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Alzheimer’s disease (AD) is one of the most common neurodegenerative

diseases and manifests as progressive memory loss and cognitive

dysfunction. Neuroinflammation plays an important role in the

development of Alzheimer’s disease and anti-inflammatory drugs reduce

the risk of the disease. However, the immune microenvironment in the

brains of patients with Alzheimer’s disease remains unclear, and the

mechanisms by which anti-inflammatory drugs improve Alzheimer’s

disease have not been clearly elucidated. This study aimed to provide an

overview of the immune cell composition in the entorhinal cortex of patients

with Alzheimer’s disease based on the transcriptomes and signature genes of

different immune cells and to explore potential therapeutic targets based on

the relevance of drug targets. Transcriptomics data from the entorhinal cortex

tissue, derived from GSE118553, were used to support our study. We

compared the immune-related differentially expressed genes (irDEGs)

between patients and controls by using the limma R package. The

difference in immune cell composition between patients and controls was

detected via the xCell algorithm based on the marker genes in immune cells.

The correlation between marker genes and immune cells and the interaction

between genes and drug targets were evaluated to explore potential

therapeutic target genes and drugs. There were 81 irDEGs between

patients and controls that participated in several immune-related pathways.

xCell analysis showed that most lymphocyte scores decreased in Alzheimer’s

disease, including CD4+ Tc, CD4+ Te, Th1, natural killer (NK), natural killer T

(NKT), pro-B cells, eosinophils, and regulatory T cells, except for Th2 cells. In

contrast, most myeloid cell scores increased in patients, except in dendritic

cells. They included basophils, mast cells, plasma cells, and macrophages.

Correlation analysis suggested that 37 genes were associated with these cells

involved in innate immunity, of which eight genes were drug targets. Taken

together, these results delineate the profile of the immune components of the
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entorhinal cortex in Alzheimer’s diseases, providing a new perspective on the

development and treatment of Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD) is one of the most common

neurodegenerative diseases (Jack et al., 2010). Approximately

50 million people worldwide suffer from dementia, and by 2050,

more than 100 million people will experience dementia, which

places a heavy economic burden on societies and families

(Lane et al., 2018; Jing et al., 2021). The clinical features of

AD include progressive memory loss and cognitive dysfunction.

The main pathological changes in AD include β-amyloid

deposition, neurofibrillary tangles, neuronal loss, synaptic

dysfunction, and neuroinflammation in the brain (Serrano-

Pozo et al., 2011; Jack et al., 2013; Spires-Jones & Hyman,

2014; Oliveros et al., 2022; Peng et al., 2022). Despite significant

advancements in assessing AD, both from basic and clinical

studies, there is currently no effective treatment to prevent

or reverse AD. Therefore, the etiology and pathogenesis of

the disease require further study and elucidation. Moreover,

there is an urgent need for effective drugs to prevent and delay

the progression of AD. In recent years, increasing research

evidence has revealed that neuroinflammation plays a crucial

role in AD (Heneka et al., 2015; Ransohoff, 2016; Lindestam

Arlehamn et al., 2019). Central microglia, astrocytes, and

peripheral monocytes are considered to be the main cells

involved in neuroinflammation. Microglia can penetrate cell

surface receptors and is hypothesized to play an important

role in the inflammatory response in AD (Paresce et al., 1996;

Bamberger et al., 2003; Liu et al., 2005; Stewart et al., 2010).

The results from animal studies have suggested that

peripheral mononuclear cell infiltration is associated with

amyloid plaques (Simard et al., 2006). Furthermore, a mouse

model demonstrated that peripheral mononuclear phagocytes

play a critical role in reducing Aβ plaque accumulation (Simard

et al., 2006). Pathological responses of astrocytes include

reactive astrogliosis, a complex multistage pathologically

specific response of astrocytes, which is usually considered to

protect nerves and restore damaged nerve tissues (Sofroniew,

2009; Sofroniew & Vinters, 2010). Except for activated

microglia, hypertrophic reactive astrocytes that accumulate

around senile plaques are often observed both in

postmortem human tissue from ADs (Medeiros & LaFerla,

2013) and in animal models with the disorder (Olabarria

et al., 2010).

In addition to resident immune cells such as microglia and

astrocytes, there are also infiltrating immune cells in the brain.

Most infiltrating immune cells are mainly present in the border

regions of the brain, and immune infiltrating cells are absent in

the brain parenchyma under normal conditions (Cugurra et al.,

2021). These border region cells can affect the brain by secreting

cytokines, modulating adjacent epithelial and ependymal cells,

and altering cerebrospinal fluid composition. These cells are

involved in tissue homeostasis and may enter the brain

parenchyma when an abnormality occurs; therefore, they may

play a central role in promoting recovery and may also accelerate

the pathological process. Many previous studies have concluded

that inflammation has a damaging effect on neurons in the brains

of patients with AD and the usage of anti-inflammatory drugs

can reduce the risk of the disease (Aisen, 2002). In the past

decade, there have been several reports of anti-inflammatory

drugs, especially nonsteroidal anti-inflammatory drugs

(NSAIDs), for the treatment of AD. Multiple meta-analyses

have produced strong, generally consistent statistical evidence

that the use of NSAIDs has resulted in a halved or even lower risk

of developing AD (McGeer et al., 1996; Anthony et al., 2000).

Therefore, exploring the immunological differences between

patients with AD and controls may provide evidence for the

treatment of AD.

The entorhinal cortex is a vital link between the cerebral

cortex and hippocampus, and it plays a crucial role in the

formation and retrieval of memory (de Calignon et al., 2012).

The molecular mechanism of entorhinal cortex alterations is

significant for the prevention and treatment of AD. Our study

aimed to provide a landscape of different immune cell

compositions in the entorhinal cortex between patients with

AD and controls based on the transcriptomics and signature

genes of different immune cells by using the xCell algorithm

(Aran et al., 2017). Combined with correlation analysis, genes

related to immune microenvironment differences and the

potential therapeutic targets involved in therapy were further

identified. These results provide evidence to comprehensively

understand the association between immune infiltration and

disease in the brain parenchyma of patients with AD and to

obtain new ideas for its prevention and treatment.

Materials and methods

Data collection

The Gene Expression Omnibus (GEO) database is an

international public repository that archives and freely

distributes high-throughput gene expression and other

Frontiers in Pharmacology frontiersin.org02

Zhang et al. 10.3389/fphar.2022.941656

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.941656


functional genomics datasets (Clough & Barrett, 2016). It mainly

refers to gene sequencing data, including microarray, second-

generation sequencing, and third-generation sequencing data,

which can be downloaded by using the GEOquery package in

the R programming environment (Davis & Meltzer, 2007). The

GSE118553 dataset contain transcriptomic data of the entorhinal

cortex, temporal cortex, frontal cortex, and cerebellum brain

region from controls, asymptomatic AD, and AD subjects.

Neuropathological evaluation for neurodegenerative diseases

was performed in accordance with standard criteria (Patel et al.,

2019). Among them, transcriptomic data from the entorhinal

cortex of controls and ADs were extracted to support this

study. The characteristics of the entorhinal cortex tissue from

ADs and control samples in the GSE118553 dataset are shown in

Table 1. According to the data processing instructions, the

expression matrix was maximum likelihood estimation

background corrected by using the R package MBCB (Allen

et al., 2009), log2 transformed, and robust spline normalization

by using the R package Lumi (Du et al., 2008). The data were

annotated by using the GPL10558 platform. For multiple probes

corresponding to the same gene, the average value of all probes was

used as the gene expression value. The characteristics, such as age

and sex, were also obtained from the GSE118553 dataset. We

turned age into a categorical variable based on the median of it to

facilitate comparison of baseline differences between ADs and

controls. The differences between the two groups were studied

using Chi-square tests in R. Propensity score matching (PSM),

performed with the matching package, was applied to eliminate

baseline differences.

Immune-related differentially expressed
genes between Alzheimer’s diseases and
controls

Differentially expressed genes (DEGs) between 37 ADs and

24 controls were detected with the limma package based on the

cutoff criteria of a |log 2-fold change (FC)| > 0.5 and adjusted p

value <0.05 (Ritchie et al., 2015). The immune-related gene (IRG)

list was downloaded from ImmPort (https://www.immport.org/

home) (Bhattacharya et al., 2018). Immune-related DEGs

(irDEGs) were visualized using the Venn diagrams package

(Nagpal et al., 2021), and the function of irDEGs was

annotated by using Metascape (metascape.org), which is an

online bioinformatic pipeline for multiple gene lists that

allows effective gene function annotation and data-driven gene

prioritization decisions (Zhou et al., 2019).

Immune cells in samples

xCell, using a set of 10,808 genes for calculating the score of

64 immune and stromal cell types based on a novel gene

signature–based method, was used to calculate the scores for

immune cell infiltration in the entorhinal cortex tissue of each

sample (Aran et al., 2017). The gene markers of each cell type are

displayed in Supplementary Table S1 (Aran et al., 2017). According

to the cell gene markers, a total of 34 immune cell types can be

scored with xCell. A total of 21 of all immune cell types were

lymphoid cells. The different cell type scores between ADs and

controls were estimated with the Mann–Whitney U test, and a p

value <0.05 was considered statistically significant. t-Distributed

stochastic neighbor embedding (tSNE) analyses were performed

with all cell signature genes to visualize all samples in 2D maps by

using the tSNE algorithm (Kobak & Berens, 2019). Cell signature

differentially expressed genes (csDEGs) were selected and displayed

with a percent stacked bar chart.

Correlation between cell signature genes
and immune cells

To explore the gene potential causes of the differences in

immune cells between ADs and controls, Pearson correlation

analysis was used to assess the relationship between differentially

expressed signature genes and corresponding cell scores, with a p

value <0.05 considered statistically significant. The genes may

play critical roles in causing cell differences between ADs and

control. Similarly, the Pearson correlation analysis was

performed to reveal the correlation between myeloid cells and

lymphocytes in ADs, as well as the correlation between different

cell types. Correlations between genes and each cell type were

performed to detect potential genes that contribute to the

association between cell types.

Drug-targeted immune gene
identification and functional annotation

In this study, we used three properties to identify potential

therapeutic target immune genes. First, the gene is an immune

cell signature gene or associated with immune cells, which has

been obtained in the aforementioned analysis; second, the gene is

associated with AD, which can be determined with GeneCards

inferred functionality scores higher than 40 by the GeneCards

TABLE 1 Characteristics of the entorhinal cortex tissue in AD and
control samples in the GSE118553 dataset.

Controls ADs p

Age (=<80/> 80) 17/7 13/24 0.006

Sex (Male/Female) 12/12 14/23 0.348
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database (https://www.genecards.org/); last, the gene is the target

of drug action, which can be determined by the PharmGKB

database (Hewett et al., 2002). The functions of target genes were

annotated by Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analysis. The expression of

drug-targeted immune genes between the two groups is

shown as a boxplot with ggplot2. Receiver operating

characteristic (ROC) curves and areas under the ROC curve

(AUCs) were examined by the pROC package to determine the

predictive value of drug-targeted immune genes (Mandrekar,

2010). The relationship between potential targets and drugs was

visualized by using Cytoscape 3.5.1 (Shannon et al., 2003).

Prediction of candidate miRNAs

MicroRNAs (miRNAs) are small noncoding RNAs that

direct posttranscriptional repression of many mRNAs and

thereby regulate -diverse biological processes from cell

proliferation and apoptosis to organ development and

immunity (Bartel, 2009). We selected candidate miRNAs

whose expression levels were correlated with those potential

therapeutic target immune genes by using the ENCORI

database (https://starbase.sysu.edu.cn/). The miRNAs with

clipExpNum higher than t times and that regulated more than

two target immune genes were screened, and they were

considered to play critical value in participating in the

expression level of selected drug-targeted immune genes. The

expression of predicted miRNAs was obtained from GSE48552,

which includes early-stage and late-stage AD subjects. The

DESeq2 package was applied to detect differentially expressed

miRNAs at different stages and between females and males.

Results

irDEGs between patients with Alzheimer’s
disease and controls

In total, 31,426 mRNA expression profile data from

24 controls and 37 patients with AD in the GSE118553 dataset

were used for this study. The characteristics of all samples are

displayed in Table 1. There was a significant difference in age

between the two groups (p = 0.006), whereas no significant

difference was found in sex. The normalized mRNA expression

levels in all samples are shown in Supplementary Figure S1.

According to the screening criteria, 1,610 DEGs were detected

between patients and controls. Among these genes, 81 DEGs were

related to immunity. A heatmap of the differentially expressed

genes and a Venn diagram of the irDEGs are shown in Figures

1A,B. A KEGG functional enrichment analysis of irDEGs in

Metascape showed that these genes were significantly enriched

in several immune systemKEGG pathways, such as the chemokine

signaling pathway, interleukin (IL)-17 signaling pathway, Th17 cell

differentiation, B-cell receptor signaling pathway, hematopoietic

cell lineage, T-cell receptor signaling pathway, C-type lectin

FIGURE 1
Expression of IRGs in the entorhinal cortex for AD and control samples in the GSE118553 dataset. (A). Heatmap of 1,610 DEGs in the entorhinal
cortex for AD and control samples in theGSE118553 dataset. TheDEGswere filteredwith |log2 fold change (FC)| > 0.5 and adjusted p value <0.05. (B).
In total, 81 IRGs in DEGs are displayed with a Venn diagram. (C). In total, 12 immune system pathways were significantly enriched with 81 irDEGs.
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FIGURE 2
Immune cells in the entorhinal cortex between AD and control samples. (A). Comparison of the scores of immune cells between AD and control
samples: CD4+ Tc, CD4+ Te, Th1, NK, NKT, and pro-B cells, eosinophils, and Tregs were decreased in ADs (p < 0.05). In contrast, basophils, mast cells,
plasma cells, and macrophages had elevated scores (p < 0.05). (B). Comparison of immune cell scores between older and younger patients in AD
samples: no significant difference was detected. (C). Comparison of the score of immune cells between females andmales in AD samples: only
CD4+ Tem was significantly different between the two groups (p < 0.05).
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receptor signaling pathway, natural killer cell–mediated

cytotoxicity, Th1 and Th2 cell differentiation, Fc gamma

R–mediated phagocytosis, Toll-like receptor signaling pathway,

and platelet activation (Figure 1C). These results illustrate the

involvement of immunity in AD progression at the transcriptome

level.

Differences in immune cells between
patients with Alzheimer’s disease and
controls

Gene expression data were analyzed according to the xCell

algorithm to calculate 34 immune cell scores in each entorhinal

FIGURE 3
Correlation between differentially expressed marker genes and corresponding immune cells. (A) tSNE plot for AD and control individuals by
using immune cell markers. (B). DEG proportions in immune cell markers. (C) Difference in age was reduced after PSM. (D) Comparison of immune
cell scores between AD and control samples after PSM. (E) Results both before PSM and after PSM are displayed with a Venn diagram. After PSM,
changes in 11 immune cell scores were the same as before PSM.
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cortex sample, and 14 immune cell scores differed between the

two groups (Figure 2A). Among these immune cells, nine were

lymphocytes, and the remaining five were myeloid cells. Overall,

among the differential immune cell types, except for Th2 cells,

which were elevated in patients, most of the lymphocyte scores

decreased in ADs, including CD4+ Tc, CD4+ Te, Th1, natural

killer (NK), NK T- and pro-B cells, eosinophils, and regulatory

T cells. In contrast, most myeloid cells had elevated scores, except

for interstitial dendritic cells (iDCs). They included basophils,

mast cells, plasma cells, and macrophages. We also compared age

and sex differences in immune cell scores in AD samples and

found no significant differences in immune cell scores across age

groups (Figure 2B). There were no significant differences in

immune cell scores between sexes, except for CD4+ Tem

(Figure 2C). The results indicated that the immune differences

may be independent of sex and age. Using t-distributed stochastic

neighbor embedding (tSNE) to reduce the dimension of the data

according to the expression of the marker genes in the two

groups, patients and controls could be roughly distinguished.

(Figure 3A). The ratio of differential genes to cell marker genes is

shown in Figure 3B, and the number of csDEGs accounted for

less than 10% of the corresponding cell marker genes.

Considering the age difference between the AD and control

groups, we used PSM to perform 1:1 matching between the

two groups to investigate whether there was an effect of age

on immune infiltration. There were 18 samples in each group

after matching (Table 2), and there was no difference in age

(Figure 3C). We performed immune infiltration analysis using

xCell and found that most of the results were consistent

with those of prior matching (Figures 3D,E). The results

were different for eosinophils, mast cells, and NK cells, in

addition to significant differences in gamma delta T cells

(p < 0.05) and monocytes (p < 0.05). Since most of the

results did not significantly change after matching for age

considering that the reduction in sample size may lead to

poorer feasibility of the results, we used the data before

matching for further analysis.

Correlation between csDEGs and immune
cells

We explored whether the differences in immune cells were

caused by differentially expressed marker genes. The DEGs in the

different immune cells are shown in Figures 4A,B. In basophils,

mast cells, macrophages, and Th2 cells, most of the differential

marker genes were elevated in patients. This finding indicated

that the differences in these cells in the AD group may be related

to the different marker genes. We performed a correlation

analysis between the expression levels of the different marker

genes and the corresponding cell scores, and the results showed

that FBP2, GZMA, KCNJ9, and R3HDM1 were positively

correlated with these cells, whereas GRIN1, PMP2, ZMYND10,

ADCY2, PNMA3, RASL12, and SLC24A2 were significantly

negatively correlated (Figures 4C,D). The results also

suggested that these genes may contribute to cellular

differences between patients and controls.

Correlation in immune cells

To reveal the interrelationships between immune cells in AD

samples, we performed the Pearson correlation analysis between

intercellular scores in immune cells. The correlation between

myeloid cells and lymphoid cells is shown in Figure 5A, and there

was no significant correlation between myeloid cells and immune

cells (cor = 0.3, p = 0.07). The correlation between immune cells

is shown in Figure 5B. There was a close association between

differential immune cells, most of which were positively

correlated, such as basophils and iDCs, mast cells, NK cells,

pro-B cells, eosinophils, iDCs, pro-B cells, and Th1 cells. In

addition, Th2 cells were negatively correlated with NKT and

Th1 cells. We further explored the potential genes leading to cell-

to-cell correlation using the correlation analysis between marker

genes and cell scores. A total of 51 marker genes were

significantly associated with the differentially expressed cells

(Figure 5C). Among these genes, 37 immune genes were

associated with innate immunity.

Drug-targeted immune genes associated
with innate immunity

In the GeneCards database, there are 3,676 genes related to

AD according to the inferred functionality scores (>40).
Moreover, 2,500 genes were identified as drug targets in the

PharmGKB database. Through intersection analysis, we finally

identified eight potential therapeutic target genes acting on

innate immune cells: GABRA1, GRIN1, GRM4, BMPR1A,

GLB1, NTRK2, KCNN3, and TRPM3 (Figure 6A). According

to the enrichment analysis results in Metascape, BMPR1A

participated in cytokine–cytokine receptor interactions, fluid

shear stress, and atherosclerosis, Hippo signaling pathway,

signaling pathways regulating pluripotency of stem cells, and

the tumor growth factor (TGF)-beta signaling pathway

(Figure 6B). These pathways may play important roles in

the association with immune cells involved. The expression

TABLE 2 Characteristics of the entorhinal cortex tissue in AD and
control samples after propensity score matching.

Controls ADs p

Age (=<80/> 80) 11/7 11/7 1

Sex (Male/Female) 11/7 8/10 0.317
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FIGURE 4
Correlation between immune cells and related gene detection. (A). Differentially expressed marker genes in lymphoid cells. (B). Differentially
expressedmarker genes inmyeloid cells. (C). Heatmap of the correlation between differentially expressedmarker genes and corresponding immune
cells. (D). Plot of the correlation between differentially expressedmarker genes and corresponding immune cells: FBP2,GZMA, KCNJ9, and R3HDM1
are positively correlated with the corresponding cells. GRIN1, PMP2, ZMYND10, ADCY2, PNMA3, RASL12, and SLC24A2 were significantly
negatively correlated with the corresponding cells.
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levels of these eight genes in the AD and control groups are

shown in Figure 6C. GABRA1, GRIN1, and GRM4 were

significantly increased in AD, whereas BMPR1A, GLB1,

NTRK2, KCNN3, and TRPM3 were significantly decreased

(Figure 6C). The significant correlation between the eight

genes and immune cells is displayed in Figure 7. We

proceeded to test the diagnostic value of the gene expression

levels to detect AD in our cohort using the ROC analysis.

Almost all AUCs of genes were higher than 0.8, and the

AUCs for BMPR1A and TRPM3 were higher than 0.95,

confirming that these genes can predict AD with high

sensitivity and specificity, despite the small sample size

(Figure 8). There were 36 drugs targeting these eight genes,

including memantine, cycloserine, riluzole, and diclofenac

sodium, which have been reported to be beneficial in reducing

the incidence of AD (Figure 9).

Prediction of candidate miRNAs

miRNAs play a significant role in immune responses, such as

maturation, proliferation, differentiation, and activation. Using

the ENCORI database, we predicted miRNAs that may regulate

the expression of drug-targeted genes. A total of 14 miRNAs,

which may be involved in regulating gene expression and thus

affecting immune infiltration, were screened as those with

clipExpNum > 2 and that regulated > 2 target immune genes

(Figure 10A). They participate in the regulation of immune

infiltration by regulating the expression of BMPR1A, GLB1,

GRM4, and KCNN3. In GSE48552, 10 miRNAs were detected

from six early-stage AD patients and six late-stage AD patients,

and four miRNAs had different expression levels in different

disease states (Figure 10B). hsa-miR-320c was highly expressed in

early-stage AD, whereas hsa-miR-18a-5p, hsa-miR-18b-5p, and

FIGURE 5
Correlation between myeloid cells and lymphoid cells in ADs. (A). Plot of the correlation between myeloid cells and lymphoid cells: no
significant difference was detected (p = 0.07). (B). Heatmap of the correlation between immune cells: a close correlation between immune cells. (C).
Heatmap of the correlation between cell scores and genes: 51 marker genes were significantly associated with the differentially expressed cells.
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hsa-miR-491-5p were highly expressed in late-stage AD. We also

assessed the expression of those miRNAs between sexes in AD,

and no significant difference was detected (Figure 10C).

Discussion

In this study, we aimed to describe the immune cell landscape

and related genes that cause specificity in the entorhinal cortex

between patients with AD and control patients. We found that

81 irDEGs between patients with AD and controls, such as those

involved in chemokine signaling, IL-17 signaling, Th17 cell

differentiation, B-cell receptor signaling, hematopoietic cell

differentiation, T-cell receptor signaling, C-type lectin receptor

signaling, NK cell–mediated cytotoxicity, and Th1 and Th2 cell

differentiation, were enriched in several immune system

pathways. The immune cell landscape of brain tissues showed

that several lymphocyte scores were decreased in AD, including

CD4+ Tc, CD4+ Te, Th1, NK, NKT, pro-B cells, eosinophils, and

Tregs. Significantly increased basophils, mast cells, and plasma

cells, all of which are myeloid cells, were discovered in AD. The

involvement of innate immunity in AD progression has been

revealed at the transcriptomic level. In addition, the correlation

between marker genes and immune cells detected potential genes

that contributed to the immune specificity in the two groups. A

close correlation was observed between the differentially scored

immune cells. Finally, eight target genes and 36 drugs that may

act on innate immunity were identified, which showed a high

AUC in the identification of AD and may provide new strategies

for AD treatment.

Neuroinflammation has a significant effect on the

pathophysiology of AD (Heneka et al., 2015; Ransohoff, 2016;

Lindestam Arlehamn et al., 2019). Infiltrating immune cells in

border regions can affect the brain by secreting cytokines,

modulating adjacent epithelial and ependymal cells, and

altering cerebrospinal fluid composition (Cugurra et al., 2021).

These cells are involved in tissue homeostasis, and they may enter

the brain parenchyma when abnormalities occur. Studies have

shown that impaired meningeal lymphatic function may be a

factor in the aggravation of AD pathology (Louveau et al., 2016;

DaMesquita et al., 2018). Similarly, dysfunction of the meningeal

lymphatic system has been implicated in the pathogenesis of

FIGURE 6
Function and expression of drug-targeted genes associated with myeloid cells in AD. (A). Eight drug-targeted genes associated with myeloid
cells for AD were selected. (B). Pathways from KEGG analysis with 81 irDEGs associated with drug-targeted genes. (C). Boxplot displaying the
expression of eight drug-targeted genes in the entorhinal cortex between AD and control samples: GABRA1, GRIN1, and GRM4 are significantly
increased in AD samples, whereas BMPR1A, GLB1, NTRK2, KCNN3, and TRPM3 are decreased in AD samples.
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other classic autoimmune neurodegenerative diseases, such as

multiple sclerosis and autoimmune encephalitis (Hsu et al., 2019;

Schwartz et al., 2019). In AD, neuroinflammation is not a passive

system activated by the emergence of senile plaques and

neurofibrillary tangles but instead plays an equally (or greater)

role in the pathogenesis of plaques and tangles themselves

(Zhang et al., 2013). The important role of neuroinflammation

is supported by the findings that immune receptor genes, such as

TREM22 and CD33, are associated with AD (Bradshaw et al.,

2013; Griciuc et al., 2013; Guerreiro et al., 2013). Innate

immunity plays a major immune role in AD (Heppner et al.,

2015). Innate immune cell hyperexcitability was reported to be

associated with cognitive decline (Nam et al., 2022). In a murine

amyloidosis model, IFN-I signaling represents a critical module

within the neuroinflammatory network of AD and prompts

concerted cellular states that are detrimental to memory and

cognition (Roy et al., 2022). Collective histological,

bioinformatics and molecular analyses highlight the

permanent activation of microglia, the brain’s resident

immune cells, and the association of many AD risk

polymorphisms and rare variants with microglia and innate

immunity (Zhang et al., 2013; Huang et al., 2017). Scientists

have recognized these and have focused their efforts on therapies

aimed at modulating innate immunity. In the present study, we

found that the AD group had significantly lower scores for

eosinophils, macrophages, NK, NKT, and Treg cells, while

higher scores for basophils, mast cells, and macrophages in

AD were detected. This result also supports the important

role of innate immunity in the development of AD.

In addition to characterizing differences in immune cell

profiles between patients with AD and controls, we identified

eight genes with potential roles in innate immune cells and

36 drugs with potential therapeutic effects by correlation

analysis and combining the GeneCards and PharmGKB

databases. These genes and drugs may provide evidence for

the treatment of AD. BMPR1A encodes a morphogenetic

protein receptor. The ligands of these receptors are members

of the TGF-β superfamily involved in the regulation of cell

FIGURE 7
Plot of the correlation between eight genes associated with immune cells: there is a close correlation between genes and immune cells.
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proliferation, differentiation, and apoptosis and therefore play

essential roles during embryonic development and pattern

formation (Morikawa et al., 2016). TGF-β regulates a variety

of important cell and tissue functions, such as cell growth and

differentiation, angiogenesis, extracellular matrix production,

immune function, cell chemotaxis, apoptosis, and

hematopoiesis (Flanders et al., 1998). In this analysis, the

TGF-β signaling pathway was significantly enriched in KEGG

analysis, indicating its critical function in the neuroinflammation

of AD. Chemokines are cytokines that orchestrate innate and

adaptive immune responses and are differentially regulated

in several neuroinflammatory disorders (Charo & Ransohoff,

2006). Our previous analysis provides evidence regarding viral

infection in AD development (Sun et al., 2022). In our study,

we found that the differential expression of BMPR1 was

significantly related to the occurrence of AD, which may

FIGURE 8
ROC curve of eight genes in predicting AD samples: blue area represents the 0.95 CI value of each gene for the prediction of AD; red curve is the
ROC curve of eight genes in predicting AD; almost all AUCs of the gene were higher than 0.8, and the AUCs for BMPR1A and TRPM3 were higher
than 0.95.

FIGURE 9
Potential drugs of selected genes from the PharmGKB database: 36 drugs targeted these eight genes.
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provide new evidence for the treatment of AD in the future. In

our analysis, we also found that NPC2, METTL7A, and ARL5A

were highly expressed in patients with AD compared to controls.

According to previous reports, NPC2 is considered to be closely

related to lipid metabolism (Awan et al., 2022) and tumor

metastasis (de Araujo et al., 2021). The relevance of

METTL7A to lipid metabolism has also received attention (Yi

et al., 2020). APOE, a key gene in the development of AD,

encodes a multifunctional protein with central roles in lipid

metabolism (Liu et al., 2013). These studies all indicate that

lipid metabolism may play an important role in AD

development. ARL5A belongs to the ARF family, which are

members of the Ras gene superfamily of GTP-binding

proteins that are involved in a variety of processes, such as

cellular communication, endoplasmic reticulum binding,

vesicle transport, and protein synthesis (Lin et al., 2002; Wang

et al., 2005). The association between ARL5A and AD has not

been reported and needs to be further studied.

These results suggest that a number of drugs act on innate

immune cells through the eight immune genes identified and that

they may play an important role in the prevention and treatment

of AD. For example, memantine, cycloserine, riluzole, and

diclofenac sodium have all been reported to have beneficial

effects on reducing the incidence of AD. Memantine, an

N-methyl-D-aspartate receptor (NMDAR) antagonist, is

clinically quite effective for behavioral symptoms and is often

added to cholinesterase inhibitors to enhance their effects,

whereas aducanumab has recently been approved for

amyloidosis (Langa et al., 2004; Giacobini et al., 2022).

Aducanumab is used to mitigate the neurotoxicity associated

with AD and other neurodegenerative disorders. Memantine

blocks the NMDAR subtype of the glutamate receptor,

preventing excessive activation of the glutamate receptor while

allowing normal activity (Langa et al., 2004). Its blockade

antagonizes the overactive glutaminergic system in the central

nervous system (CNS), which is hypothesized to be involved in

FIGURE 10
Potential miRNAs regulated selected genes. (A). Potential miRNAs regulating selected genes were obtained from the ENCORI database. (B).
Expression of miRNAs between early-stage and late-stage ADs from GSE48552: hsa-miR-320c, hsa-miR-18a-5p, hsa-miR-18b-5p, and hsa-miR-
491-5p were differentially expressed between the two groups. (C). Expression of miRNAs between females and males ADs from GSE48552: no
significant difference was detected between the two groups.
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the neurotoxicity of AD. NMDA encephalitis is an important

autoimmune encephalitis, and its associated syndromes and

immune-mediated mechanisms have been described (Muñoz-

Lopetegi et al., 2020). Our results suggest that memantine may

exert a therapeutic effect by affecting GRIN1 expression in mast

cells. These results may offer new perspectives for the treatment

of NMDA autoimmune encephalitis and AD with memantine.

D-cycloserine exhibits partial agonist activity at the glycine site of

the NMDA subtype of the glutamate receptor, promoting

receptor activation and improving cognition and memory,

which has been validated as a cognitive benefit in patients

with AD (Bowen et al., 1992; Tsai et al., 1999). Riluzole, the

glutamate modulator, is FDA-approved for the treatment of

amyotrophic lateral sclerosis, with potential benefits for

cognition, aging, and structural and molecular markers of AD

(Matthews et al., 2021). Diclofenac is chemically related to the

finasteride class of NSAIDs and has been shown to improve

cognition in two independent studies using mouse models of AD

(Joo et al., 2006; Daniels et al., 2016). It is also associated with a

reduced risk of developing AD (Stuve et al., 2020).

miRNAs play important gene regulatory roles in animals and

plants by pairing with mRNAs of protein-coding genes to direct

their posttranscriptional repression (Bartel, 2009). Therefore, we

also predicted miRNAs that might regulate the expression of

drug-targeted genes. We found that these 14 microRNAs might

be involved in regulating gene expression, thereby affecting

immune infiltration. hsa-miR-320a, hsa-miR-495, and hsa-

miR-122-5p have been reported to be associated with

autoimmune disease-related outcomes (Yao et al., 2019;

Cordes et al., 2020; Ni & Leng, 2020; Fu et al., 2021). It is

noteworthy that the reports for hsa-miR-320a, hsa-miR-320b,

and hsa-miR-320c involved central immunity (Regev et al., 2018).

Our results predict the important role of autoimmunity in AD

development in the related assessment of miRNAs, and they

reveal powerful new endogenous combinatorial therapeutic

targets.

In conclusion, this study attempted to clarify the possible

mechanism of the immune microenvironment involved in the

occurrence and development of AD by analyzing the immune

microenvironment of the entorhinal cortex of patients with

AD and to describe the association between genes on drugs

and immune cells. However, this study still has certain

limitations. First, the application of drugs affects

transcriptome expression, but we were not able to obtain

reliable information on drug usage from GEO dataset.

Second, age may have an effect on immune infiltration, but

considering that the smaller sample size would lead to less

reliable results, our study did not use age-matched data for

analysis. Third, the results were not validated with biological

experiments, which are strictly limited by ethics. In the future,

we will further study the role of the immune

microenvironment in the pathogenesis of AD using more

samples and animal models. In conclusion, our study

describes the specificity of the immune cell landscape and

associated genes contributing to AD in the entorhinal cortex,

which provides new insights into the treatment of AD.
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