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Autoimmune diseases (AiDs) are complex heterogeneous diseases characterized by
hyperactive immune responses against self. Genome-wide association studies have
identified thousands of single nucleotide polymorphisms (SNPs) associated with several
AiDs. While these studies have identified a handful of pleiotropic loci that confer risk to
multiple AiDs, they lack the power to detect shared genetic factors residing outside of
these loci. Here, we integrated chromatin contact, expression quantitative trait loci and
protein-protein interaction (PPI) data to identify genes that are regulated by both
pleiotropic and non-pleiotropic SNPs. The PPI analysis revealed complex interactions
between the shared and disease-specific genes. Furthermore, pathway enrichment
analysis demonstrated that the shared genes co-occur with disease-specific genes
within the same biological pathways. In conclusion, our results are consistent with the
hypothesis that genetic risk loci associated with multiple AiDs converge on a core set of
biological processes that potentially contribute to the emergence of polyautoimmunity.

Keywords: multiple autoimmune diseases, shared gene regulatory mechanisms, non-HLA module, HLA module,
immune pathways, cancer pathways
INTRODUCTION

Autoimmune diseases (AiDs) are chronic conditions that arise when there is an abnormal immune
response that targets functioning organs. Many AiDs share clinical symptoms and
immunopathological mechanisms (1). For instance, it has been shown that patients with the
most common AiDs such as multiple sclerosis (MS), type I diabetes (TID), rheumatoid arthritis
(RA), and systemic lupus erythematosus (SLE) are at higher risk of polyautoimmunity (2–4). It is
likely that environmental factors impact on the shared immunopathological mechanisms to trigger
polyautoimmunity. On the other hand, there is evidence for a genetic contribution to AiD
development that is supported by higher concordance rates in monozygotic twins, a relative
increase in the risk of disease in dizygotic twins (5), and the coexistence of AiDs within families and/
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or individuals (6–9). We hypothesize that the effects of AiD
associated genetic variants converge on biological pathways that
increase risk through downstream functional impacts.

The major histocompatibility complex (MHC) locus provides
the greatest genetic risk factor for AiD development and is an
obvious common link between AiDs (10). In addition to the
MHC locus, non-HLA genes such as CTLA4, PTPN22, and TNF
have also been associated with multiple AiDs (11). Furthermore,
genome-wide association studies (GWAS) have identified
thousands of single nucleotide polymorphisms (SNPs) across
the human genome that are associated with an increased risk of
developing AiD. The AiDs-associated GWAS SNPs are typically
located outside of RNA polymerase II transcribed exons (i.e., in
non-coding regions) and unique to one, or a small set of AiDs
(12). Given the phenotypic similarities between the AiDs, it is
however possible that combined analyses may reveal patterns of
shared genetic and pathological etiology. Consistent with this, a
cross-disease Immunochip SNP meta-analysis identified novel
pleiotropic risk loci that represent complex comorbidity from
patients with seronegative immune phenotypes (13).

Trait-associated SNPs have been shown to be more likely to
mark loci that are expression quantitative trait loci (eQTL) (14).
In this study, we have concurrently investigated SNPs that were
independently associated with 18 AiDs to identify their
transcriptional regulatory activity (i.e., as eQTLs), using an in
silico method (CoDeS3D) that combines different levels of
empirical evidence (15). The majority of the AiDs-associated
SNPs were found to be eQTLs for the genes that are in physical
contact with them. Notably, we have identified a subset of genes
shared (i.e., genes whose transcript level changes were explained
by eQTLs from >1 AiD) between multiple AiDs. We further
identified the functional and physical interactions among the
proteins encoded by the eQTL target genes using protein-protein
interaction (PPI) data and then extracted functional modules
from the PPIs using a modularity-based community detection
method. Each functional module revealed the complex
interactions between shared and disease-specific proteins.
Furthermore, pathway enrichment analysis of the modules
revealed the co-occurrence of shared and disease-specific
proteins within the same biological pathways. Overall, our
comprehensive approach enabled the identification of putative
risk pathways where the effect of genetic risk loci associated with
multiple AiDs converges to increase the susceptibility of multiple
autoimmune conditions.
MATERIALS AND METHODS

Identification of the Target Genes of
Autoimmune Disease-Associated SNPs
SNPs associated (p ≤ 5x10-6) with 18 autoimmune diseases
[alopecia areata (ALO), ankylosing spondylitis (AS), celiac
disease (CED), Crohn’s disease (CRD), eosinophilic esophagitis
(EE), Graves’ disease (GRD), juvenile idiopathic arthritis (JIA),
multiple sclerosis (MS), primary biliary cirrhosis (PBC), psoriatic
arthritis (PA), psoriasis (PSO), rheumatoid arthritis (RA),
Sjogren’s syndrome (SJS), systemic lupus erythematosus (SLE),
Frontiers in Immunology | www.frontiersin.org 2
systemic scleroderma/sclerosis (SSC), type-I diabetes (T1D),
ulcerative colitis (ULC), and vitiligo (VIT)] were retrieved
from the GWAS catalog (https://www.ebi.ac.uk/gwas; on 30
April 2020) (Supplementary Data 1). The SNPs associated
with each disease were analyzed separately through a python-
based bioinformatics algorithm (CoDeS3D) (15) to identify
which SNPs acted as expression Quantitative Trait Loci
(eQTLs) and to identify their target genes. Firstly, CoDeS3D
uses Hi-C chromatin contact data derived from 70 cell lines and
primary tissues (Supplementary Data 2) to identify target genes
that are spatially interacting with the SNPs. Of note, the summary
statistics for the CoDeS3D run include the Hi-C cell line/tissue in
which the interaction was observed (Supplementary Data 3;
column header=“cell_lines”). Secondly, eQTL data from 49
human tissues (GTEx V8) (16) were used to identify the SNPs
(eQTLs) that are associated with the expression changes of their
target genes (eGenes). Lastly, false positive associations were
controlled using a multiple testing correction [Benjamini-
Hochberg False Discovery Rate (FDR < 0.05)]. Chromosome
positions of SNPs and genes are reported according to the
Human reference genome GRCh38/hg38 assembly.

Functional Annotation of the SNPs
To determine the functional class of SNPs, we used the
programming interface of HaploReg (HaploR- 4.0.2 package),
which rely on the dbSNP functional annotation. The annotation
is based on the position of the SNPs relative to the local
gene features.

Construction of the Autoimmune Disease
Network Using Protein-Protein Interaction
(PPI) Data
The python ‘networkx’ library was used to construct the
autoimmune disease network in two steps: (i) A reference PPI
network (ref-PPIN) was constructed using data downloaded
from STRING v11.0 (17). Only protein pairs with no self-links
and a high-confidence score (combined score > 0.7) were
retained, yielding a reference network with 16758 proteins
(nodes) and 411585 interactions (edges). (ii) All protein coding
eGenes whose expression changes were associated with the
eQTLs from one or more of the 18 autoimmune diseases were
analyzed to determine if they were involved in PPIs within the
ref-PPIN. The resulting autoimmune PPI network (Ai-PPIN)
consisted of 2925 proteins and 19173 interactions. Cytoscape
(version 3.8.2) was used for PPI network visualization.

Identification of Modules From the
Autoimmune PPI Network (Ai-PPIN)
Functional modules can be defined as either: a) a stable protein
complex; or b) a set of transiently interacting proteins that together
act to accomplish a specific biological function. Here, we extracted
the functional modules from the Ai-PPIN using the Louvain
module detection algorithm (18). The Louvain algorithm
identifies functional modules by optimizing the modularity (Q) of
the network. For an undirected graph G=(V, E) with V number of
nodes and E number of edges, Q is defined as (19),
August 2021 | Volume 12 | Article 693142
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Q =
1
2moij Aij −

didj
2m

� �
d (ci, cj) (1)

where m is the number of edges (E) of G, Aij represents the
weight of the edge between nodes i and j, di and dj are degrees of
node i and j, ci and cj are the communities to which i and j
belong, and d- function for which d(ci, cj) equals 1 if ci = cj, and 0
if ci≠ cj. The communities or the functional modules are found in
an iterative manner. The Louvain algorithm relies on a greedy
optimization method to find the modules that achieve maximum
modularity. In the initial stage, all nodes in the network are
considered as independent modules and the algorithm
progressively combines two modules that increase the Q of the
resulting network. Combining nodes and modules continues
until there is no further increase in the Q of the network. The
Louvain module detection algorithm has previously been
proposed to be the best method to find modules within the
human PPI network (20).

The qs-test was used to evaluate the significance of modules
according to the quality function (q) and size (s) of the module. A
module, M, is deemed significant if its quality function, qM
(modularity), is larger than those for detected modules of the
same size sM in randomized networks (21). The size function is
calculated by summing the degrees of nodes in a module.
Identification of Central Genes Within the
Functional Modules
In network theory, the centrality of a node measures its relative
importance within the network. We regarded each module
identified from Ai-PPIN as an individual network and
identified central nodes using three centrality measures: degree,
closeness, and eigenvector. The python package “networkx” was
used for centrality analysis.

Degree centrality (DC). The DC indicates the number of direct
neighbors of a node. The DC of a node i is defined as,

DC(i) = Sn
j=1Aij (2)

where A is the adjacency matrix, and n is the total number of
nodes in a graph (G). DC values are normalized by dividing them
by the maximum possible degree (n - 1), where n is the number
of nodes in G.

Closeness centrality (CC). The CC is the reciprocal of average
shortest path distance between a node i and all other reachable
nodes in the network. CC of a node i is defined as,

CC(i) =
n − 1

Sn−1
j=1 d(i, j)

(3)

where d(i, j) is the shortest path distance between i and j, and n is
the number of nodes that can reach i.

Eigenvector centrality (EC). The EC computes the centrality of
a node based on the centrality of its neighbors. EC measures the
influence of a node on the connectivity of the network. EC of a
node i is defined as,
Frontiers in Immunology | www.frontiersin.org 3
EC(i) =
1
l
Sj∈M(i)xj (4)

whereM(i) is a set of neighbors of i, l is the largest eigenvalue of
A(adjacency matrix). If a node is connected to other well-
connected nodes in the PPI, it will have the maximum EC value.

We sorted the proteins in decreasing order according to their
degree, closeness and eigenvector centrality scores and selected
the top 10% of proteins from each group. We defined the
proteins that are present in common across all three groups
as central.

Functional Annotation of the Modules
Pathway and GO enrichment analyses were performed [R
package g:profiler (version 2_0.1.9) (22)] on every module
detected from Ai-PPIN to identify significantly enriched
pathways and biological processes terms (false discovery rate
correction threshold of 0.05). Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (accessed 10-October-2020) and
gene ontology (GO) biological processes (accessed 20-January-
2021) terms were used as the reference libraries in these analyses.
DGIdb version 3.0 (23) was used to identify potential drug
interactions with the eGenes.
RESULTS

An Overview of the Gene Regulatory
Network of the AiDs
The SNP-gene regulatory network encompassing 2065 eQTLs
(81% of the total input SNPs (N=2556)) and 4789 eGenes across
18 diseases (Supplementary Data 3) was identified using
CoDeS3D (15) (Figure 1A). In this article, eQTLs are defined
as SNPs that tag a locus that: 1) physically interacts with a gene;
and 2) explains a fraction of the genetic variance of the
interacting gene transcription level. The eGenes are the target
genes whose expression levels are associated with the eQTLs. The
majority of eQTLs are present in the non-coding regions of the
genome between two consecutive genes (intergenic), or within
the introns of a gene (intronic). (Supplementary Figure 1,
Supplementary Data 4 Table 1). Therefore, these eQTLs may
have regulatory effects on the target eGenes we identified.
However, they are yet to be empirically validated. The eQTLs
and eGenes are hereafter referred to as “SNPs” and “genes” for
simplicity. Although the increased risks of AiDs associated with
the SNPs/genes are statistically significant, future research
should include empirical validations to determine and prove
the causal relationships.

The large proportion of SNPs (N=1879; 91%) are non-
pleiotropic (i.e., associated with only one AiD). There are
pleiotropic SNPs (N=186; 9%) implicated in two or more AiDs
(Figure 1B), where two or more GWAS on different diseases
independently identified the same SNP. Of these, approximately
one-third of the pleiotropic SNPs (N=60; 32.3%) were associated
only between CRD and ULC. The remaining 126 (67.7%) were
shared between two to five disease conditions (Supplementary
Data 4 Table 2). Together, the pleiotropic SNPs are associated
August 2021 | Volume 12 | Article 693142
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with the expression levels of 833 (17.4%) genes. A small proportion
of genes (N=225; 4.7%) are regulated only by pleiotropic SNPs
(Figure 1B, (i) termed as “identical genes”), 608 genes (12.7%)
regulated by both pleiotropic and non-pleiotropic SNPs and 889
genes (18.6%) regulated by >2 non-pleiotropic SNPs associated with
different AiDs (Figure 1B, (ii) termed as “shared genes”). However,
majority of the genes (N=3067; 64%) were unique to each disease
condition (Figure 1B, (iii) termed as “disease-specific”). These
observations are consistent with the existence of a shared genetic
architecture between autoimmune diseases that is primarily
manifested by the disease-specific genetic mechanisms.

The 2065 SNPs identified from the 18 AiDs were connected to
the 4789 genes via 9183 cis and 5414 trans regulatory interactions
across 49 tissues (Supplementary Data 3). However, only 40%
Frontiers in Immunology | www.frontiersin.org 4
(N=1914) of the genes were regulated by cis-SNPs and 52%
(N=2498) were regulated by trans-SNPs (Figure 1C). The vast
majority of trans-genes 84% (N=2100) were identified in only one
of the 49 tissues analyzed. (Figure 1D). This observation suggests
that the impacts of the AiD associated SNPs are largely tissue-
specific in nature.

AiD Associated Genes Organize Into
Highly Modular Communities
We constructed an autoimmune protein-protein interaction
network (Ai-PPIN) for the proteins encoded by the genes we
identified. The schematic representation of the network analysis
is presented (Figure 2A). Non-coding genes and those with
missing entrez gene identifiers were filtered from the PPI
A B

C D

FIGURE 1 | Global overview of the genetic architecture of AIDs. (A) SNPs associated with each of 18 AiDs (D1 to D18) were analyzed through the CoDeS3D
algorithm (Fadason et al., 2018). Briefly: (i) genes that are in physical contact with the SNPs (cis - located within 1 Mb distance, trans-intrachromosomal- located on
the same chromosome but more than 1 Mb apart, and trans-interchromosomal - located on the different chromosomes) within the three-dimensional organization of
the nucleus are identified; and (ii) SNP-gene pairs are queried through GTEx to identify those that overlap eQTL-eGene correlations. Lastly, the regulatory SNP-gene
associations identified for each of 18 AiDs were consolidated to identify the genes (1), associated with pleiotropic SNPs only, (2) associated with pleiotropic & non-
pleiotropic SNPs, or >2 non-pleiotropic SNPs associated with different AiDs and, (3) associated with non-pleiotropic SNPs only. (B) Summary of pleiotropic and non-
pleiotropic SNPs (left) and their target genes (right) across 18 AiDs by proportion. Dotted lines indicate associations between categories of SNPs and genes. (C) The
proportion of genes regulated in cis, trans (inter- and/or intra-chromosomal), or both cis and trans by the SNPs across 18 AiDs. (D) Trans-regulatory connections
were enriched in single tissue. Proportion of genes was calculated as percentage total genes.
August 2021 | Volume 12 | Article 693142
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analysis, resulting in a set of 4253 genes, of which Ai-PPIN
contained the protein products of 2925 genes (Supplementary
Data 5 Table 1) and 19173 interactions (Supplementary
Data 5 Table 2).

It is established that within a biological network, disease-
associated genes are likely to form modules that are important
Frontiers in Immunology | www.frontiersin.org 5
for the cellular processes underlying disease pathogenesis (24).
We identified network modules using the Louvain community
detection algorithm (18) and tested their statistical significance
against 10000 randomly generated networks using the qs-test
(21). The Louvain algorithm detected 81 potential modules from
the network, of which 14 were statistically significant. These 14
A

B

FIGURE 2 | Overview of the functional modules identified from Ai-PPIN. (A) Schematic representation of the Ai-PPIN module analysis. The Louvain community
detection algorithm (18) was applied to detect communities/modules within the Ai-PPIN network. Statistically significant (qs-test) (21) modules (yellow bubble) were
identified by comparison with modules from 10000 random networks. Non-significant modules (red bubble) were excluded from further analysis. Functional
enrichment analyses using KEGG pathways and GO : BP (gene ontology biological process terms) were performed to identify the biological functions enriched within
each module. (B) The Ai-PPIN contains fourteen significant modules. In each module, the nodes represent proteins. The lines connecting the nodes represent
interactions between proteins. N and E denotes the number of nodes and edges present in each module respectively. The p-value denotes the statistical significance
of the modules (qs-test) (21). Cytoscape (version 3.8.2) was used for visualization of the network.
August 2021 | Volume 12 | Article 693142
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significant modules contained between 73 to 472 proteins each
and accounted for 2676 of the proteins in the Ai-PPIN
(Figure 2B, Supplementary Data 6). The remaining 249
proteins assembled into 67 non-significant modules were
excluded from the analysis. As expected, the gene products
encoded by the HLA genes exhibited high interaction and were
organized into a single module (Module 1). The aggregation of
proteins into distinct communities within the Ai-PPIN suggests
a high tendency of AiD associated proteins to physically or
functionally interact to perform the intended cellular function.

We annotated the functions of the modules using KEGG
pathways enrichment analysis. According to the top 5
significantly enriched pathways, each module is classified with
distinct biological functions. For instance, Module 1 is enriched
for proteins involved in pathways related to immune system and
immune diseases; Module 11 is enriched for endocytosis and
infectious disease related pathways; Module 3, 8 and 13 for
genetic information processing pathways (e.g., RNA degradation,
spliceosome, Ubiquitin mediated proteolysis), Module 4, 10 and
14 for distinct metabolic pathways (Supplementary Data 7).
Each functional module exhibits functional heterogeneity,
meaning that they are involved in diverse biological functions.
Frontiers in Immunology | www.frontiersin.org 6
Functional heterogeneity of the modules suggest that they may
consist of one or more transiently interacting protein complexes
(25), which also reveal a potential link between apparently
unrelated biological processes.

Shared Genes Display Predominant Role
in AiD Modules
Altogether, the significant modules identified within the Ai-
PPIN network are composed of approximately 30% shared,
65% disease-specific, and 4% identical proteins. Module 14 is
an exception as it does not contain any protein encoded by
identical genes. Within each module, at least 12 AiDs were
represented by disease-specific proteins. Notably, all 18 AIDs
were represented by disease-specific proteins in Modules 2, 3,
and 12. This is consistent with the hypothesis that interactions
between multiple AiD associated proteins may contribute to co-
morbid features. Remarkably, the proportion of shared proteins
is considerably larger than those of the disease-specific or
identical proteins in all 14 modules (Figure 3A). KEGG
pathway analysis identified that 34% (18.5714 ± 7.764) of
proteins that are enriched within the top 5 biological pathways
are shared between multiple AiDs (Figure 3B). Moreover, the
A

C

B

D

FIGURE 3 | Shared genes display predominant role in AiD modules. (A) Heatmap of proportion of genes/proteins from each AiD that were attributed to modules 1-
14. Dark shaded square indicates higher proportions of proteins. (B) The proportion of shared, disease-specific and identical proteins present in the top 5 enriched
biological pathways (KEGG), by module. (C) The proportion of disease-specific, shared and identical proteins that constitutes central nodes within each module.
(D) The central proteins in 13 modules are targeted by FDA approved drugs, of which 45% proteins are shared between diseases. Proteins that are targeted by
more than 20 drugs are labeled.
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shared proteins are also essential to the modules as confirmed by
the centrality analysis (Supplementary Data 8). Notably, more
than 50% of the proteins representing central nodes in Module 1
(enriched for immune pathways) and Module 4 (enriched for
metabolic pathways) are shared between AiDs (Figure 3C). The
co-occurrence of shared proteins in central positions within the
pathways containing disease-specific proteins might contribute
to the risk of developing comorbid conditions.

DGIdb analysis determined that 80 of 173 (about 46%;
Supplementary Data 9 Table 1) of the central proteins across
the 14modules have known drug targets with 45% of the druggable
proteins being shared between AiDs (Figure 3D; Supplementary
Data 9 Table 2). These proportions are much greater than the
proportion of GENCODE genes with known drug targets (4807
out of 54592, 9%), which informs the pharmacological value of the
central and shared proteins, respectively.
Human Leukocyte Antigen (HLA)
Genes Are Central to Immune
Function Rich Module
Genetic risk for autoimmune diseases including T1D, CED,
autoimmune thyroid disease, SJS, SLE, RA, MS, and
autoimmune hepatitis (26, 27) has been previously attributed to
variants within the MHC region. Consistent with this, we observed
that proteins encoded by the MHC region genes interact with
other non-MHC gene products to form the densely connected
Module 1 (Figure 4A) (clustering coefficient=0.586; indicates
greater connectivity of the neighborhood of the nodes). Module
1 contains disease-specific proteins (60%), associated with 17
AiDs, shared (34%) and identical proteins (6%; Supplementary
Data 10 Table 1). Gene ontology analysis revealed that the 199
proteins located within Module 1 are overrepresented in 677
biological processes (Supplementary Data 10 Table 2),
including significantly enriched terms related to cellular
transport, localization and the immune system associated
functions (Figure 4B). KEGG pathway enrichment analysis
confirmed significant enrichment in pathways that are
predominantly linked to immune system, immune diseases, and
infectious diseases (Figure 4C; Supplementary Data 10 Table 3).
Centrality analysis identified that the HLA class I and II proteins
and six other proteins (CAPZB, CAPZA1, CAPZA2, DCTN2,
ACTR1A, and DYNC1I1) as being most essential withinModule 1
(Figure 4A). Notably, the significantly enriched biological process
terms (N=29 of top 30) and pathways (N=33 of 44) contained
shared proteins that were central to the module (Figures 4B, C;
Supplementary Data 10 Tables 4 and 5). Similarly, the expression
of transcripts from the HLA-DQA2, HLA-DRB1, HLA-DQB1,
HLA-DRA, HLA-DRB5, HLA-G, and HLA-C genes is altered by
SNPs associated with between 11 to 16 AiDs (Figure 4A and
Supplementary Data 10 Table 6). These observations are
consistent with the central role(s) for HLA encoded genes in the
pathogenesis of AIDs. The interactions involving HLA genes, that
are highly influenced by the epistatic interaction of multiple
disease-specific SNPs, may potentially modulate the biological
processes or pathways related to immune system response
and functions.
Frontiers in Immunology | www.frontiersin.org 7
Non-HLA Proteins Organize into a Module
Enriched for Immune Responses
Module 5 consists of 177 proteins (Supplementary Data 11
Table 1), 59% of which are associated with one of 16 AiDs, with a
clustering coefficient of 0.568. In contrast to Module 1, 75% of the
central proteins within module 5 is disease-specific (Figure 5A).
The central proteins that are shared between conditions are
associated with two to six AiDs. For example, PLAU is shared
between CRD (rs2227551, rs2227564), MS (rs2688608), and PSO
(rs2675662); ITGAM is shared between GRD (rs57348955), PSO
(rs12445568, rs10782001, rs13708) and SLE (rs11150610); RAP1A
is shared between CRD (rs488200) and PSO (rs11121129); and
ATP8B4 is targeted by the pleiotropic SNPs rs12946510,
rs12946510, rs12946510 - associated with CRD, MS, and ULC;
rs2305480, rs2305480 -associated with RA and ULC; and non-
pleiotropic SNPs- rs883770 (SSC), and rs2290400 (TID). The
proteins within Module 5 are significantly enriched for
ontological terms including immune response and transport
(Supplementary Data 11 Table 2) and biological pathways
related to cellular signaling, infectious diseases and immune
system (Supplementary Data 11 Table 3). Furthermore, the
shared central proteins are involved in the biological processes
(N=29 of top 30) predominantly linked to immune responses
(Figure 5B; Supplementary Data 11 Table 4) and KEGG
pathways (N=10 of 19) including those linked to immune
processes such as complement and coagulation cascades,
hematopoietic cell lineage and leukocyte transendothelial
migration (Figure 5C; Supplementary Data 11 Table 5). The
enrichment of proteins in Module 5 for the immune system
related processes can lead to speculation that non-HLA loci may
contribute to the AiD pathology by modulating alternate immune
response pathways.
The Largest Network Module Is
Enriched for Cellular Signaling and
Cancer Pathways
Module 7 is the largest (N=472 proteins) functional module, with
the clustering coefficient of 0.425, identified from the Ai-PPIN
network. As observed for modules 1 and 5, the bulk of the proteins
within module 7 is encoded by disease-specific genes (281: 163: 28,
disease-specific: shared: identical; Figure 6A and Supplementary
Data 12 Table 1). As observed for Module 1, a large proportion
(48%; N=14 of 29) of the central nodes within Module 7 is shared
proteins.However, somedisease-specific proteins are also central to
this cluster. For example, the transcript levels of tumor-suppressor
gene TP53 are associated only with a PBC-associated SNP
(rs12708715). However, TP53 interacts with 62 other proteins (42
and 20 encoded by disease-specific and shared, respectively) within
Module 7. Transcript levels of an additional twelve cancer-related
genes (i.e., HRAS, ERBB2, STAT3, RHOA, SYK, MAP2K1, LYN,
PRKCB, NFKB1, MAPK3, IL2RA, andGRB2; human protein atlas)
are associated with SNPs frommore than twoAiDs and also highly
interconnectedwithothergenes inModule7.GOanalysis identified
enrichment for biological process terms associated with system-
wide regulatory activities (Figure 6B; Supplementary Data 12
Table 2). Similarly, KEGGpathway analyses indicated thatModule
August 2021 | Volume 12 | Article 693142
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A

B C

FIGURE 4 | HLA genes are central to immune function rich module. (A) Network representation of Module 1. The color of the nodes denotes the disease with which
the protein is associated. Node shape indicates if the SNP acts locally (cis - circle), distally (trans - diamond), or both (cis and trans – rounded square) on the genes
encoding proteins. Central nodes are highlighted in red borders and labelled. Cytoscape (version 3.8.2) was used for visualization of the module. (B) Relatively
greater proportions of proteins (>40%) in the Module 1 are enriched for transport, localization and immune processes. The top 30 enrichment results are shown
(FDR ≤ 6.01e-14) (C) KEGG pathway enrichment analysis identified enrichment in immune related pathways (FDR<0.05). In (B, C), the numbers on top of each bar
denote the number of proteins enriched for that term/pathway, and the asterisk denotes that the term/pathway is also enriched for shared proteins that are central to
the network (Supplementary Data 10 Tables 4, 5).
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A

B C

FIGURE 5 | Non-HLA proteins organize into a module enriched for immune responses. (A) Network representation of Module 5. The color of the nodes denotes the
disease with which the protein is associated. Node shape indicates if the SNP acts locally (cis - circle), distally (trans - diamond), or both (cis and trans – rounded
square) on the genes encoding proteins. Central nodes are highlighted in red borders and labelled. Cytoscape (version 3.8.2) was used for visualization of the
module. (B) Module 5 is highly enriched for immune processes. The top 30 enrichment results are shown (FDR ≤ 5.6e-09) (C) KEGG pathway enrichment results
with FDR<0.05 is shown. In (B, C), the numbers, to the right of each bar, denote the number of proteins enriched for that term or pathway. The asterisk designates
terms or pathways that were also enriched for shared proteins that are central to the network (Supplementary Data 11 Tables 4, 5 respectively).
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7 is enriched for proteins that are involved in axon guidance,
immune function, cellular signaling, cancer, apoptosis, and
infectious diseases (Figure 6C; Supplementary Data 12 Table 3).
Frontiers in Immunology | www.frontiersin.org 10
Collectively, these results indicate that the impacts of proteins
within Module 7 is not only limited to specific cellular
mechanisms but may disrupt wider processes during the course
A

B C

FIGURE 6 | The largest network module is enriched for cellular signaling and cancer pathways. (A) Network representation of the module. The color of the nodes
denotes the disease with which the protein is associated. Node shape indicates if the SNP acts locally (cis - circle), distally (trans - diamond), or both (cis and trans –

rounded square) on the genes encoding proteins. Central nodes are highlighted in red borders and labelled. Cytoscape (version 3.8.2) was used for visualization of
the module. (B) Module 7 is enriched for signaling and metabolic processes. The top 30 enrichment results are shown (FDR ≤ 4.77E-36). (C) KEGG pathway
enrichment analysis identified enrichment in signaling and cancer related pathways (FDR ≤ 3.70E-09). The top 30 pathway enrichment results are shown. In (B, C),
the numbers, to the right of each bar, denote the number of proteins enriched for that term or pathway. The asterisk designates terms or pathways that were
enriched for shared proteins that are central to the network (Supplementary Data 12 Tables 4, 5 respectively).
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of development of a disease. Moreover, Module 7 provides a
potential mechanism for observed increases in multimorbidity
between AiDs and certain forms of cancer (28).
DISCUSSION

In this study, we integrated information from different biological
levels (i.e. Hi-C chromatin conformation data, eQTL data, and
protein interaction data) to determine how SNPs that were
independently associated with 18 AiDs might contribute to the
observed multimorbidity between these conditions. Our analysis
revealed a subset of genes whose transcript levels are regulated by
multiple AiD-associated SNPs. We have demonstrated that these
shared genes form highly connected hubs within the Ai-PPIN
network, and are significantly enriched in major biological
processes that include immunity, cellular metabolism and
signaling cascades. The 14 highly connected modules we
identified within the Ai-PPIN were significantly enriched in
HLA, non-HLA, and cancer-related aspects of immunity. We
contend that these observations will aid in identifying AiD
specific subsets of genes that contribute to specific features of
the disease and might serve as targets for drug repurposing.

A significant proportion of the AiD associated SNPs are located
in the non-coding regions of the genome (Supplementary
Figure 1) suggest their potential to serve as putative upstream
regulators of the AiD risk associated biological pathways. These
variants will not directly affect the function of genes or resulting
proteins. However, SNPs falling within the regulatory region might
have functional implications. For example, the SNPs located in
primed or active enhancer regions may affect the chromatin
binding affinity of transcription factors, leading to aberrant
expression of genes associated with AiD susceptibility.

The highly polymorphic HLA complex genes are among the
strongest risk factors of all immune-mediated diseases. We
identified 33 HLA genes that are associated with SNPs from at
least two of 17 autoimmune conditions. In so doing, we provide
evidence that corroborates the fundamental relevance of the HLA
complex in AiDs. Notably, we did not observe any eQTL association
involving HLA genes and eosinophilic esophagitis (EE) associated
SNPs. This suggests that the primary risk factors for EE reside
outside of the HLA genes (29). Despite this, the identification of
eQTL SNPs for EE that regulate non-HLA genes (e.g., DOCK3,
C4A, BLK, ERI1) which were also regulated by other AiDs, is
evidence for the existence of a common HLA-independent genetic
mechanisms for EE and other AiDs. Further support for common
HLA-independent genetic mechanisms was provided by the
identification of non-HLA risk loci that were associated with
more than one AiD. We propose that these shared non-HLA loci
contribute to variation in the immune system that alters the
presentation of the driving AiD to include alternative morbidities.

Despite the incompleteness of human protein interactome
maps, proteins encoded by genes associated with similar
disorders show a higher likelihood of physical interactions
(30). Moreover, it is widely recognized that if a gene or protein
is involved in a molecular process, its direct interactors are also
Frontiers in Immunology | www.frontiersin.org 11
frequently involved in the same process (31). Consistent with this,
the proteins encoded by the genes we identified as being regulated
by the AiD-associated SNPs formed highly inter-connected
networks. Moreover, the functional modules we identified
contained protein products encoded by genes that were subject
to regulation by SNPs from between one to ten AiDs. Multiple
AiD-associated SNPs regulatory impacts on these functional
genetic modules is consistent with the existence of overlapping
clinical presentations and common biochemical processes, or
pathways. Thus, despite the apparent independence of the
genetic variants that are associated with these AiDs, it is clear
that the diseases are not independent at the molecular level.

The bidirectional relationship between AiDs and cancer is
well-established (32). The dysregulation of genes involved in
tumor suppression (e.g., TP53) and neoplastic processes (e.g.,
ERRB2, EGFR) by AiD-associated SNPs provides new insights
into this complex relationship. The proteins encoded by these
cancer-risk genes and other proteins encoded by AiD-associated
genes were organized into a highly interconnected functional
module (Module 7). Notably this module was enriched for genes
associated with many cancer types (e.g., colorectal, endometrial,
gastric, thyroid, breast, prostate, non-small cell lung cancer) as
well as many cellular signaling (e.g., axon guidance, PI3K-Akt
Ras, mTOR, MAPK signaling pathways), infectious disease (e.g.,
Tuberculosis, Pertussis, Influenza), and immune function (e.g., T
cell receptor signaling, Th17 cell differentiation, IL-17 signaling).
Collectively, these findings suggest that a subset of the AiD risk
variants might increase the risk of cancer indirectly through
alterations to the intermediary phenotype (i.e., gene expression)
of the cancer-risk genes. It is not unreasonable to speculate that
the inter-connectedness of the genes that are affected by AiD-
associated SNPs, within a functional module that is enriched for
cancer and immune processes, may alter the precarious balance
between immune oversurveillance (AiD) and under-surveillance
(unchecked growth in cancer and infectious disease) in
genetically predisposed individuals.

How might stress alter the PPI of shared and disease-specific
loci?” Our network represents the regulatory connections that are
associated with the risk of developing a phenotype. However, it is
clear that biotic or abiotic stresses alter various signaling cascades/
pathways that serve to maintain cellular and organismal
homeostasis. Overall, the PPI network of AiD associated gene
products revealed a complex interplay between multiple AiDs.
These interactions could be perturbed by critical factors relevant to
AiDs, such as stress, which might lead to the loss of interactions in
the AiD PPI and trigger new interactions that are likely stress
adaptive. However, Nayak et al. demonstrated that cells that
respond to stress often use the pre-existing network connection.
Remarkably, the hub genes in the co-expression network, defined
byNayak et al., retainedmany of their links following endoplasmic
reticulum stress and exposure to ionizing radiation (33). This
demonstration leads to speculation that interactions established by
most of the shared genes are more robust than that of disease-
specific genes, as they occupied central positions in the majority of
functional modules. However, conjoined effects of disease-
associated polymorphisms and environmental stimulations
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could cause rewiring and rearrangements of PPIs. The
consequences are likely to converge on biological pathways that
initiate a cascade of events that trigger the emergence of multiple
phenotypes, the severity of which depends on the number of
contr ibutory genet ic variants contained within an
individual’s genome.

There are a number of potential limitations to this study.
Firstly, our analysis was restricted to GWAS SNPs that were
identified as having both an eQTL association and physically
interacting with the target genes. As such, it is possible that we
have missed some proximal gene targets if they were not resolved
at the level of the Hi-C restriction fragments. Secondly, most of
the spatial chromatin interactions were identified from
immortalized cancer cell-lines or primary tissues. By contrast,
the eQTL associations were obtained mostly from post-mortem
samples taken from a cross-sectional cohort (20- 70 years).
Therefore, it is possible that the Hi-C interactions and eQTL
sets were not representative of the tissues in which they were
tested. It is also possible that karyotype issues within the
immortalized cell lines have introduced non-physiological
interactions into the analysis (34). However, in spite of this
obvious technical bias, our results were reproducible and tissue-
specific (FDR < 0.05) and this provide an overall systems-level
understanding of the regulatory interactions observed between
AiD-associated SNPs and their target genes. Thirdly, eQTL
associated transcript level changes were used as a proxy for
changes to gene expression. While some studies have noted a
positive correlation between mRNA expression and protein
expression (35, 36), particularly when considering transcripts
and proteins encoded by the same gene (37), transcript-level is
widely recognized as being in-sufficient to accurately predict
protein levels. Lastly, we have limited our analysis to the protein-
coding genes whose expression level changes in an allele-specific
manner. The aberrant expression of non-coding RNAs in AiDs,
and their transcriptional and post-transcriptional regulatory
activity in the immune system (38, 39) suggests their
involvement in the disease pathogenesis. However, interpreting
their functional consequences in disease pathogenesis remains
challenging because of the paucity of pathway-level annotations
of the non-protein-coding genes. Furthermore, functional
differences between the regulatory activity of the non-coding
RNAs and other epigenetic regulators need to be untangled to
gain clear insights into their molecular mechanisms. Despite this,
these limitations should not be allowed to detract from the
significance of the convergence of AiD-associated SNPs upon
shared biological pathways.

In conclusion, as we move into the era of genome editing and
personalized medicine, we must translate our understanding of
genetic risk to the biological pathways that represent viable
targets for therapeutic intervention. Our results represent one
such analysis of discrete genetic data that enabled the
identification of functional protein modules that putatively
contribute to the shared pathogenesis underlying the
development of comorbidity within AiDs. Future experiments
will determine if the predictions of shared pathways will aid in
the treatment of patients with multiple AiD presentations.
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