological perspectives, pathological 
aggression does rarely manifest beyond humans, as aggression 
is considered a necessary means for survival57. But in the 1990’s 
striking reports of intragroup coordinated attacks between 
neighboring chimpanzees provided evidence to the contrary58. 
Tanzanian chimpanzee raids on neighboring troops living in  
bordering territories present themselves as excessive, antisocial,  
and violent58. As reviewed by de Boer59, rodent and other  
animal models of excessive aggression are characterized by 
operational criteria that include elements that are impulsive 
(short latency to attack), excessive (increased levels of attack), 
and socially atypical (injurious attack topography, disregard for  
submissive signals, and indiscriminate social targeting). In line 
with these deviations in behavior, unique patterns of functional  
neural activation are apparent in comparisons between potentially  
pathological and species-typical aggressors. For example,  
artificial selection of male mice with short attack latencies 
generates a population of excessively aggressive animals that  
exhibit atypical patterns of activation (that is, c-Fos expression) 
in the medial prefrontal cortex, central amygdala, and the afore-
mentioned ventral lateral portion of the PAG and VMHvl  
after a fight60.

Clinical evidence strongly supports a top-down theory for the 
occurrence of violence61. Transcranial direct current stimulations 

of the human dorso-lateral prefrontal cortex decrease inten-
tions for physical or sexual assault in healthy women and 
men62. Evidence from imaging studies further demonstrates 
that deficits in cortical inhibition promote hyper-reactive  
amygdaloid responses to aggressive words, which in turn may 
facilitate maladaptive aggression63. In such cases, the impulse  
to act aggressively may be less of a choice and more the  
product of hardwired cortical dysfunction. Experimental mod-
els incorporating mice corroborate the occurrence of cortically 
mediated pathological aggression, whereby brief optogenetic 
stimulations (20 Hz) of channelrhodopsin or halorhodopsin 
residing on neurons in the prefrontal cortex bi-directionally  
control patterns of fighting behavior. In fact, stimulation delays 
the onset of an attack whereas inhibition of cortical cells facili-
tates vicious attacks64. A wealth of human studies suggest that 
areas of the cortex (for example, the anterior cingulate cor-
tex) allow us to resolve emotional and cognitive conflicts via 
inhibitory control over downstream limbic targets61. However, 
it should be noted that descending excitatory pathways target-
ing hypothalamic attack areas can also facilitate impulsive-
like aggressive behaviors at least in rodents. Stimulation of 
pyramidal neurons that specifically innervate the mediobasal 
hypothalamus increases the number of offensive attacks, and  
activation of inputs to the lateral hypothalamus favors attacks 
directed at vulnerable areas of an opponent’s body53. Although 
most preclinical studies such as these employ loss- or gain- 
of-function parameters to determine the relationship between 
cortical nuclei and downstream limbic targets, it remains impor-
tant to learn how genetic65, social66, environmental67,68, and 
pharmacological69 variables might shape specific nuclei within  
cortical and subcortical cell groups and perhaps contribute 
to expressions of pathological aggression. In sum, rigorous 
experimental analyses of aggressive behaviors following manipula-
tions of cortical regions are of high importance given the clinical 
evidence.

Aggression as a reward
Neural circuits that support fighting evolved independently 
at several phylogenic levels, including insects, fish, reptiles, 
and mammals56,70. Therefore, it was unexpected that mem-
bers of each of these animal species would eagerly work for 
the opportunity to attack an opponent, indicating that aggres-
sion is further controlled by a conserved reward system71–74.  
Winning a confrontation is indeed a positive experience that 
strengthens future fighting, thus serving as a potent posi-
tive reinforcer or reward75–77. The concept of a reward includes 
at least three separable behavioral components: conditioning, 
incentive motivation, and a pattern of affective responses  
(for example, facial expressions and vocalizations)78. As 
such, when aggression serves as a reward after instrumental  
conditioning in mice, it appears to differ from normal terri-
torial fighting because it is not dependent on, or necessarily  
initiated by, olfactory stimuli, nor does it function to suppress 
other behaviors, like sex. In this case, seeking an opportunity 
to fight is triggered by conditioned environmental cues, and 
operant responding is driven by the opportunity to attack a  
conspecific (that is, an anticipated aggressive outcome). In 
line with this hypothesis, a direct infusion of the dopamine  
D1- and D2-like receptor antagonist SCH23390 into the nucleus 
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accumbens selectively disrupts responding for an expected  
aggression reward27.

A number of different schedules of reinforcement have been 
employed to investigate the motivational components of an 
aggression reward. Patterns and rates of responding during 
fixed ratio and progressive ratio schedules are perhaps most  
commonly used for providing an index of the motivational 
value for a given reinforcer79,80. However, after completing the 
demands of a fixed interval (FI) schedule to gain access to a fight,  
mice display significantly escalated, intense forms of attack 
that are far more vicious than species-typical fights81 (Figure 1). 
These displays of escalated aggression are exemplified by rapid 
attack latencies followed by a continuous burst of attacks82,83.  
Therefore, the pattern of this conditioned form of aggression 
appears context-specific. Mice conditioned to respond under an 
FI schedule of aggressive reinforcement display quite normal, 
species-typical patterns of fighting when an intruder suddenly  
invades their home cage (Figure 2).

A significant advantage of FI-conditioned aggression is the 
sensitive ability to capture the intensity of arousal during the  
anticipation of a fight. When operant behavior is reinforced by 
the opportunity to fight, the accelerating rate of operant respond-
ing during the interval preceding an aggressive confrontation 
serves as an index for the motivational state of an animal84–86.  
FI schedules allow for very precise dissections of both appe-
titive motivational and consummatory performance components 
of an attack (Figure 1). In fact, clear dissociations between the 
level of motivation to engage in aggression and the intensity  
of a fight can be discerned when aggression rewards are  
controlled by FI schedules, as described below in more detail83.

We speculate that the occurrence of an interaction between 
arousal and reward expectancy prompts an escalation of fight-
ing once behavioral requirements of the FI schedule are  
completed. Validated models of frustration similarly escalate the 
frequency of attacks on an opponent87–89. Indeed, the frustrative 
non-reward effect proposed by Amsel and Roussel90 has provided  

Figure 1. The sequence of experimental events for establishing individual levels of motivated responding for aggression and fighting 
performance during a daily fixed interval (FI) trial for aggression reward. Prior to their confirmation of territorial aggression, resident 
male mice are initially housed with females for at least 1 month. In subsequent daily resident–intruder confrontations, each resident male 
encounters a novel male intruder for less than 5 minutes in the resident’s home cage. After establishing an aggressive phenotype, each 
resident is trained during a daily FI schedule that is reinforced by the presentation of an intruder (delivered into the resident’s home cage). The 
duration of the FI is progressively increased from 1 second to 10 minutes over the course of about a month. Resident mice then are allowed 
to establish a consistent pattern of FI responding. The upper left panel displays typical FI10 scalloped patterns of responding by mice for an 
aggression reward. Individual responses (tick marks) that are typically generated during a 10-min FI are indicated at the bottom left for varying 
levels of anticipatory arousal. The first response initiated after the completion of the FI allows the introduction of an intruder into the resident’s 
home cage. The upper right panel displays one element of fighting behavior (attack bites) that can be examined and potentially altered by 
experimental manipulations. Other aggressive elements that can be quantitatively and qualitatively examined include the latency to a first 
attack, number of attack bouts (bottom right), and biting topography (not shown). Changes in appetitive motivational responding can occur 
with or without alterations in fighting performance.
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Figure 2. Aggression that serves as a reward is more intense 
than species-typical fighting. Aggressive behaviors, including tail 
rattle, sideways threat, and attack bites, are substantially increased 
when outbred male mice work during a fixed interval schedule for 
the opportunity to fight a conspecific (dark bars) as compared 
with species-typical levels of agonistic behavior that occurs during 
spontaneous aggression (open bars). Adapted from Fish et al.81 with 
permission from Springer-Verlag.

evidence for frustration-induced surges in generalized vigor. 
FI schedules simply require animals to wait before being rein-
forced. Close examination of mice performing under an FI 
schedule reveals a uniquely arousing component that emerges 
throughout the pre-fight interval. The anticipatory phase elevates  
corticosterone blood levels81, and there are progressive gains 
in digging and jumping behaviors from the first to the last 
minute of the FI83. Likewise, explosive human aggression is  
preceded by physiological indicators of stress, such as activation 
of the hypothalamic–pituitary–adrenal axis91 and the emotion  
of anger92. Thus, despite the anticipation for a reward, some 
degree of arousal, possibly corresponding to human frustration,  
is produced by interval schedules, further increasing their 
translational value when capturing components of explosive  
clinical aggression. Parametric studies on the physiological 
and neurobiological components of anticipatory responding for  
aggression rewards are further warranted.

Alcohol escalates the urge to fight
More than half of all violent criminal acts are linked to alco-
hol consumption, and alcohol-related violence causes sig-
nificant pain and suffering worldwide93–95. Such clinical data 
reveal that cycles of intoxication intensify reactive “hot” acts of  
violence. Alcohol induces a motivational state that culminates in 
repeated attempts to pursue violence despite behavioral impair-
ments and uncoordinated motor control96,97. Most emergency  

room visits across the globe resulting from alcohol intoxica-
tion are due to violence, far outnumbering traffic accidents 
and incidental mishaps98. In experimental models, alcohol 
has a wide range of acute and chronic effects on both motiva-
tional and consummatory behavioral processes. For example,  
low doses of alcohol acutely increase fighting perform-
ance in mice, rats, and monkeys by increasing the number of 
attacks and threats without affecting the motivation to fight. 
In contrast, higher doses of alcohol (>1.8 g/kg) disrupt both  
motivational and performance aspects of a fight83. Poor fighting 
performance persists with repeated exposures to alcohol despite 
a rapid and full recovery of operant responding for the oppor-
tunity to fight. This recovery emerges within just a few days,  
suggesting the development of tolerance to the suppressive  
effects of alcohol on aggressive motivation. In addition, appe-
titive response rates actually sensitize with repeated alcohol 
exposures despite continued disruption of fighting performance  
(Figure 3)83. Such data are important given that physical per-
formance is not a necessary component of most violent  
criminal acts, in which use of a firearm largely exceeds all other 
acts of aggression97,99.

The behavioral distinctions between motivational and perform-
ance measures suggest that mechanisms promoting aggres-
sive arousal are distinct from those that coordinate the attack. 
Both conditioned aggression and alcohol-escalated aggression 
depend on glucocorticoid receptor activation and thus are likely 
to reflect hot, reactive aggression81,100–102. In contrast, cold aggres-
sion is associated with a lack of sympathetic arousal and is more 
frequently linked to predation in animals and psychopathy in  
humans46,103–105. Sites of plasticity in response to repeated 
administrations of alcohol use (for example, prefrontal cortex,  
amygdala, extended amygdala, septal nuclei, and monoaminer-
gic terminal regions) may provide neural targets for examining  
their role in motivating offensive aggression.

Female aggression
Hillali Matama’s 1974 eye-witness documentation of a Tan-
zanian chimpanzee party raid was among the first to portray  
violence in non-human primates which contrasted with popular-
ized accounts of peaceful coexistence and conflict resolution58,106. 
In Matama’s account (page 16), the gruesome execution of a lone 
foraging male chimp was described in detail: “Once again, the 
victim was an isolated Kahama male—Dé was his name—and  
the attackers were a gang of four (chimpanzees) from Kasekela: 
three adult males and one adult female”58. Each member 
in this gang of four contributed to the physical assault and 
brutal killing of Dé. Despite this record and other clear  
indications of the potential for violence in females across the  
animal kingdom107–111, most experimental studies on aggres-
sion focus on territorial males. Interestingly, a significant subset 
of outbred female laboratory mice and rats housed with sterile 
males will consistently exhibit “rival aggression” toward unfa-
miliar female intruders112,113. At least three distinct aggressive 
phenotypes emerge from a population of regularly cycling out-
bred Swiss–Webster (that is, CFW and SW) female mice housed 
with castrated males: rival and gestational aggressors (>65%), 
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exclusively gestational aggressors (>20%), and non-aggressors  
(~10%)113. These studies add to a rich literature on female gesta-
tional aggression114,115 and defensive maternal aggression5,116,117, 
which are time-locked to hormonal changes associated with preg-
nancy, parturition, and lactation and serve a specific adaptive  
function to improve offspring survival.

Male-directed postpartum female aggression increases off-
spring survival by preventing lactation-concurrent pregnancies 
and infanticide. In individually housed lactating CFW females, 
male- and juvenile-directed attacks clearly require activation 
of estrogen receptor alpha–expressing neurons in the poste-
rior aspect of the VMHvl118. Although females rarely attacked 
adult female conspecifics under these conditions, activation  
of VMHvlEsr1+ cells can promote female-directed aggression. 
In rodents, hypothalamic inputs from the posterodorsal MeA 
may modulate the initiation of aggression by relaying threat-
related olfactory and pheromonal signals119. It is possible that, 
for individually housed lactating females, an adult female  
conspecific does not register as a threat warranting attack. In 

contrast, the majority of nulliparous CFW females housed with  
sterile males will readily engage in intense aggression toward 
adult female conspecifics113. Although gestational and postpartum 
maternal aggression have clear adaptive purposes, further 
studies are necessary to identify the neural underpinnings and 
evolutionary forces that maintain rival aggressors and non- 
aggressors in a population of nulliparous outbred females.

Future directions
•    Although male animals raised in isolation, including 

fish, lizards, birds, and most mammals, will readily 
fight in a species-specific manner (a core component of 
the innateness of aggression), cellular and molecular 
data suggest that aggression stems from a neurogenetic 
network that is extraordinarily plastic. Observations of  
neural plasticity with increases in aggressive behavioral  
experiences should be highlighted22. Investigations focused 
on these processes are providing much-needed insight 
toward an understanding of the evolution of excessive  
aggression.

Figure 3. Aggressive motivation escalates with repeated administrations of alcohol and remains persistently sensitized to lower 
concentrations of alcohol. Fixed interval (FI) response rates (upper middle) are depicted over repeated oral administrations (via gavage) 
of water or alcohol (2.2 g/kg; top) and 10 days later in response to a dose of water or a low challenge dose of alcohol (1.0 g/kg; bottom 
middle). Here, the motivation to fight is initially disrupted by alcohol before levels of FI responding recover to baseline. After just seven daily 
alcohol administrations, the motivation to fight in response to a low dose of alcohol becomes sensitized (bottom middle). Fighting behavior 
is persistently disrupted over the course of seven consecutive daily administrations of alcohol (2.2 g/kg; upper right) but not significantly 
affected 10 days later by a challenge dose of alcohol (1.0 g/kg; bottom right). Adapted from Covington et al.83 with permission from Frontiers 
Media SA.
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•    Quantitative measures that capture the intensity of an 
aggressive episode such as the latency to attack onset, 
the attack duration, and the attack frequency are instruc-
tive in the early characterization of agonistic behaviors. 
However, it can be argued that even the most formi-
dable fights are adaptive if they guarantee access to  
vital reproductive or environmental resources120. There-
fore, identifying pathological aggression requires more 
detailed analyses of attack dynamics and the specific  
sequence of behaviors exhibited by both the perpetrator  
and victim. For example, resident male rats will exhibit 
high levels of aggression toward an intruder conspe-
cific; however, when the submissive intruder displays 
his ventrum in a supine posture, further attacks are inhib-
ited. Pathological aggression would be evident in an 
aggressor that continued to attack despite demonstration  
of the supine posture by the intruder. Lag sequen-
tial behavioral analyses may reveal telltale behavioral  
signals from the subordinate intruder that, under species- 
typical conditions, should elicit a specific behavioral 
response from the dominant individual. Similarly, how an  
aggressive animal attacks an intruder provides valu-
able information about species-typical and pathologi-
cal behavior. In mice and rats, most attacks between 
males are directed toward the posterior dorsum. Atypical 
placement of attack bites on the vulnerable ventrum of  
an opponent can reflect pathological aggression and may 
provide more insight than attack frequency or duration 
alone59,60,69,121,122.

•    Perhaps more revealing of potentially pathological or vio-
lent routines are the patterns of responding that are emit-
ted in anticipation of aggression as a reward. In such 
cases, the amount of effort exerted before a fight depicts 
appetitive and anticipatory components of the motiva-
tion to fight when fighting does not serve any obvious 
adaptive function. Mice trained to respond on a task are 
reinforced by the opportunity to attack an opponent,  
oftentimes in their own home environment82,83. Fixed 
ratio and progressive ratio schedules of reinforcement 
have been used to assess this motivation in addition 
to protocols that assess reinstatement of extinguished 
responding and measures of resistance to punished  
responding71,123,124. Herein, we highlight the use of FI 
schedules that lead to aggression rewards for several rea-
sons. First, scalloped patterns of FI response curves 
for individual mice are remarkably stable. We there-
fore suggest that shifts in FI response rates may indicate  
sensitive changes in motivational state. Second, mice that 
are conditioned under these contingencies display exces-
sive aggression only in the context of schedule-controlled  
aggression. Fighting outside of this context resembles 
species-typical patterns of fighting (Figure 2)81. Thus,  
there is a notable degree of state dependency for this 
display of escalated aggression in mice that otherwise 

behave in a species-typical manner. In addition, 
mice will work extremely hard for the opportunity to  
fight even when fighting performance has been severely 
disrupted as a result of alcohol. Not only is this find-
ing translationally significant, but it highlights a unique 
dissociation between the motivational and consumma-
tory components of a powerful behavioral reward, similar  
to other natural rewards125.

•    One of the urgent tasks is to continue identifying the 
neurobiological characteristics of cell clusters and 
pathways mediating aggressive behavior that are con-
served across species and translate readily to the human  
condition in both males and females. It will be impor-
tant to identify neural mechanisms that control the inten-
sity of behavioral arousal in anticipation of an aggressive  
opportunity as captured by accelerating rates of respond-
ing reinforced by a fight. Hierarchically organized cir-
cuits regulate social dominance (for example, amy-
gdala–hippocampal–septal–hypothalamic) as well as 
defense and subordination22,46,47,102,118,126–129. Yet it remains 
to be determined how neural circuits that are active  
during a fight are linked to networks that are active  
during pre-fight anticipatory arousal. Does aggression 
induce neural plasticity that promotes a shift in the social  
brain network toward pathology? It is easy to speculate 
that the same diencephalic and telencephalic structures 
that are important for organizing and integrating sen-
sory, motor, endocrine, emotional, and cognitive func-
tions during species-typical aggression also contribute 
to the production of pathologies in social behavior, 
including aggression. Alternatively, does the role of an  
“upstream” mediator determine the level of aggressive 
output? Cortical structures are vulnerable in the sense 
that they are (1) influenced by contextual stimuli, (2) 
highly plastic, and (3) targeted by diverse pharmacologi-
cal, endocrine, and circadian variables. Experiments that 
measure and interrogate candidate neural mechanisms  
during the anticipation of an intense fight will help to 
clarify the ontogeny of maladaptive aggression. Recent 
advances in molecular and recording techniques prom-
ise to reveal new molecules, cells, circuits, and patterns 
of temporospatial connectivity between brain regions  
that contribute to specific types of aggression.
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