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Abstract: Epilepsy is a most disabling neurological disorder affecting all age groups. Among the
various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury
produced by an excessive formation of free radicals may play a role in the development of this
pathology. Therefore, new treatment approaches are needed to address resistant conditions that do
not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant
activities of essential oils and their chemical constituents. Data from studies published from January
2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of
19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising
botanical families due to the largest number of reports about plant species from these families
that produce anticonvulsant essential oils. Among the evaluated compounds, 3-caryophyllene,
borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to
anticonvulsant action. These data show the potential of these natural products as health promoting
agents and use against various types of seizure disorders. Their properties on oxidative stress may
contribute to the control of this neurological condition. However, further studies on the toxicological
profile and mechanism of action of essential oils are needed.

Keywords: terpene; phenylpropanoid; natural products; seizures; pentylenetetrazole; electroshock;
antioxidants; phytochemicals; secondary metabolites; bioactive

1. Introduction

Epilepsy, one of the most prevalent chronic neurological disorders globally, is characterized by
recurrent, unpredictable, and typically unprovoked seizures. Although subjects from any age group
can develop epilepsy, the fastest-growing population segments for new cases are young children and
older adults. Roughly two-thirds of initial seizures occur in young children under the age of 2, and in
the elderly (over 75 years of age), the prevalence is 3% [1,2]. According to the WHO, at least 50 million
people worldwide are affected by epilepsy [3].

Epileptic seizures impact the patient’s quality of life, and usually include hospitalization with
risks of cognitive and motor impairment, psychological distress, progressive memory loss, social
stigmatization, and isolation [4]. Although a large number of anticonvulsant drugs are available for

Biomolecules 2019, 9, 835; d0i:10.3390/biom9120835 www.mdpi.com/journal/biomolecules


http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0001-6200-649X
https://orcid.org/0000-0002-7180-4896
http://www.mdpi.com/2218-273X/9/12/835?type=check_update&version=1
http://dx.doi.org/10.3390/biom9120835
http://www.mdpi.com/journal/biomolecules

Biomolecules 2019, 9, 835 2 of 40

treatment of epilepsy, and new drugs have brought more treatment options, around 30% of the epilepsy
cases remain pharmaco-resistant, not responding to anti-seizure drug therapy or patients discontinue
treatment due to its serious side effects [5]. Figure 1 summarizes the main mechanisms of action of
anticonvulsant drugs.
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Figure 1. Main mechanisms of action of anticonvulsant drugs.

Many species of aromatic plants contain biologically active compounds with the potential to act
in various chronic conditions, such as anxiety, depression and headaches. Some act in the Central
Nervous System (CNS), and are used in folk medicine to treat epilepsy because of its anticonvulsive
activity [6,7]. Various studies in essential oils (EOs) and particularly their chemical constituents have
been noted in the scientific community, and encourage further study of their properties. Such secondary
metabolites have brought great potential for new anticonvulsant drug development, with minimal
untoward harmfulside effects, and thus novel treatment strategies for patients that do not respond
well to conventional therapies [6].

Relationship between Epilepsy and Oxidative Stress

The oxidative stress is a metabolic occurrence in which there is a disturbance in the balance
between pro-oxidant and antioxidant species [8]. Pro-oxidant agents are mainly represented by reactive
oxygenated (ROS) and nitrogenous species (RNS) [9]. They are normally neutralized by an antioxidant
defense system composed of enzymes such as catalase (CAT), superoxide dismutase (SOD), and
glutathione peroxidase (GPx), and of non-enzymatic compounds such as vitamins A, C, and E, which
help maintain homeostasis. However, in pathological situations, exacerbated production of ROS and/or
RNS may occurresulting in oxidative stress [10].

The brain is an organ sensitive to oxidative stress due to some of its features such as high oxygen
demand, large numbers of mitochondria, low repair capacity, and high polyunsaturated fatty acid
concentrations [11]. In addition, the brain maintains only low levels of antioxidants which are mainly in
the hippocampus [12]. This event increases the predisposition towards oxidative stress. Several studies
reveal that cases of seizure induce the production of ROS and RNS [13,14], promoting oxidative stress
that results in modulation of nucleic acid, protein and lipid peroxidation functions, resulting in cell
damage [15].
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Studies show that epilepsy carriers have elevated serum malondialdehyde (MDA) levels in most
cases due to increased membrane lipid peroxidation [16], which causes changes in neurotransmitter
release and uptake and ion channels expression resulting in neuronal hyperexcitability [17]. In addition,
the production of ROS promotes increased cytoplasmic Ca?* concentrations, enhancing neuronal
hyperexcitability, directly influencing GABA receptor action, altering neuronal membrane potential,
and promoting gene transcription modifications and protein synthesis, inducing changes in neuronal
physiological functions. These changes may result in neuronal death by necrosis or apoptosis, being
one of the most relevant factors that may lead to the development of epileptic condition [18,19].

Mitochondria directly influence neuronal excitability, adenosine triphosphate (ATP) production,
fatty acid oxidation, apoptosis control, neurotransmitter biosynthesis, and regulation of intracellular
calcium homeostasis. The production of reactive oxygen species occurs mainly in mitochondria, which
are vulnerable to oxidative damage. Thus, oxidative stress promotes mitochondrial dysfunction [20-22].
This dysfunction can trigger epileptic seizures via reduced ATP production, altering the Na*/K*
ATPase activity present in the cell membrane, responsible for maintaining the membrane potential,
thus reducing its activity and increasing neuronal excitability [23,24].

In addition, oxidative stress and mitochondrial dysfunction contribute to glutamate-induced
excitotoxicity and later neuronal apoptosis [25], and death of hippocampal neurons is quite recurrent
in cases of epilepsy, contributing to cognitive dysfunction [26]. Thus, substances that have antioxidant
activity can help treat epilepsy by reducing cerebral oxidative stress. Studies indicate that treatment
with antioxidant agents promotes neuroprotection, reduces neuronal apoptosis, as well as improved
cognitive dysfunction in cases of epilepsy [27,28].

Therefore, this review discusses on current studies of EOs with anticonvulsant activity and their
relationship to oxidative stress. Further, the chemical structures of their bioactive constituents, their
mechanisms of action, and the experimental models used are also presented and discussed.

2. Anticonvulsant Essential Oils

2.1. Bunium persicum (Boiss). B. Fedtsch.

Bunium persicum is a grassy plant belonging to the family Apiaceae, found mainly in southeastern
Iran [29]. The seeds of this plant are widely used in traditional Iranian medicine for their spasmolytic,
antiepileptic, and carminative effect [30]. Analysis of B. persicum essential oil (BPEO) seeds using
gas chromatography coupled to mass spectrometry (GC/MS) allowed identification of 97.2% of the
constituents; the main compounds were y-terpinene (46.1%), cuminaldehyde (15.5%), p-cymene (6.7%),
and limonene (5.9%) [31]. According to the literature, BPEO presents anti-toxoplasma [31], antioxidant [32],
antinociceptive and anti-inflammatory activity [33]. Nickavar et al. (2014) evaluated the antioxidant and
antilipid peroxidation activity of BPEO using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
and linoleic acid/B-carotene bleaching assays, respectively. According to the results, the essential oil
presented good radical scavenging [half maximal inhibitory concentration (ICsq) = 4.47 mg/mL], and
inhibited lipid peroxidation (IC5p = 0.22 mg/mL) [34] Also, BPEO exhibited antioxidant activity using the
Ferric Reducing Antioxidant Power (FRAP) assay (ICsg = 248.56 + 1.09 uM Fe2+/g) [35].

The results obtained during evaluation of anticonvulsant activity for BPEO were quite promising
(Table 1). In the pentylenetetrazol (PTZ)-induced seizure test, BPEO prolonged the onset time to
clonic and tonic seizures, at (EDsg) = 0.97 mL/kg. The potency of BPEO effects was also verified in the
maximal electroshock induced convulsions test in which significant prevention of tonic convulsion
at (EDsg = 0.75 mL/kg) was observed. Signs of neurotoxicity analyzed in the Rota-rod test appeared
at the dose of 1.25 mg/kg which decreased the time of permanence of the animal on the rotatory rod.
However, mortality was not observed until a dose of 2.5 mL/kg, i.p. [36].
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2.2. Calamintha officinalis Moench

The shrub Calamintha officinalis Moench (Lamiaceae), is widely found throughout the
Mediterranean [37]. Since ancient times, C. officinalis has been used for its medicinal antidiarrheal,
expectorant and antibacterial properties. In Morocco, the plant is used to treat hypertension,
cardiovascular diseases, and diabetes [38]. Few studies have reported on the biological activities of
C. officinalis leaves and essential oil (COEO) although antimicrobial, sedative, and hypothermic effects
have been described [39,40]. In COEO analysis using GC/MS, sixty-four compounds were identified,
constituting 99.7% of the total oil. The main component is the oxygenated monoterpene carvone
(38.7%), followed by neo-dihydrocarveol (9.9%), dihydrocarveol acetate (7.6%), dihydrocarveol (6.9%),
1,8-cineole (6.4%), cis-carvyl acetate (6.1%), and pulegone (4.1%). In PTZ-induced seizure tests, COEO
(50 and 100 mg/kg, i.p.) increased latency times, reduced the number of animal seizures, and decreased
seizure duration. Carvone, a major compound, presents a demonstrable anticonvulsive effect; however
other constituents may have synergistic activities that explain COEQ’s depressant activity [41].

2.3. Cinnamosma madagascariensis Danguy

The genus Cinnamosma, belonging to Canellaceae family, is endemic in Madagascar, and C.
madagascariensis is widely found in both southeastern and southern Madagascar [42]. Popularly known
as “hazontromba”, C. madagascariensis is used to treat coughs and strengthen the immune system.
Burning its leaves is used in rituals to scare away evil spirits and to quell brain disorders such as
dementia and epilepsy [43]. The most abundant components C. madagascariensis leaves’ essential
oil (CMEQ), are monoterpene hydrocarbons (40.0%), oxygenated monoterpenes (35.7%), linalool
(30.1%), limonene (12.0%), myrcene (8.9%), and «-pinene 140 (8.4%) as [44]. In PTZ testing in rats,
CMEQ, at a dose of 0.8 mL/kg, protected against convulsions, and at a dose of 0.4 mL/kg increased
latency and reduced both seizure frequency and severity [45]. These promising CMEO results occur in
function of synergism between the constituents, since linalool, limonene, and myrcene already present
anticonvulsive activities well described in the literature [46,47].

2.4. Citrus aurantium L. var. Amara

Citrus aurantium is popularly known as “bitter orange”. The flowers of C. aurantium are used to treat
various neurological disorders such as insomnia, epilepsy, and hysteria [48]. Some pharmacological
activities have already been described for C. aurantium essential oil (CAEO) such as an anti-inflammatory
agent [49], an anxiolytic [50], as a larvicide [51] and antioxidant [52].

Intraperitoneal administration CAEO from fresh blossoms at doses of 20 and 40 mg/kg increased
the clonic convulsion threshold and protected against tonic convulsion induced by intravenous PTZ.
The combination of an ineffective dose of CAEO (10 mg/kg) together with an ineffective dose of
diazepam (0.025 mg/kg) provided an additive effect for protection against PTZ-induced seizures.
The observed activity may be related to benzodiazepine receptor activation. The main constituents of
CAEQO from fresh blossoms (which may be responsible for the pharmacological activity) are linalool
(28.5%), linalyl acetate (19.6%), nerolidol (9.1%), farnesol (9.1%), «-terpineol (4.9%), and limonene
(4.6%) [53].

2.5. Dennettia tripetala G. Baker

Dennettia tripetala is a medium-sized tropical plant belonging to the Annonaceae family and
is used as a flavoring agent. When added to the diet of pregnant and postpartum women it helps
uterine contraction and involution [54]. It is widely cultivated in the rainforests of West Africa,
including southeast and south-west Nigeria [55]. The fruits are eaten raw in different forms, while the
leaves are used as condiments in local dishes [56]. Essential oil from the fruits of D. tripetala present
antimicrobial, anti-inflammatory, antinociceptive, and antioxidant activity. In these studies with DPPH,
lipid peroxidation, and nitric oxide radical, the essential oil was more effective than ascorbic acid
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in elimination of free radicals. This activity should involve monoterpenes which are part of their
chemical composition [57]. Oyemitan et al. [58] extracted essential oil from the seeds of D. tripetala
(DTEO) and evaluated its anticonvulsant activity at doses of 25, 50, and 100 mg/kg (i.p.). These doses
respectively protected the animals from PTZ-induced seizures by 20%, 40%, and 100%. This effect
was blocked by flumazenil, suggesting that DTEO exerts its effect via interaction with the GABAergic
system. In the strychnine-induced seizure test, convulsions were respectively protected at doses of 100
and 200 mg/kg, by 60% and 100%. At these doses, mortality was also reduced. These results can be
attributed to 1-nitro-2-phenylethane, the major compound which in the same study also demonstrated
a potent anticonvulsant effect.

2.6. Elettaria cardamomum L. Maton

Cardamom, Elettaria cardamomum, is an aromatic plant of the Zingiberaceae family grown in some
Asian countries [59]. In India, the dried seeds are used as flavoring agents in teas, cakes, and coffee [60],
and also in traditional medicine to treat diarrhea, colic, constipation, asthma, and epilepsy [61].
According to Abu-Taweel, cardamom added to the rations of pregnant mice improved both memory
and learning, and even brought perinatal benefits since the compounds can be transported via the
placenta and/or during lactation [62]. Also, anxiolytic effects have been reported in the literature for
cardamom [63]. Analysis of the chemical composition of E. cardamomum essential oil (ECEO) by GC/MS
identified 93.5% of the constituents; 1,8-cineole (45.6%), x-terpinyl acetate (33.7%), terpinen-4-ol (2.4%),
and myrcene (2.2%) [64].

Since many terpenes have anticonvulsive effect, interest arose in assessing this activity in ECEO.
In the PTZ-induced seizure test, ECEO at a dose of 1 mL/kg (i.p) delayed the onset of clonic seizure
and increased tonic seizure latency at all doses tested (0.25, 0.50, 0.75, 1.00 mL/kg, i.p.). In the maximal
electroshock seizure (MES) test, ECEO decreased the percentage of tonic extension of the posterior
limb caused by electrical stimulus. Possible neurotoxic activities of ECEO were also observed at a dose
of 0.75 mL/kg [64].

2.7. Gardenia lucida Roxb.

Gardenia lucida is a plant found in India and belongs to the Rubiaceae family. The leaf buds secrete
a gum-like resin that resembles yellow tears with a strong odor and spicy taste [65]. In traditional Indian
medicine, this gum-resin is used as an antispasmodic, antimicrobial, carminative, and anthelmintic [66].
Some studies suggest neuropharmacological activities for G. lucida essential oil from this gum-resin
(GLEO). At a lethal dose it caused the death of 50% of a group of test animals (LDsp) greater than
5 mL/kg, yet without showing toxicological signs [67]. GS5/MS analysis revealed the presence of
18 constituents, of which «-pinene (45%) and spathulenol (31%) were the main components. Doses of
100 and 300 mg/kg, i.p. of GLEO presented CNS depressant effect, which was potentiated by the
administration of a barbiturate. The anticonvulsant activity was initially evaluated using the PTZ
test in which at 300 mg/kg, seizure delay (395.6%) was observed, seizure frequency decreased by
257% when compared to the control group, and the reduction in the mortality rate was 83%. In the
electroshock test, there was an increase in tonic flexion (100 and 300 mg/kg, i.p.), and reductions in
tonic extension (30, 100, and 300 mg/kg, i.p.) [67].

2.8. Pimpinella anisum L.

Pimpinella anisum is a member of the family Umbelliferae (Apiaceae) and is used for cooking
and in Iranian medicine as a carminative, diuretic and for treatment of epilepsy and melancholia [68].
P. anisum essential oil (PAEO), also called anise oil, presents trans-anethole (89.1%), estragol (3.6%),
linalool (1.1%), a-terpineol and cis-anethole (0.2%) as its main constituents [69].

Anise o0il’s medicinal properties have already been proven and include treatment of non-fatty liver
diseases [70]; antidepressant [71], antifungal [72] and antioxidant properties capable of eliminating up
to 48% of the free radicals generated in DPPH assay using 48.5 mg/mL [73,74].
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In a study by Karimzadeh et al. (2012) [75], it was observed that concentrations at 1 and 2 mL/kg of
PAEO did not alter seizure latency after administration of PTZ. However, a 3 mL/kg dose significantly
prolonged the time to onset of seizure. During electroencephalographic recording, PAEO in the
three doses tested (1, 2, and 3 mL/kg) promoted significant decreases in the frequency, amplitude,
and duration of the epileptiform burst discharges induced by PTZ injection. In the same study, the
neuroprotective effect of PAEO in epileptic rats was evidenced due to a significant decrease in the
production of dark neurons, possibly through synaptic plasticity inhibition.

2.9. Piper guineense Schum &Thonn

This plant of the family Piperaceae is widely consumed as spice in West Africa. It is used in popular
culture to treat infertility in women, rheumatism, intestinal disorders, bronchitis, and febrile seizure [76,77].
Study results relate analgesic, anti-parasitic [78], hepatoprotective [79], molluscicide [80], sedative and
anxiolytic activity [81]. In the attempt to identify the chemical constituents responsible for these effects,
the essential oil from the fresh fruits of P. guineense was analyzed and sesquiterpenes (64.4%) were
predominant, while monoterpenes represented only 21.3%, with the presence of 3-sesquiphellandrene
(20.9%), linalool (6.1%), limonene (5.8%), 3-bisabolene (5.4%) and «-pinene (5.3%) [82]. Piper guineese
essential oil (PGEO) presented antioxidant activity in tests of DPPH, nitric oxide radical scavenging
assays and Fe?* chelation assays, obtaining ECsg results of 414.59 mI/L, 161.92 mL/L, and 130.21 mL/L,
respectively [83].

PGEO at doses of 100 and 200 mg/kg (i.p.) respectively protected animals by 40% and 100%
against PTZ-induced seizures and also decreased the mortality test rate. In the same study;, it was
observed that PGEO demonstrated hypothermic, sedative, muscle relaxant, and antipsychotic activity
which explains its ethno medicinal use [82]. Described in the literature, linalool presents anticonvulsive
activity and may contribute synergistically or add to the activity of other EOPG phytochemicals and
the oil’s resulting pharmacological effects [84,85].

2.10. Smyrnium cordifolium Boiss.

The plant Smyrnium cordifolium is used in Iranian medicine to treat anxiety, insomnia, and internal
organ edemas (mainly of the liver and kidneys) [86]. Some of the pharmacological properties of S.
cordifolium extract have already been described, including hypnotic, antimicrobial, and antioxidant
effects [87-89]. Smyrnium cordifolium essential oil (SCEO) consists mainly of curzerene (65.26%),
d-cadinene (14.39%), and y-elemene (5.15%) [90]. In the PTZ-induced seizure test, SCEO presented an
EDs( value of 223 + 15 mg/kg. The anticonvulsant effect was suppressed by previous administration of
flumazenil and naloxone, suggesting GABAergic and opioid system participation [90].

2.11. Thymus vulgaris L.

Thymus vulgaris L. (Lamiaceae) is an aromatic plant whose essential oil already has
various pharmacological activities described such as antimicrobial [91], anthelmintic [92] and
anti-inflammatory [93]. The GC-MS analysis of Thymus vulgaris essential oil (TVEO) revealed the
presence of more than 50 metabolites. The main compounds were thymol (34.78%), p-cymene (14:18%),
carvacrol (6:16), 3-caryophyllene (5:46%), linalool (3.83%), terpinen-4-ol (2.56%), caryophyllene oxide
(2.31%), and borneol (2.22%) [94]. TVEO (300 mg / kg, ip) reduced the number of seizures induced
by MES when administered 15 and 30 min before the test (50 and 62.5%, respectively), but at times
45 and 60 min it was not longer effective, probably due to metabolization and elimination of the
active metabolites. In the same study, it was observed that administration of the isolated components,
borneol, thymol and eugenol at a dose of 300 mg/kg, i.p. protected against seizures induced by MES,
different from linalool which had no good result. Thus, these active components are believed to act
synergistically to provide the anticonvulsant effect of TVEO [94].
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2.12. Zataria multiflora Boiss.

Zataria multiflora is an aromatic plant belonging to the family Lamiaceae, which grows in the hot
and mountainous regions of Iran, Pakistan, and Afghanistan [95]. The essential oil of Z. multiflora
(ZMEO) is rich in oxygenated phenolic monoterpenes; mainly carvacrol, linalool, trans-caryophyllene
and carvacrol methyl ether [96]. Certain scientific reports demonstrate its antileishmanial [97] and
antibacterial activity [98] of ZMEO. Majlessi et al. [99] demonstrated that ZMEO is a potential
therapeutic agent in alleviating the cognitive symptoms of Alzheimer’s disease. Kavoosi et al. [100]
investigated the antioxidant capacity of ZMEO, and showed that ZMEO at IC5p = 4.2 pg/mL in a
reactive nitrogen scavenging assay that it significantly reduces NO and H,O, production, reducing NO
synthase and NADH oxidase activity in macrophages. Corroborating these results, Karimian et al. [101]
compared the antioxidant activity of ZMEO and vitamin C using the NO scavenging test, where they
respectively presented values of 38 ug and 46.5 ug; indicating the remarkable antioxidant capacity of
this oil and its potential for use in oxidative damage therapy.

Mandegary et al. [102] evaluated the anticonvulsant activity of ZMEO and observed that at doses
of 0.2, 0.25, and 0.35 mL/kg there was an increase in clonic seizure onset time, and tonic convulsions
induced by PTZ were prevented using the same doses in mice. However, ZMEO was not effective
in the MES test. When assessing the neurotoxic potential in the Rota-rod test, ZMEO at a dose of
0.6 mL/kg caused changes in motor coordination. The LDsy value of ZMEO was determined to be
1.30 (1.0-1.5) mL/kg.

2.13. Zhumeria majdae Rech.

Zhumeria majdae is a member of the Lamiaceae family, and found in southeastern Iran. This common
plant presents a strong odor and its leaves are used as an antiseptic to treat digestive disorders and
dysmenorrhea [103]. Although it is widely used in folk medicine, there are few studies on this
plant in the literature. Studies have revealed the antifungal [104], anti-bacterial [105], antinociceptive,
anti-inflammatory [106], antileishmanial [107] and antioxidant [108] activity of Z. majdae essential oil
and extract. Analysis of Z. majdae essential oil (ZHMEO) by GC and GC-MS revealed the existence of
seventy constituents representing 99.2% of the oil. Since these terpenoids have anticonvulsive activity,
the activity of ZMEO was evaluated in PTZ induced seizure tests, and maximal electroshock testing.
The results showed that ZMEO is an efficient anticonvulsant, increasing latency to onset of tonic
convulsion induced by PTZ, and by electroshock with effective doses (EDsp) of 0.26 and 0.27 mL/kg
respectively. Potential signs of neurotoxicity assessed in the Rota-rod test were found at 0.65 mL/kg.
However, the lethal dose of ZMEO for 50% of the treated animals (LDsy = 2.35 mL/kg) was nine times
greater than the effective dose. This suggests acceptable therapeutic effect for ZMEO [109]. Linalool,
a major component of ZMEQO, may contribute to this result, since it also presents anticonvulsive activity,
however, more studies are needed to better characterize these interactions and effects [84].

2.14. Rosmarinus officinalis L., Ocimum basilicum L., Mentha pulegium L., M. spicata L., M.. piperita L.,
Origanum dictamnus L. and Lavandula angustifolia Mill.

The EOs of Rosmarinus officinalis, Ocimum basilicum, Mentha pulegium, M. spicata, M. piperita,
Origanum dictamnus and Lavandula angustifolia extracted from Greek aromatic plants and administered
at doses of 1.6 mL/kg ip. in mice caused motor alterations, and in a few cases, lethargy.
Evaluating anticonvulsive activity using the PTZ test, all of the oils tested promote seizure latency and
a decrease in seizure intensity as compared to the control groups. The best results [110] were observed
for Mentha piperita, whose EOs presented no convulsions in the treated animals. Figure 2 summarizes
the main effects of essential oils.
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Prolong the onset time to seizures
Reduce the frequency and intensity of comwulsions

Essential oils > Inhibition of lipid peroxidation

Reduce NO synthase and NADH oxidase activity

Activate GABA, receptor
essential oils Facilitate GABAergic tonic inhibition
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Figure 2. Mechanisms of anticonvulsant action of essential oils and their constituents.

3. Chemical Constituents

3.1. Alpha-Asarone

x-Asarone is a bioactive compound found in several plant species of the family Araceae
(Acorus), and trees of the family Annonaceae, it is known for its neurological properties and
effects on the CNS [111]. The compound is also known in the scientific literature for its extensive
neuroprotective performance. According to Shin et al. [112], through reduction of proinflammatory
cytokines and microglial activation in the hippocampus, x-asarone improves memory deficit induced
by administration of inflammatory agents. Corroborating these results, Jo et al. [113] demonstrated
that x-asarone reduces inflammation associated with injury to the spinal cord through attenuation
of neuronal damage and promotion of angiogenesis. The anxiolytic effect of «-asarone has also been
evaluated in an animal model of chronic pain, where x-asarone was effective in inhibiting anxiety by
regulating neurotransmission and neuronal excitability [114].

Up to a dose of 1000 mg/kg, oral «-asarone caused no animal deaths, indicating a greater value
than 1000 mg/kg for its LDs5y. Chronic (four-week) twice-daily treatments with «-asarone did not
induce significant behavioral changes. The highest dose administered (200 mg/kg), caused a discreet
sedative effect, and decreased spontaneous movements of the treated animals. The toxicity profile
of x-asarone was analyzed by Chen et al. [115] who compared the efficacy of acute and chronic of
x-asarone treatments in seizure prevention.

The researchers demonstrated that «-asarone presents moderate anticonvulsant activity when
administered acutely, but the effect was potentiated when using chronic treatments, since at doses of
50, 100, and 200 mg/kg (p.0.) decreases were observed in tonic convulsion during the MES respectively
in 40%, 20% and 0 in treated animals. These same doses reduced the incidence, increased latency, and
decreased the duration of PTZ-induced seizures when compared to the negative control. In the model
of epilepticus status induced by a combination of lithium and pilocarpine, chronic administration
of x-asarone at doses of 100 and 200 mg/kg reduced the incidence of spontaneous seizures, seizure
severity, and frequency of seizures during treatment (Table 2).
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limonene (5 '90 %) [31] Maximal electroshock test seizures [36]
Carvone
.7%), neo- rocarveo. rotected against generalize:
38.7% dihyd: 1 P. d against g lized
(9.9%), dihydrocarveol tonic-
, L acetate (7.6%), clonic seizures .
Calamintha officinalis Leaf - dihydrocarveol (6.9%), . PT.Z Decreased the number and Adult male Wistar
Moench . induced seizure test . rats
1,8-cineole duration
.4%), cis-carvyl acetate of convulsions
6.4%), i yl f Isi
(6.1%) Reduced mortality [40]
[40]
Linalool
o\ 1 o Increased the latency period
Cinnamosma Leaf (30}11/03;1;2(2?392/6)(;121;3 ), B PTZ Reduced the frequency and Adult male and
madagascariensis Danguy 2;_ inene. (804" %) induced seizure test intensity of female Wistar rats
P [44] e convulsions [45]
Linalool (28.5%), linalyl PIZ Produced protection against
Citrus aurantium L. var. acetate (19.6%), nerolidol . R clonic .
Blossoms - induced seizure test ey 4 tres Male NMRI mice
amara (9.1%) and farnesol (9.1%) . Exhibited inhibition of the
- Maximal electroshock test R .
[53] tonic convulsion [53]
Offered
. PTZ protection against PTZ-
Dennettia tripetala G. Baker Seed (572}:/6;1 }{il;lallté(;et(}gag})/e) ) induced seizure test induced convulsion Adult male and
P ' Eoh [116] o strychnine Flumazenil blocked female albino mice
induced seizure test anticonvulsant effect
[58]
Delayed onset
1,8-Cineole (45.6%) PTZ of clonic seizures
Elettaria cardamomum L. Seed - a-terpinyl acetate (33.7%) induced seizure test . Increa.sed . NMRI male mice
Maton ) . onset time of tonic convulsions
[64] Maximal electroshock test
Reduced the percentage of
hind limb tonic extension [64]
. «-Pinene (45%),
Gardenia lucida Roxb. Apical buds and

young shoots

spathulenol (31%)

[67]

PTZ
induced seizure test
Maximal electroshock test

Protected against the intensity
and frequency of convulsions,

Male and female
Swiss Albino mice

and mortality rate [67]
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Prolonged time to appearance
of seizures

PTZ Decreased the frequency,
Pimpinella anisum L ) ) trans-Anethole induced seizure test amplitude, and duration Adult male Wistar
P : (89.1%) Electroencephalogram of epileptiform burst rats
recordings discharges
Showed neuroprotective effect
[75]
B-Sesquiphellandrene
(20.9%), linalool (6.1%), .
Piper guineense Schum & . limonene (5.8%), PTZ Decreased mqrtahty Reduced Adult male and
Fruits - K o . . the Incidence of . .
Thonn B-bisabolene (5.4%), induced seizure test . female albino mice
; o Convulsions [82]
a-pinene (5.3%)
[82]
Curzerene (65.26%), . .
Smyrnium cordifolium Boiss Plant - d-cadinene (14.39%), and induce dst;iZzure test Prolonged ons[zt[)§1me to seizure Mice
y-elemene (5.15%) [90]
Thymol (34.78%), p-cymene
0, 0, 5 : 5
Thymus vulgaris L. Fresh herb ) (14.18%), carvacrol (6.16%) Maximal electroshock test Protected ag.amst the Male Sw1.ss Albino
and B-caryophyllene convulsions mice
(5.46%) [94]
Increased the onset time to
. PTZ L
Zataria . . clonic seizures
. . - - - induced seizure test . .
multiflora Boiss . Prevented tonic convulsions
Maximal electroshock test [102]
Increased the onset time to
PTZ tonic convulsions
Zhumeria majdae Rech Aerial parts - - induced seizure test Prevented tonic NMRI male mice
Maximal electroshock test Convulsions
[109]
Rosmarinus officinalis L., Increased seizure latency,
Ocimum basilicum L., decreased intensity, and
Mentha pulegium L., M. ) ) ) PTZ differences in the quality of Adult female white
induced seizure test seizures, characteristics, from Balb-c mice

spicata L., M. piperita L.,
Origanum dictamnus L. and
Lavandula angustifolia Mill.

simple twitches to complete
seizures [110]
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In cultures of hippocampal neurons, x-asarone suppressed the excitability of the cells via GABA 4
receptor activation and tonic facilitation of GABAergic inhibition. This mechanism of action explains
the anticonvulsant activity observed in kainate-induced seizure tests, since daily administration of
a-asarone at a dose of 50 mg/kg (i.p.) for three days reduced the susceptibility of the mice to seizure [117].
a-Asarone (50-200 mg/kg, i.p.) was also effective in delaying the onset time of nicotine-induced clonic
seizures, but did not prevent them from happening. These effects were not mediated through the
antagonism of nicotinic acetylcholine receptors (nAChRs) [118]. Recently, Liu et al. [119] proved that
x-asarone attenuates the memory and learning deficit caused by pilocarpine-induced status epilepticus
in rats via suppression of proinflammatory cytokines, through decreased nuclear-xB factor activation
and reduced microglial neuroinflammation.

In addition, administration of x-asarone (9 mg/kg, i.p.) revealed antioxidant activity in the
hippocampus of rats when subjected to sound stress, through increased levels of SOD, CAT, GSH,
vitamin C, vitamin E, and reduction of cerebral lipid peroxidation, thus attenuating memory deficit [120].
Moreover, x-asarone (15 pg/mL) exhibited neuroprotective activity in rat astrocyte cultures and was
able to reduce ROS production and oxidative stress induced by tert-butyl hydroperoxide through
attenuation of enzyme antioxidant depletion [121]. Thus, it is noted that the substance presents
anticonvulsivant and neuroprotective activity.

3.2. Alpha- and Beta-Pinene

Alfa- and beta-pinene are two bicyclic monoterpenes with isomeric chemical structure found in the
chemical composition of many essential oils [44,67,82]. Felipe et al. [122] evaluated the anticonvulsant
effect of the two isolated terpenes as well as the racemic mixture. In the evaluation of the latency
to the onset of the first seizure in the PTZ test, monoterpenes alone did not change this parameter,
unlike that observed by the administration of the racemic mixture. Only beta-pinene and the mixture
of the two monoterpenes, both at the dose of 400 mg/kg, p.o. were able increased the time of
death of animals compared to the control group after PTZ-treated. Thus, it appears that only
beta-pinene has anticonvulsant activity, however pre-treatment with «- and p-pinene and their
equimolar mixture reduced concentration of norepinephrine, dopamine and nitrite concentration, but
not TBARs concentration, on the striatal in relation to the PTZ-treated group.

3.3. (+)-ar-Turmerone

The main constituent of the aromatic plants Curcuma longa L. and C. phaeocaulis Valeton is
sesquiterpene (+)-ar-turmerone which presents antitumor [123], larvicide [124], antifungal [125], and
anti-inflammatory activity [126]. Liju et al. [127] found through in vitro tests that oil extracted from
Curcuma longa L. rthizomes was able to sequester hydroxyl radicals (ICsp = 200 ug/mL), and superoxide
anions (ICsp = 135 nug/mL), and inhibited lipid peroxidation (ICsy = 400 pg/mL). In addition, in vivo tests
with mice were performed and based on the results, oral administration of 500 mg/kg increased levels
of the antioxidant enzymes superoxide dismutase, glutathione reductase, and glutathione-S-transferase.
The activity was mostly attributed to (+)-ar-turmerone, its principal metabolite (61.79%).

When assessing potential anticonvulsant effects of (+)-ar-turmerone (0.1-50 mg/kg), protective
activity against convulsions induced by electrical and chemical (PTZ) stimulation was observed.
The threshold needed to trigger seizures increased. Rapidly absorbed from the peritoneum to the brain,
(+)-ar-turmerone can be detected after 15 min, and after 24 h from administration (i.p.), making it
therapeutically promising. In zebra fish larvae, (+)-ar-turmerone was found to modulate the expression
of two genes which are related to convulsion, c-fos, and brain-derived neurotropic factor (BDNF) [128].

3.4. Beta-Caryophyllene

[3-Caryophyllene is a bicyclic sesquiterpene found in several EOs, such as Aquilaria crassna [129],
Croton campestres [130], Psidium guineense [131] and Zanthoxylum acanthopodium [132]. 3-Caryophyllene
is the main component of Cannabis essential oil and is capable of binding to CB2 receptors. However,
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the compound can be classified as non-psychoactive cannabinoid [133]. Certain pharmacological
properties have already been attributed to $-caryophyllene such as anticancer, anti-oxidant, and
antimicrobial [129], as well as antidepressant [134] and anti-inflammatory [130]. In a pre-clinical study
in female Swiss mice, no toxicological effects were observed up to a dose of 2000 mg/kg (p.o.) in
animals treated with 3-caryophyllene both acutely and repeatedly for 28 days [135].

In a study by Liu et al. [136], two-day pretreatment with (3-caryophyllene (30 and 60 mg/kg, i.p.)
reduced convulsant activity scores induced by intraperitoneal administration of kainate. When assessing
the degree of kainate-induced neurodegeneration, 3-caryophyllene was found to have a protective
effect contributed to by increased activities of the antioxidant enzymes SOD, CAT, and GPx. The brain
inflammation normally caused by kainate administration was reduced by 3-caryophyllene, helped by
inhibition of the proinflammatory cytokines IL-13 and TNF-a. In a study of Calleja et al. [137], the
antioxidant activity of 3-caryophyllene in rats (200 mg/kg, p.o.) was investigated. 3-Caryophyllene
was able to reduce lipid peroxidation as induced by carbon tetrachloride, demonstrating great ability
to eliminate free radicals such as the hydroxyl radical and the superoxide anion. These results are
consistent with results obtained by Dahham et al. [129], where the radical scavenging capability of
B-caryophyllene was analyzed through the DPPH and FRAP methods with ICsj 1.25 + 0.06 uM and
3.23 £ 0.07 uM, respectively. In addition, administration of 3-caryophyllene in rats (50 mg/kg, i.p.)
revealed neuroprotective activity, being able to inhibit lipid peroxidation, glutathione depletion, and
promote an increase in levels of the antioxidant enzymes (SOD and CAT) in the brain, as well as reduce
activation of astrocytes and microglial cells by attenuating neuroinflammation and ROS production in
the central nervous system [138].

Recent studies have shown that 3-caryophyllene (2.5 uM) reduced 1-methyl-4-phenyl-pyridinium-
induced neurotoxicity in SH-SY5Y cells by reducing ROS production, increasing GSH levels and
GPx activity, in addition to restoring mitochondrial membrane potential and inhibiting neuronal
apoptosis [139]. Moreover, Askari and colleagues demonstrated that B-caryophyllene (0.5 and 1 pM)
promotes neuroprotection through activation of type 2 cannabinoid receptors, promoting antioxidant
action through nuclear factor-erythroid 2-related factor 2 (Nrf2) / HO-1/ anti-oxidant axis pathway [140],
which promotes increased levels of GSH, CAT and SOD [141,142].

In the pentilenotetrazole-induced seizure model, 3-caryophyllene (100 mg/kg, i.p.) increased
the latency to myoclonic seizures as compared to the control group as confirmed using
electroencephalogram, revealing that such changes also occur at electrophysiological levels. It is worth
noting that 3-caryophyllene at the dose in which it presented anticonvulsant activity improved the
recognition rate for the object in the recognition test, without motor alterations in the open field,
Rota-rod and forced-swim tests [143]. However, different from what was observed by Liu et al. [136],
-caryophyllene did not prevent oxidative stress as induced by pentylenetetrazole [136]. According to
Tchekalarova et al. [144], 3-caryophyllene (30, 100 and 300 mg/kg, i.p.) was effective on MES and PTZ
tests when administered 0.5 and 4h before each experiment. In the kainate induced status epilepticus
model, the pre-treatment with 3-caryophyllene (50 and 100 mg/kg, i.p. for 7 days) alleviated the
neurotoxicity and lipid peroxidation in the hippocampus of mice.

3.5. Borneol

Borneol is a bicyclic monoterpene widely used in the food industry, and in traditional Chinese
medicine to treat pain and anxiety [145]. Borneol is found in many EOs such as Lavandula angustifolia
Mill. [146], Micromeria persica Boiss. [147], Perovskia abrotanoides Kar. [148], Thymus vulgaris L. [149],
Rosmarinus officinalis L. [150] and Salvia officinalis L. [151]. Recent studies have demonstrated the
various effects of borneol in the treatment of chronic and neuropathic pain through activation of the
GABAergic system and blocking transient receptor potential ankyrin 1 in the spinal cord [152,153].
Cao et al. [154] demonstrated that borneol may be a novel therapeutic agent for fear and anxiety
disorders. Wu et al. [155] demonstrated that borneol increased blood-brain barrier permeability; related
to increased ICAM-1 expression, thus becoming a promising candidate for treatment of brain tumors
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and infections, as well as chronic disorders in the central nervous system [155,156]. In an experimental
model of permanent cerebral ischemia, borneol reduced the size of ischemia by decreasing expression
of nitric oxide synthase and TNF-« in a dose-dependent manner [157].

In addition to these activities in the CNS, Tambe et al. [158] showed the antiepileptogenic effect
of borneol. The authors proved that borneol (5, 10 and 25 mg/kg, i.p.) delays tonic seizures and
progressive neuronal damage throughout the course of kindling. The oxidative stress triggered in the
epileptogenesis model was drastically reduced by the administration of borneol at all doses tested,
decreasing levels of lipid peroxidation which is directly related to production of free radicals and cell
death. The activities of the antioxidant enzymes SOD, CAT, and GSH were elevated, and in addition,
borneol also attenuates ROS production in neurons in the cerebral cortex of rats by reducing the
expression and activation of inducible nitric oxide synthase (iNOS), as well as inhibiting neuronal
apoptosis, thus promoting neuroprotection [159].

3.6. Carvacrol

Carvacrol is a phenolic monoterpene present mainly in the EOs of Origanum vulgare L., Thymus
vulgaris L., Lepidium flavum Torr. and other aromatic plants [160,161]. Many studies have demonstrated
its therapeutic activity which includes antimycobacterial [162], anticancer [163], antiasthmatic [164],
antinociceptive [165], antifungal [166] and cardioprotective [167]. Carvacrol treatment has alleviated
memory deficit in rats with Parkinson’s disease, but also promoted neuroprotection via non-specific
blockade of TRPMY receptors [168,169]. Corroborating these results, Celik and collaborators [170],
investigating the neuroprotective effect of carvacrol in a methotrexate-induced toxicity model in
rats found that the administration of carvacrol (73 mg/kg, i.p.) was able to increase the total
antioxidant status level and significantly reduce levels of MDA, IL-13, and TNF-«. In addition,
administration of carvacrol (40 mg/kg, i.p) was able to reduce levels of MDA, GSH, SOD, GPx, and
CAT in the brain [171]. In addition, administration of carvacrol (50 mg/kg) was able to reduce
propiconazole-induced DNA damage on brain, through antioxidant mechanisms by increasing CAT,
GSH and GPxlevels [172]. Thus, carvacrol should exerting neuroprotective activity through antioxidant
and anti-inflammatory mechanisms.

Misha et al. (2014) [173] demonstrated the anticonvulsant potential of carvacrol in the 6 Hz (32
mA) model, with an EDsj value of 35.8 mg/kg. In the epilepticus status (ES) model, animals receiving
three doses of carvacrol (75 mg/kg i.p.) in the first 24 h developed less ES (25%) than the negative
control group (~ 86%), but this same effect was not observed in chronic epilepsy. Interestingly, carvacrol
inhibited TRPMY7 channels, reducing neuronal death in the CA1 and hilar regions, with consequent
prevention of SE-induced memory deficit [174]. According to Sadegh and Sakhaie [175], carvacrol
prevented the proconvulsant effect of LPS possibly through the inhibition of the hippocampal COX-2
increased activity and preventing the neuroinflammation.

3.7. Carvacryl Acetate

Carvacryl acetate, obtained from acetylation of the monoterpene carvacrol, presents
pharmacological activities described as antischistosomal [176], antinociceptive [177] and
anti-inflammatory via interaction with the TRPA1 receptor [178]. Like carvacrol, carvacryl acetate
presents activity in the central nervous system, presenting anxiolytic-like properties probably mediated
by the GABAergic system, but without acting on 5-HT1A receptors [179]. The antioxidant potential
of carvacryl acetate was notable in both in vitro and in vivo tests, increasing glutathione levels, and
improving CAT, SOD, and GPx enzyme activity in the hippocampus of mice, while reducing lipid
peroxidation, nitrite, and hydroxyl radicals. The results suggest possible use of carvacryl acetate in the
treatment and prevention of neurodegenerative diseases related to oxidative stress [180].

Carvacryl acetate has also been shown to present anticonvulsant activity at a dose of 100 mg/kg
(i.p.) in pilocarpine, PTZ, and picrotoxin-induced convulsion tests, where it respectively reduced the
percentage of seizures by 60%, 30%, and 50% [181]. These effects were reversed by administration
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of flumazenil, suggesting that the mechanism of action may involve the GABAergic system, and
corroborating the results obtained by Pires et al. (2013) [179]. It is known that epilepsy is related
to failures in the function of the enzymes Na*, K*-ATPase, and §-aminolevulinic acid dehydratase
(5-ALA-D) [182]. Treatment with carvacryl acetate (100 mg/kg i.p.) improved the activity of these
enzymes, and also increased levels of -aminobutyric acid (GABA) in the hippocampus after induction
of seizures with chemical agents [181].

3.8. Curcumol

One of the main components of Curcuma longa oil is the sesquiterpene hemiacetal curcumol,
which has multiple therapeutic effects including anticancer [183], anti-inflammatory [184] and
antifungal [185] activities have been attributed to the substance. The anticonvulsant activity of curcumol
was evaluated after three consecutive days of previous treatment (100 mg/kg, i.p.). Seizure induced by
pentilenotetrazole and kainate was observed as suppressed by increased latency for tonic and clonic
convulsion, as well as reduced seizure severity and susceptibility [186]. The results can be explained
by activation of GABA 4 receptors in a benzodiazepine-independent site in hippocampal neurons,
causing suppression of network hyperactivity [186,187].

3.9. Curzerene

Curzerene is a sesquiterpene found in curcuma rhizomes, mainly of the traditional Curcuma longa
species. Pre-clinical studies have shown the antitumor [188], pesticidal [189] and antifungal [185]
effects of this substance. According to Abbasi et al. [90], curzerene was effective in the PTZ test with an
EDs value of 0.25 + 0.09 mg/kg. At a dose of 0.4 mg/kg, curzerene increased the latency time to first
seizure, and decreased seizure duration as compared to the control group. At the same dose in the
treated groups, there was 100% protection or zero mortality. The effects of curzerene can be attributed
to activation of the GABAergic and opioid systems.

3.10. Epoxy-Carvone

Epoxy-carvone (EC) is a monocyclic monoterpene that can be found in the essential
plant oil of Carum carvi L., Catasetum maculatum Kunth., and Kaempferia galangal L., among
others [190,191]. Epoxy-carvone (EC) presents antinociceptive, and anti-inflammatory activity [192],
antiulcerogenic [193], and spasmolytic activity in guinea pig ileum [194]. Relevant results have also
been demonstrated in the pharmacological tests of motor coordination and induced sleep time [195].

The EC presents stereogenic centers that allow generation of four stereoisomers; (+)-cis-EC,
(-)-cis-EC, (+)-trans-EC, and (-)-trans-EC, suggesting a comparative study of the anticonvulsant activity
of these substances. In the PTZ-induced seizure test, all stereoisomers tested (300 mg/kg, i.p.) were
effective in protecting against seizures, increasing latency for PTZ seizures with no deaths observed,
and the (+)-trans-EC and (-)-trans-EC isomers respectively presented 25% and 12.5% inhibition of
seizures. In the pilocarpine-induced seizure test, (+)-cis-EC, (+)-trans-EC and (-)-trans-EC were more
effective in reduction of parameters related to cholinergic receptor activation, and increasing latency
to the seizure onset. No significant results were obtained in the strychnine-induced seizure test for
any of the isomers tested. In the model of maximal atrial electroshock, although they all significantly
reduced seizure duration, there were differences in effect [196]. In the PTZ-induced kindling model
with (+)-cis-EC and (-)-cis-EC, both reduce seizure severity and levels of proinflammatory cytokines
IL-6 and TNF-« in mice hippocampi. The pre-treatment with the stereoisomer (+)-cis-EC showed
neuronal protection in the epileptogenic process [197].

3.11. Eugenol

Eugenol is a natural and pharmacologically active aromatic substance present in plant EOs such
as Eugenia caryophyllus Spreng., Myristica fragrans Houtt. and Ocimum gratissimum L. [198]. Also known
as eugenic or cariophilic acid, eugenol is a phenylpropanoid; biologically synthesized from the amino
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acid phenylalanine through the shikimic acid metabolic pathway [199]. Eugenol has been widely
used as an analgesic in dentistry due to its anti-inflammatory activity observed in cells of the dental
pulp [200]. Several biological activities; hypoglycemic [201], platelet aggregation inhibition [202],
antimicrobial [203], and antiulcerogenic [204] have all been reported for eugenol.

Jeong et al. [205] evaluated the inhibitory effect of eugenol after unilateral injection of kainic acid in
the hippocampus; there was significant delay in seizure onset. At 200 mg/kg i.p., eugenol decreased the
appearance of granule cell dispersion (characteristic of temporal lobar epilepsy) by 52%. These results
can be explained by mammalian target of rapamycin (mTOR) signaling pathway deactivation (activation
is related to the development of epilepsy). According to Huang et al. [206], eugenol inhibits sodium
current, affecting activation of the action potential, with consequent neuronal hyperexcitability
modulation. Yet, Vatanparasta et al. [207] reported that both the neuronal inhibitory and excitatory
effects of eugenol are concentration dependent, i.e., low concentrations have antiepileptic properties and
high concentrations induce epileptiform activity. In the lithium-pilocarpine epilepsy model, eugenol
(100 mg/kg, i.p.) reduced the severity of seizures and animal mortality. The number of neurons in the
dentate gyrus and CA regions of the hippocampus was reduced by administration of this substance,
which when administered alone curiously decreased neuronal survival. Neuroprotective effect was also
observed due to an increase in the antioxidant marker glutathione peroxidase [208]. Corroborating these
results, in an experimental model of neurotoxicity in rats, oral supplementation of the diet with eugenol
(50 mg) increased the total antioxidant status level and reduced lipid peroxidation and neuronal
apoptosis promoted by aluminum chloride [209]. Similarly, pretreatment of mice with eugenol
(10.7 mg/kg) attenuated lipid peroxidation and protein oxidation, and increased levels of Gpx, SOD,
CAT, and GST antioxidant enzymes [210].

3.12. Gamma-Decanolactone

Gama-decanolactone is a monoterpene that acts on the central nervous system as anticonvulsant
and hypnotic [211]. Gama-decanolactone has neuroprotective effect against seizures induced by
isoniazid and 4- aminopyridine, but not by picrotoxin. These results suggest a possible modulation
of GABA pathways and potassium channels directly or indirectly [212]. In the pilocarpine-induced
status epilepticus, gamma-decanolactone at a dose of 300 mg/kg increased the latency to the first clonic
seizure, but not there was no statistical difference in the group who received a dose of 100 mg/ kg
compared with the control group. In this seizure model, gamma-decanolactone (100 and 300 mg/kg)
suppressed the production of reactive oxygen species and DNA damage, as well as increased the
activity of antioxidant enzymes and increased NO levels in the cerebral cortex of mice [213].

3.13. Linalool

Linalool is an acyclic monoterpene found as a volatile major constituent in the EOs of various
aromatic plants [214,215]. Due to lower expression of (-)-(3R)-linalool synthase, Magnard et al. [216]
has demonstrated lesser amounts of this monoterpene in rose flowers. EOs of Aniba rosacodora
Ducke. (rosewood), Aniba parviflora Meisn. (Macacaporanga), and Aeollanthus suaveolens Mart.
(Catinga-de-mulata) are rich in linalool, which in synergism with other constituents, possesses
antidepressant activity without compromising spontaneous locomotion or memory retention in
treated animals [217]. Studies have revealed the excellent results of linalool in the central nervous
system, promoting phospholipid homeostasis in neurological recovery after ischemia [218], as well
as improvements in memory loss and behavioral effects in REM sleep deprivation modelling [219].
Linalool decreases cognitive deficit in mice as induced by intrahippocampal administration of -amyloid
protein; which is responsible for the pathogenesis of Alzheimer’s disease.

Linalool has demonstrated a neuroprotective effect via reduction of apoptosis and oxidative
stress [220]. In study investigating the antioxidant activity of linalool in the rat brain, it was found that
treatment with linalool, promoting neuroprotection (12.5 mg/kg, i.p.) is able to reduce the progressive
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gait abnormalities promoted by acrylamide, oxidative stress, lipid peroxidation, and increased GSH
levels [221].

In central neurons of the snail Caucasotache atrolabiata, linalool at low concentrations (0.1 mM)
demonstrated anti-(PTZ-induced) epileptic activity (20 mM), which was likely mediated by Na* inward
current, and indirect potentiation of Ca?* activated K* currents. However, high concentrations of
this monotorpene (0.4 mV), augment neuronal hyperexcitability which is dependent on Ca?* inward
current and activation of protein kinase C [47].

Linalool oxide (OXL) is a monoterpene formed from the natural oxidation of linalool or through
other synthetic routes. Although OXL is also present in EOs, it is found in lesser amounts [222,223].
Inhaled OXL presents anxiolytic effects without altering motor coordination [224]. The intraperitoneal
OXL LDs was estimated at 721 mg/kg with a confidence limit of between 681 and 765 mg/kg body
weight. Evaluating anticonvulsant activity, OXL (50, 100, and 150 mg/kg, i.p.) significantly increased
the duration of tonic seizures in maximal electroshock tests. In the PTZ-induced seizure testing,
a 150 mg/kg dose alone was able to increase latency to the first seizure. Similar to linalool, OXL (50,
100 and 150 mg/kg, i.p.) did not cause either muscle relaxation or motor coordination deficits at any of
the doses tested [225].

3.14. Nerolidol

Nerolidol is an aliphatic sesquiterpene and is a major compound found in the EOs of Canarium
schweinfurthii Engl. [226], Fraxinus dimorpha Coss & Durieu [227], Lindera erythrocarpa Makino [228],
Myrcia splendens Sw. [229] and Piper aduncum L. [230]. Many of nerolidol’s pharmacological effects;
anxiolytic [231], antimicrobial [232] anti-inflammatory [233] and regression of endometriosis [234]
have already been described in the literature.

According to Kaur et al. [235], nerolidol (12.5, 25, and 50 mg/kg, i.p.), in a model of
epileptogenesis induced by pentylenetetrazole, presented protective effects since it reduced seizure
severity. These results may be explained by an observed decrease in oxidative stress and favorable
neurochemical changes including increased levels of noradrenaline, dopamine, and serotonin in both
the cortex and the hippocampus of the treated animals. Nerolidol also improved depression and
memory loss in the PTZ-kindled animals (psychiatric comorbidities associated with epilepsy.

In addition, administration of nerolidol (50 mg/kg, i.p.) to rats reversed neuroinflammation
and cerebral oxidative stress by increasing levels of the antioxidant enzymes SOD, CAT, GSH and
decreasing lipid peroxidation and MDA levels, besides reducing glial cell activation and dopaminergic
neuron loss [236]. Nogueira-Neto and colleagues (2013) [237] found that treatment with nerolidol
(75 mg/kg, i.p.) decreased oxidative stress in the mouse hippocampus, resulting in increased SOD
and CAT activity, as well as reducing levels of nitrite and lipid peroxidation. The results reveal the
therapeutic potential of nerolidol to treat and prevent brain diseases associated with oxidative stress.

3.15. 1-Nitro-2-phenylethane

1-Nitro-2-phenylethane (NPH) is a volatile compound found in the EOs of Aniba canelilla
and Dennettia tripetala [58], and was the first nitrocomponent isolated from plants [238,239].
Several pharmacological activities for NPH have been reported, including anti-inflammatory [240],
antinociceptive [241], trypanocidal [242], cytoprotective [243], anxiolytic and hypnotic effects [58].
NPH also presents vasodilator activity via stimulation of soluble guanylil cyclase [244], and induces
vagal-vagal bradycardia in normotensive rats [245]. NPH presents an LDsj of 490 mg/kg (i.p.) in mice,
indicating moderate toxicity. Pretreatment with NPH, (50, 100, and 200 mg/kg, i.p.), protected against
PTZ-induced seizures (100%), and reduced mortality of the animals when compared to the PTZ-only
control group. This effect was blocked by pre-administration of flumazenil, suggesting GABAergic
involvement. In the strychnine-induced convulsion test, NPH at doses of 50, 100, and 200 mg/kg
(i.p.) was effective in protecting against seizures by 20%, 80% and 100%, respectively, and provided
protection against mortality, signaling possible glicinergic involvement [58].
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3.16. Terpinen-4-ol

Terpinen-4-ol (4TRP) is a monoterpene found in the EOs of Zingiber purpureum Roscoe [246],
Artemisia caerulescens L. [247] and Hedychium gracile Roxb [248], and Melaleuca alternifolia Cheel [249].
4TRP presents several documented pharmacological effects that include antibacterial activity [250],
anticancer [251], antifungal [252], antihypertensive [253], and anti-inflammatory activity [254], and
is also widely used in the food, sanitary, and cosmetic industries [255]. Thus, Nobrega et al. [256]
performed studies demonstrating that although 4TRP modulates the GABAergic system, its activity
is not reversed by pre-treatment with flumazenil, suggesting that the substance does not bind to the
benzodiazepine site at the GABA receptor. When examining electroencephalogram changes caused
by intra-cerebroventricular administration of 4TRP (100 and 200 ng/2uL) after PTZ injection, and
compared to the control group there was an increase in latency for both myoclonic and tonic-clonic
seizures. Surprisingly, 4TRP reduced Na* and K* currents in a concentration-dependent manner in
dorsal root ganglion neurons, probably the main inhibition mechanisms for neuronal excitability and
convulsive processes [256,257].

3.17. Thymol

Thymol is a phenolic monoterpene found mainly in EOs from the genus Thymus L. of
Lamiaceae, and is an isomer of the monoterpene carvacrol. This compound is also found in the
species Lippia sidoides Cham. [258], Satureja macrostema Moc. & Sessé ex Benth [259] and Ocimum
gratissimum L. [260]. This bioactive compound presents a wide variety of pharmacological properties
such as anti-obesity [261], anthelmintic [262], anti-inflammatory [263], hepatoprotective [264] and
larvicidal [265].

Thymol has demonstrated antioxidant effects in mouse neuron cultures (10, 25, and 50 mg/L) [266],
and presents excellent hydroxyl radical elimination capacity [267]. Thymol increases antioxidant
enzyme levels, for example SOD, GPx, CAT, and GST, and non-enzymatic antioxidants such as vitamins
Cand E [268]. It has also been suggested that thymol (500 uM) presents a neuroprotective effect against
oxidative stress induced by H,O, in cortical rat neurons [269]. In addition, the administration of
thymol (30 mg/kg) significantly reversed the amyloid-f-induced neurotoxic effects on the hippocampus
of rats by increased GSH levels, reduced lipid peroxidation and decreased serum MDA levels [270].
Thymol also presents anesthetic and sedative activity in silver catfish via interaction with GABA 4
receptors, but not at the GABA 4 /benzodiazepine site [271]. Thymol presented partial efficacy in MES,
Metrazol (scMET), and Corneal-kindled models [173]. In the pentylenetetrazole-induced kindling
model, thymol (25 mg/kg, i.p.) reduced seizure scores and malondialdehyde levels, as well as increased
levels of glutathione. This antiepileptogenic effect can also be attributed to blocking Na* channels
post GABA, receptor modulation. Locomotor capacity was also significantly reduced with the
administration of thymol (25, 50, and 100 mg/kg, i.p.) [272].
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3.18. (-)-Verbenone

Verbenone is a bicyclic monoterpene containing a ketone group commonly found in bark
beetle pheromones. «-Pinene is a biosynthetic precursor [273]. Verbenone is produced by gut
bacteria found in the red beetle Dendroctonus valens, and in medicinal plants such as Verbena triphvlla
and Eucalyptus globulus Labill [274-276]. Verbenone presents good repellent properties, as well as
anti-inflammatory [277] and bronchodilator [278] activity. Verbenone derivatives present important
biological characteristics such as antifungal [279], antiviral [280], antioxidant activities and (in cortical
neurons) anti-ischemic properties [281]. Given these promising effects, Melo et al. [282] evaluated
the anticonvulsant activity of verbenone at doses of 150, 200, and 250 mg/kg (i.p.). Initially, they
found that verbenone was unable to alter motor coordination in the animals and had no effect
in pilocarpine-induced seizure test, as it did not alter latency to seizures or reduce peripheral
cholinergic signals. Yet in the pentylenetetrazole-induced seizures test, verbenone (200 and 250 mg/kg)
significantly increased the latency to onset of first seizure and reduced the percentage of tonic-clonic
seizures, as well as the percentage of deaths when compared to the control group. Although the
GABAergic system may be involved in this pharmacological activity, the effects were not reversed
by flumazenil administration, showing that verbenone does not act at the same benzodiazepine
binding site. Expression of BDNF and COX-2 in the hippocampus of animals receiving verbenone and
PTZ were significantly increased, whereas c-fos was decreased. These results may be related to the
neuroprotective effect of verbenone [283,284].
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Table 2. Chemical structure and description of anticonvulsant activity in nonclinical models of essential oil constituents.
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Animal Tests and/or Cell Line

Compounds Experimental Protocol Anticonvulsant Activity and/or Mechanism Reference Reference
PIZ Decreased the occurrence of tonic hind limb
. . extension.
0 m'duced seizure fest Reduced the hind limb extensor phase of Male Swiss mice and male Wistar rats [116]
Maximal electroshock test .
= ~ . L . convulsion
Pilocarpine-induced seizures test Increased latency to seizure
A - ElectroPp?Zy_SIa(ﬁgin ;?L;etz?rdmg Enhanced tonic GABAergic inhibition Rat hippocampal neurons and Male [117]
o) O . . Prolonged latency to clonic and tonic seizures C57BL-6 mice
Ioh induced seizure test
alpha-asarone : i
Pilocarpine-induced Reduced l.e aring and memory d.ef.lc.lt Adult male Sprague-Dawley rats
L Attenuated brain inflammation by inhibiting the . . [119]
status epilepticus rat model A S - Microglia cell culture
NF-«B activation pathway in microglia
Prolonged onset time to seizure, but not prevented
s . the occurrence .
Nicotine-induced seizure test Did not interact with nicotinic acetylcholine Male ICR mice [118]
receptors
ch CH 3
HaC 7
3 PTZ induced seizure test Decreased the seizure intensity
H-C CHs . Reduced hippocampal nitrite level and striatal Male Swiss albino mice [122]
3 Neurochemical tests . . -
CH, content of dopamine and norepinephrine
a-pinene {B-pinene
@)
= 6-Hz Displayed anticonvulsant properties Male CE/[7€32/6 mice
psychomotor seizure mouse model Modulated the expression patterns of . [128]
PTZ infusion model seizure-related genes NMRI mice
8 AB adult zebra fish
(+)-ar-Turmerone
Decreased the seizure intensity
Kainic acid induced seizure test Reduced oxidative stress Mice [136]
Reduced expression of TNF-« and IL-1
PTZ induced seizure test Increased latency to myoclonic jerks Adult C57BL/6 mice of both genders [143]
[144]

H

-Caryophyllene

Maximal electroshock test
PTZ induced seizure test
Kainate induced status epilepticus

Suppressed tonic-clonic seizures
Decreased seizure scores
Decreased lipid peroxidation

Male albino ICR mice
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20 of 40

Animal Tests and/or Cell Line

induced seizure test

Compounds Experimental Protocol Anticonvulsant Activity and/or Mechanism Reference
Reference
Suppressed the process of epileptogenesis
H PTZ-induced kindling model Reduced oxidative stress Male Swiss albino mice [158]
7/ Prevented neuronal damage
OH &
Borneol
6Hz psychomotor seizure test
Maximal electroshock test
. PT.Z Prevented seizures in some tests. Adult male CF No 1 albino mice [173]
induced seizure test
OH Corneal kindling model
Lithium-pilocarpine model
Induction of SE
Electrophysiological recording Prevented memory deficits following SE Male [174]
Immunohistochemistry Inhibited TRPM7 channels adult Sprague-Dawley rats
Rewarded alternating T-maze test
[175]
Lipopolysaccharide-PTZ induced seizure Prevented the proconvulsant effect of LPS Adult male wistar rats
test Increased hippocampal level COX-2 but not COX-1
Carvacrol
) . . . .
Pilocarpine- PTZ- Picrotoxin- Increased
induced seizure test latency to first seizure
Determination of Na*, K*-ATPase activity Reduced percentage of seizures . . .
O Determination of d-ALA-D activity Improved Na* K*-ATPase and d-aminolevulinic Male Swiss albino mice (181l
Evaluation of amino acids levels in mice acid dehydratase activities
hippocampus Increased GABA levels
Carvacryl acetate
H
HO ’ Electr(})p?zy_ S;(;:gglécaiiz_ordmg Suppressed epileptic activity Male [186]
R g Facilitated GABAergic inhibition C57BL/6] mice

Curcumol
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Animal Tests and/or Cell Line

Compounds Experimental Protocol Anticonvulsant Activity and/or Mechanism Reference
Reference
Prolonged onset time to seizure and decreased the
PTZ induced seizure test duration of seizure Mice [90]
Effects on GABAergic and opioid systems
Curzerene
PTZ induced seizure test
Maximal electroshock test Increased latency to seizure onset . . .
e} Pilocarpine induced seizure test Prevented tonic seizures Male Swiss albino mice [196]
(0] Strychnine Induced Seizure Test
[197]
Decreased seizure scores
PTZ-induced kindling model Decreaseg;rg)lili;iasmmatory Male Swiss albino mice
Showed neural protection
Epoxy-carvone Increased seizure threshold
. R N Reduced granule cell dispersion .
OH Intrahippocampal injection of kainic acid Suppressed mTORCI hippocampal Male C57BL/6 mice [205]
activation
Electrophysiological measurements voltalne}al—lb;:eej ;aarlsiirltrents Neuronal cells (NG108-15) [206]
/ ~ Pilocarpine-induced epileptic seizures 5¢8 . Adult Sprague-Dawley (SD) male rats
0] Reduced percentage of severe seizures
Eugenol Induced .
8 Intracellular recording inhibitory and excitatory effects in a Neurons of la;crl(;;’azzltsuCaucasotachea [207]
concentration-dependent manner
Decreased seizure stages
Lithium-pilocarpine model Reversed oxidative stress Male rats [208]
Increased cell survival in hippocampal sub-regions
Isoniazid-, picrotoxin- and 4- Prolong the latency to the first seizure .
O O aminopyridine- Induced Seizure Test Decreased the percentage of seizures Male CF1 mice (212]
[213]

/\/\A{j/

y-Decanolactone

Pilocarpine-Induced Seizure Test

Prolonged the latency to first clonic seizure and
reduced oxidative stress

Male CF1 mice
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Animal Tests and/or Cell Line

Compounds Experimental Protocol Anticonvulsant Activity and/or Mechanism Reference
Reference
OH
| ' ' Suppressed action potf:ntlals at lower Central neurons of snail ’
PTZ induced seizure test concentration. . [47]
. . . Caucasotachea atrolabiata
| Excitatory effect in higher concentration.
Linalool
PTZ induced seizure test Increased
. latency to first seizure onset Male Swiss albino mice [225]
Maximal electroshock test . L
Reduced the duration of tonic seizures
Linalool oxide
HO
X
Increased NE, DA, 5-HT in cortex and
PTZ-induced kindling test hippocampus Male lake mice [235]
| Reduced oxidative stress
Nerolidol
PTZ Offered
induced seizure test protection against PTZ- .strychrune-mduced Adult male and female albino mice 58]
strychnine convulsion
induced seizure test Flumazenil blocked anticonvulsant effect
NO,

1-Nitro-2-phenylethane
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23 of 40

Animal Tests and/or Cell Line

Compounds Experimental Protocol Anticonvulsant Activity and/or Mechanism Reference
Reference
PTZ induced seizure test Increased the‘latency to seizures
Reduced the total time spent in generalized
3-MP test . . .
. convulsions Adult male Swiss mice [256]
Electroencephalogram recordings v
Dissociation and Patch-Clamp Recordings Reduced Na
OH currents in a concentration—dependent manner
Terpinen-4-ol
6 Hz psychomotor seizure test
Maximal electroshock test
PTZ induced seizure test Prevented seizures in some tests. Adult male CF No 1 albino mice [173]
Corneal kindling model
Lithium-pilocarpine model
~ [272]
NN | Maximal electroshock test
OH PTZ-induced seizure test Reduced seizure scores Male Wistar rats
Strychnine-induced seizure test Could block Na* channels post GABA 4 receptor . . .
X 1 . f Male Swiss albino mice
4-Aminopyridine seizure test modulation
/ \ PTZ-induced kindling test
Thymol
Increased latency to onset of first seizure
—~— Reduced the percentage of
PTZ induced seizure test tonic-clonic seizures Male Swiss mice [282]

O

(-)-Verbenone

Up regulated mRNA expression of BDNF and
COX-2
Down regulated mRNA expression of c-fos

3-MP:

Mercaptopropionic Acid.
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4. Discussion and Future Perspectives

Aromatic plants produce lipophilic volatile compounds able of crossing the blood-brain barrier and
modulating neuronal changes involved in seizure. EOs extracted from these plants are rich in lipophilic
secondary metabolites with great chemical complexity and can interact in several biological targets
simultaneously. For example, Cinnamosma madagascariensis oil has anticonvulsant activity, probably
due to the effects of its major constituents (linalool, limonene and myrcene) on the central nervous
system [46]. Curzerene and linalool also have anticonvulsant activity and are the major components
of Smyrnium cordifolium and Zhumeria majdae oils, respectively, which also have anticonvulsant
effect [90,109]. However, some active principles have not yet clarified their biological activity, limiting
the understanding of the effects observed in essential oils. Apiaceae and Lamiaceae families were the
most promising because they had more essential oils with anticonvulsant activity. Among the bioactive
compounds, B-caryophyllene, borneol, eugenol and nerolidol were the only ones that presented
antioxidant properties related to anticonvulsant action reported in the literature. In this review, it was
observed that essential oils and their constituents exert pharmacological action mainly via modulation
of GABAergic neurotransmission. For example, Dennettia tripetala oil together with its constituent,
1-nitro-2-phenylethane, interact with the benzodiazepine receptor, as well as with curzerene [58,90].
a-Asarone reduces neuronal excitability via enhancing GABA tonic inhibition in vivo [117]. Carvacryl
acetate increases GABA neurotransmitter levels in the hippo-campus [181]. Another important
mechanism of EOs compounds is the reduction of seizure-induced inflammation and/or oxidative
stress as observed in x-asarone, (-)-verbenone, 3-caryophyllene, borneol, carvacryl acetate, eugenol and
nerolidol [117,136,158,181,208,235,282]. Some constituents of EOs such as eugenol, terpinen-4-ol and
thymol are able to reduce seizures via the modulation of ion channels [206,256,272]. It is worth noting
that the constituents of EOs differ in chemical structure and in the position of their functional groups.
According to Sousa et al. [285], the stereogenic center at the C-3 atom and the presence of a double
bond influences the pharmacological potency of monoterpenes. Enantiomers of the same compound
may have different biological activity or different potencies. For example, (5)-(+)-carvone was effective
in protecting animals from seizures induced by chemical stimulation, while (R)-(+)-carvone was
not effective [41]. Although this review emphasizes the beneficial effects of essential oils on seizure
treatment, it is necessary to demystify the belief that natural products are not toxic [286]. Mathew et
al. [287] reported ten cases of inhalation-induced seizures caused by eucalyptus oil, that is widely used
for pharmaceutical purposes. Researchers believe that the epileptogenic effect of eucalyptus oil is due
to cellular hyperexcitability [288]. Camphor EO and its major constituent, 1,8-cineole, caused signs of
neurotoxicity such as seizures in rats [289]. In this sense, the need for further studies on the safety
profile and mechanism of action of EOs is evident.

5. Materials and Methods

The present study was based on a literature review of plants essential oils and their isolated
constituents with anticonvulsant activity in animal models and antioxidant action. The search,
performed in the Pubmed database, from January 2011 through December 2018 used the following
keywords: anticonvulsant and seizure, essential oils, monoterpene and antioxidant.

6. Conclusions

Evidence on the role of oxidative stress in the biochemical and neurological events of epilepsy
has been established. The studies discussed show that essential oils and their constituents with
anticonvulsant activity can inhibit these processes via antioxidant action, in addition to other
mechanisms of action that these natural products present on neuronal excitability. The inhibition
of seizures exerted by the essential oils in various animal models, using chemical and physical
convulsivant agents, demonstrate their therapeutic potential against various neurological disorders,
especially epilepsy. Investigating the metabolization of these bioactive products, their subchronic and
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chronic toxicities and the consequent clinical screening are important steps to advance in obtaining
phytochemicals as candidates for new antiepileptic drugs.
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Abbreviations

4TRP Terpinen-4-ol

5-ALA-D d-aminolevulinic acid dehydratase
ATP Adenosine triphosphate

BDNF Brain-derived neurotropic factor
BPEO Bunium persicum essential oil
CAEO Citrus aurantium essential oil
CAT Catalase

CMEO Cinnamosma madagascariensis essential oil
CNS Central Nervous System

COEO Calamintha officinalis essential oil
DTEO Dennettia tripetala essential oil
DPPH 2,2-diphenyl-1-picrylhydrazyl
EC Epoxy-carvone

ECEO Elettaria cardamomum essential oil
EOs Essential oils

ES Epilepticus status

FRAP Ferric reducing antioxidant power
GABA d-aminobutyric acid

GC/MS Gas chromatography coupled to mass spectrometry
GLEO Gardenia lucida essential oil

GSH Glutathione reductase

GST Glutathione S-transferase

GPx Glutathione peroxidase

IL-1B Interleukin 13

iNOS Inducible nitric oxide synthase
MDA Malondialdehyde

MES Maximal electroshock seizure
nAChRs Nicotinic acetylcholine receptors
mTOR mammalian target of rapamycin
NPH 1-Nitro-2-phenylethane

OXL Linalool oxide

PAEO Pimpinella anisum essential oil
PGEO Piper guineense essential oil

PTZ Pentylenetetrazol

RNS Reactive nitrogen species

ROS Reactive oxygenated species
scMET Metrazol

SE Epilepticus status

SCEO Smyrnium cordifolium essential oil
SOD Superoxide dismutase

TNF-« Tumor necrosis factor «

ZHMEO Zhumeria majdae essential oil

ZMEO Zataria multiflora essential oil
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