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A B S T R A C T   

Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between 
brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene 
expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using 
melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by 
network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed 
to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient- 
matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known 
roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient 
subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, compu-
tational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory dif-
ferences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream 
target genes.   

1. Introduction 

Melanoma, which develops from the pigment-producing melano-
cytes of the skin, is the most aggressive and deadliest form of skin 
cancer. While the five-year survival for localized melanoma is nearly 
100 %, once metastasized, survival drops to 20 %. There are about 
100,000 new melanoma cases and 6850 corresponding deaths per year 
in the US [1]. Exposure to sun light is a very strong risk factor especially 
for light-skinned people. UV radiation-induced mutations are the main 
cause of melanoma [2], but low percentages of cases are also of hered-
itary origin and show distinct mutational profiles [3]. Melanomas are 
known to have one of the highest mutation rate among all cancers 
resulting in strong patient-specific alterations [4]. MAPK signaling is the 
most commonly altered pathway in melanoma involving BRAF and 
NRAS as frequently mutated driver genes. Constitutive MAPK signaling 
activation leads to unrestricted proliferation. PI3K/Akt and mTOR 

signaling are further frequently affected pathways. In addition, differ-
entiation and cell death are disturbed in melanoma [5]. 

Primary melanoma are surgically removed accompanied by sentinel 
lymph node biopsy in high-risk melanoma. However, for metastatic 
melanoma, chemotherapy has been the only treatment option for de-
cades without survival benefit. More recent targeted therapies like BRAF 
and MEK inhibitors have improved this considerably, e.g. the five-year 
overall survival rate for the BRAF/MEK inhibitor combination encor-
afenib plus binimetinib is 34.7 % [6]. However, the majority of patients 
develop resistance to such treatments [5]. Usually, the immune system 
recognizes and destroys tumor cells, but melanomas often develop 
evasion mechanisms. These include excretion of TGF-β and suppressive 
cytokines, as well as PD-1 immune checkpoint protein over-expression 
[7]. With increasing knowledge about cancer-immune system interac-
tion, new therapy options involving the immune system have been 
developed over the past 20 years [8]. While Interleukin-2 treatment 
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showed low response, new generation immunotherapy based on 
checkpoint inhibition can be considered a breakthrough for the treat-
ment of metastatic melanoma [8]. Personalized molecular diagnostics 
and combination therapy have proven beneficial in approaching patient 
and tumor heterogeneity [7]. For example, the immune checkpoint in-
hibitor combination nivolumab plus ipilimumab achieves long-term 
survival for about 50 % of patients with metastatic melanoma (mela-
noma-specific survival rate of 55 % at 7.5 years) [9]. However, the rate 
of severe toxicity is as high as 59 % [10], and 50 % of patients do not 
experience long-term survival. The majority of patients with metastatic 
melanoma develop new brain metastases or suffer brain metastasis 
recurrence [11]. While melanoma brain metastases initially respond to 
current therapy regimens, they often relapse faster than other organ 
metastases, leading to a dramatic decrease in overall survival [12,13]. 
This may be in part explained by inefficient drug crossing of the 
blood-brain barrier and by factors in the brain micro-environment 
[14–16]. Further, altered metabolic processes in brain metastases may 
also contribute to therapy resistance [17,18]. 

An advanced understanding of molecular mechanisms is needed to 
develop better therapies for aggressive melanoma brain metastases. 
Studies have begun to elucidate the genetic differences of brain and 
extracranial metastases only recently [19–21]. Targeted sequencing 
identified recurrent driver gene mutations in brain metastases that were 
absent in extracranial metastases (e.g. in ARID1A, ARID2, SMARCA4, 
BAP1 and BRAF) [20]. Another larger study that compared melanoma 
brain metastases to primary melanomas and extracranial metastases also 
included a small analysis of gene mutations for eight patient-matched 
brain and extracranial metastasis pairs [22]. This study reported a 
higher BRAF mutation rate in brain compared to extracranial metasta-
ses, which was also supported by the few patient-matched pairs. Further, 
gene expression profiling of patient-matched melanoma metastases 
identified immunosuppression and enrichment of oxidative phosphor-
ylation in brain metastases that might directly contribute to therapy 
resistance [21]. Moreover, especially the PI3K/Akt signaling pathway 
was found to be hyperactivated in melanoma brain metastases [15,16, 
23,24]. In addition, single cell transcriptome studies of melanoma brain 
metastases are emerging. Eight functional cell programs were identified 
in brain metastases that define a proliferative and an inflammatory 
archetype coexisting in each metastasis [25]. Melanoma brain metas-
tases are more chromosomally unstable, adopt a neuronal-like cell state 
and are enriched for spatially variably expressed metabolic pathways 
compared to their extracranial counterparts [26]. 

Promoter methylation of genes is known to be inversely correlated 
with their expression, and differential methylation is considered a 
mechanism for expression regulation [27]. Epigenetic alterations play a 
significant role in metastases formation of many cancers [28], including 
melanoma [29–31]. DNA methylation can not only greatly differ be-
tween patients but also between intra- and extracranial melanoma me-
tastases of the same patient [31], leading to expression changes that may 
be involved in brain metastases formation [24,32]. Studying the inter-
play of the many omics layers allows for a better understanding of tu-
mors as systemic disease, thereby advancing knowledge about their 
biology [33,34] and finding new treatment options [35]. Gene regula-
tory networks are appropriate tools to study complex processes like 
development and disease [36–38]. In the past, we successfully used gene 
network inference based on gene expression and copy number data in 
combination with network propagation strategies to predict 
cancer-relevant target genes [39–42]. Such network-based approaches 
could also help to jointly analyze the virtually private promoter 
methylation and gene expression profiles that distinguish 
patient-matched brain from extracranial melanoma metastases. 

Here, we utilize gene expression together with promoter methylation 
data of 270 melanoma patients from The Cancer Genome Atlas (TCGA) 
to derive melanoma-specific gene regulatory networks. These networks 
were used to predict potential downstream impacts of genes with 
differentially methylated promoters and altered expression in a 

heterogeneous patient-matched cohort of brain and extracranial mela-
noma metastasis pairs from seven patients (Fig. 1). This allowed to 
identify characteristic commonalities and differences between the 
metastasis pairs. 

2. Materials and methods 

2.1. Data and code availability 

This paper analyzes existing, publicly available data from TCGA 
[43]. In addition, processed datasets derived from these data are avail-
able within the article, its supplemental information, or have been 
deposited at Zenodo (doi: 10.5281/zenodo.10580565). All original code 
has been deposited at GitHub (https://github.com/konradgrutz/M 
elBrainSys_networks, doi: 10.5281/zenodo.10582248) and is freely 
available. 

2.2. Experimental model and subject details 

The seven patients of the discovery cohort and the nine patients of 
the validation cohort with a brain and an extracranial melanoma 
metastasis were collected between 1994 and 2016 at the University 
Hospital Dresden (Dresden, Germany). Age and gender of subjects are 
provided in Table 1 and S15. Most patients had not received any of the 
current state-of-the-art therapies, but were mostly untreated or treated 
with adjuvant IFN-α or chemotherapeutic drugs. Written informed 
consent was obtained for the use of tumor material for different mo-
lecular analyses and was approved by the ethics committee of the Uni-
versity of Dresden (Dresden, Germany) (EK 48022018). The studies 
were conducted in accordance with the Declaration of Helsinki. 

2.3. Promoter methylation and gene expression data of patient-matched 
melanoma metastasis pairs 

Processed DNA-methylation and gene expression data of 11 patient- 
matched brain and extracranial metastasis pairs from seven melanoma 
patients of the studies by Kraft et al. [32] and Westphal et al. [44] were 
considered (discovery cohort). Corresponding promoter methylation 
levels were determined for each included protein-coding gene by aver-
aging the log2-ratios of the methylated to unmethylated signal of each of 
its promoter-associated CpGs. The average promoter methylation levels 
and the corresponding gene expression levels of the individual metas-
tases are provided in Table S1. We defined potential transcriptional 
driver genes for each patient-matched metastasis pair. These were genes 
that showed differentially decreased (increased) methylation of at least 
20 % of its promoter-associated CpGs and at least a trend to an increased 
(decreased) expression in the brain compared to the corresponding 
extracranial metastasis. To realize this, differential CpG methylation was 
taken from the predictions of Kraft et al. [32] excluding promoters with 
opposite predictions for methylation states. The identified genes with 
differentially methylated promoters and resulting opposing expression 
are provided in Table S2. These transcriptional driver candidates could 
act as potential source genes influencing the expression of other target 
genes. This will be analyzed with the help of gene regulatory networks 
described in the next sections. 

2.4. Melanoma gene expression and promoter methylation data from 
TCGA for network inference 

Microarray-based DNA-methylation and RNA-Seq gene expression 
data from the skin cutaneous melanoma (SKCM) cohort of The Cancer 
Genome Atlas (TCGA) were downloaded from https://gdac.broa 
dinstitute.org/runs/stddata__2013_11_14/data/SKCM/20131114/. This 
cohort consists of primary and metastatic melanomas including one 
brain metastasis [43]. Only patient samples with a tumor content of at 
least 80 % were considered (TCGA variable “Tumour content (%) % 
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nuclei that are tumour cells (0-100%)”, Table S3). The chosen tumor 
content cutoff ensures a good balance between high tumor content and 
enough samples to learn genome-wide melanoma-specific gene regula-
tory networks. The resulting raw gene expression counts of 270 patients 
were normalized by cyclic loess normalization (voom method of the R 
package limma, 3.42.2 [45]) and only genes with more than one count 
per million (CPM) reads in at least 50 % of the patients were kept. 
DNA-methylation data was cleaned up for CpGs covered by polymorphic 
or off-target probes based on data from McCartney et al. [46] and only 
CpGs in promoters of protein-coding genes that were also measured on 
our Illumina EPIC array were kept. Average methylation of a promoter 
was determined by computing the mean of its CpG measurements, which 
were given by CpG-specific log2-ratios of methylated to unmethylated 
signals. This resulted in a final data set that contained gene expression 
levels and corresponding average promoter methylation levels of 8251 
genes for 270 melanoma patients (Table S3). 

2.5. Melanoma-specific gene regulatory network inference 

Melanoma-specific regulatory networks were learned from gene 
expression and promoter methylation data (Table S3) using the R 
package regNet [39]. A schematic flowchart of this process is shown in 
Fig. S1. For each target gene i, it is assumed that the expression level eid 
of gene i in a melanoma sample d can be predicted by the linear com-
bination eid = aii⋅mid +

∑
j‡i aji⋅ejd of its gene-specific promoter methyl-

ation mid and the expression levels ejd of all other potential regulator 
genes j ‡ i. The unknown parameters a of the gene-specific linear model 
were learned from the TCGA data by regNet using lasso regression [47] 
in combination with a significance test for lasso [48]. The basic concept 
of this network inference approach has already been shown to perform 
well in similar network inference tasks [39–42]. In addition, lasso-based 
methods have been reported to be among the top performers for robust 
gene regulatory network inference [49]. The regNet parts that modeled 

Fig. 1. Underlying data analyses workflow of this study. Left box: RNA-Seq gene expression and array-based promoter methylation were determined for 11 patient- 
matched brain and extracranial melanoma metastases of seven patients. Middle box: Patient-specific candidate driver genes with differential promoter methylation 
and opposed expression were determined for each metastasis pair. A melanoma-specific gene regulatory network was learned from data of The Cancer Genome Atlas 
(TCGA) and validated. Impacts of the driver genes on downstream target genes and pathways were elucidated via network propagation. Right box: Selection of 
performed downstream analyses. Average impact ratios were used for patient clustering resulting in three subgroups. Differentially impacted pathways were 
determined for each subgroup. Finally, target gene candidates were predicted for each subgroup and evaluated via literature research and an independent vali-
dation cohort. 

Table 1 
Clinical information of melanoma metastasis patients. For each patient one brain metastasis sample and one up to three extracranial metastasis samples were available. 
P followed by a number in the sample names represents patients, letters stand for tissues: brain (B), lung (Lun), skin (Ski), soft tissue (Sof), lymph node (Lym). The last 
columns indicate mutation statuses, where wt means wild-type. All statuses were from panel sequencing, except BRAFV600wt of patient P18, where only V600 was 
probed with PCR.  

Patient Extracranial samples Sample pair IDs Treated tissue Gender Age at brain surgery Mutation status brain 
metastasis 

Mutation status extracranial 
metastasis 

BRAF NRAS BRAF NRAS 

P03 1 x lung P03_BLun none female 55 BRAFV600E wt BRAFV600E wt 
P04 1 x skin P04_BSki_1 none male 63 wt wt wt wt 
P08 3 x soft tissue P08_BSof_1 

P08_BSof_2 
P08_BSof_3 

both male 73 wt NRASQ61H wt NRASQ61H 

P16 1 x lung P16_BLun none male 84 wt wt wt wt 
P18 2 x lung P18_BLun_1 

P18_BLun_2 
none male 69 BRAFG469R wt BRAFV600wt wt 

P39 1 x lung P39_BLun both female 63 wt NRASQ61K wt NRASQ61K 
P42 2 x lymph node P42_BLym_1 

P42_BLym_2 
intracranial male 70 wt NRASQ61H wt NRASQ61H  
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gene copy number alterations were used directly to model the promoter 
methylation. The sparse lasso regression enabled the selection of only 
those predictors (promoter methylation and/or expression levels) that 
best predicted the expression level of a specific target gene, while 
keeping the number of predictors small by setting the parameter values 
of irrelevant predictors to zero. This was done for each of the 8251 genes 
to obtain a global network. Only network edges between target genes 
and predictors that had a false discovery rate < 10− 4 were kept. Further, 
the expression of genes in close vicinity is known to be correlated in 
global fashion, rather independent of specific regulation [50], which we 
confirmed in our data (Fig. S3). Therefore, potentially existing network 
edges from the 30 genes up- and downstream of a target gene were 
removed to avoid the inclusion of potentially spurious regulators as 
done in [39]. Note, regulatory connections in the model can also arise 
from mere correlation or indirect molecular interactions and do not 
necessarily reflect direct transcriptional regulation. Network inference 
was repeated 25 times by randomly selecting 75 % of the TCGA samples 
(202 patients) as training set on a compute server with Intel® Xeon® 
Gold 6230 CPUs. The inference of the 25 networks took a total of 155 h, 
applying an average of 75 CPUs with peaks of 260 GB RAM. Quantita-
tive results were mainly reported as medians over the results obtained 
for the 25 individual networks. Further, each trained network was 
shuffled into 10 random network instances of same complexity by 
network permutations that keep the in- and out-degree of genes con-
stant. These random network instances were considered for evaluation 
purposes with the remaining 25 % test data (68 patients) to obtain a base 
line for comparisons to the predictions of the original learned networks. 
To evaluate the trained networks, the expression values of the test data 
were predicted with the trained and the random network models and 
Pearson correlations with the originally measured values were calcu-
lated. Medians of Pearson correlations were calculated over all net-
works. It was further tested if the correlations were significantly greater 
than zero (t-test). 

2.6. Computation of potential impacts of altered driver gene candidates 
on downstream target genes by network propagation 

Considering the learned melanoma-specific network, the potential 
impact of an altered potential driver gene on a target gene’s expression 
results from the direct and indirect network connections of both genes 
via other genes through network paths. The network propagation al-
gorithm implemented in regNet [40] was used to compute 
patient-specific absolute impacts for each pair of genes for each of the 25 
learned melanoma-specific networks considering the gene expression 
and promoter methylation profile of each melanoma metastasis of our 
cohort (pValCutoff = 0.01, localGeneCutoff = 30, colSumsThreshold =
10− 3). This network propagation algorithm has already been success-
fully applied in similar studies to determine potential impacts of 
patient-specific gene mutations on patient survival [39], to identify 
potential driver gene candidates for oligodendrogliomas [42], and to 
predict genes associated with radioresistance [41]. The obtained impact 
matrices were used to realize different analyses as shown in the sche-
matic flowchart in Fig. S2. For each melanoma metastasis, average im-
pacts of each corresponding driver gene on the genes of each pathway of 
interest were computed. Then, the median values over the 25 networks 
were calculated. Afterwards, the log2-ratios of these medians in the 
brain versus the extracranial metastasis of each metastasis pair were 
calculated. Finally, the log2-ratios were averaged over all driver genes 
(upper right part of Fig. S2). A slightly different strategy was used for 
functional overrepresentation analyses, search of gene candidates and 
circos plots (lower part of Fig. S2). Pairwise impacts of each altered 
driver gene on each target gene were computed for each melanoma 
metastasis. Then the medians over all 25 networks were calculated. This 
yielded a matrix of median impacts of each driver gene on each target 
gene for each metastasis. Next, log2-ratios of these medians in the brain 
versus the extracranial metastases of each metastasis pair were 

calculated and then used for further analyses. Conceptionally, it is suf-
ficient to know that impact is the regulatory influence of a gene on 
another gene, or on a whole set of genes. The impact log2-ratio is the 
ratio of this influence between brain and extracranial metastasis and 
specifies if the impact is higher (log2-ratio > 0) or lower (log2-ratio < 0) 
in the brain compared to the corresponding extracranial metastasis. 

2.7. Clustering of metastases according to pathway impact profiles 

Impacts of metastasis pair-specific potential driver genes on entire 
cancer-relevant pathways of interest were determined to perform a hi-
erarchical clustering of the individual metastasis pairs according to their 
obtained pathway impact profiles. Therefore, the previously determined 
impact log2-ratios computed by the network propagation algorithm for 
each metastasis pair (Methods Section 2.6) were considered for each 
metastasis pair to compute for each specific pathway its corresponding 
received impact by averaging the impact log2-ratios over all genes of 
this specific pathway (see schematic flowchart in Fig. S2). This was done 
for metabolic and signaling pathways based on initial gene lists from 
[39], which were updated by more recent information from Con-
sensusPathDB [51,52]. Additionally, immune pathways from the KEGG 
pathway database [53] were considered (Table S4). This resulted in 
metastasis pair-specific pathway impact profiles consisting of the 
average ratios of the impacts on the individual pathways. Hierarchical 
cluster analyses were done with these profiles to find metastasis pair 
subgroups using the R package pheatmap [54] with Euclidean distance 
and complete linkage. Further, corresponding cluster stability analyses 
were done with the R package pvclust [55] using standard parameters. 
The resultant AU-values for each subcluster are approximate p-values in 
percent, where a value of 100 indicates a completely stable subcluster. 
The three identified robust metastasis pair subgroups were used to guide 
the subsequent analyses. 

2.8. Identification of overrepresented pathways and gene ontology terms 
for the three revealed impact subgroups 

Gene-wise impact log2-ratios from the altered potential driver genes 
on all target genes were averaged over all altered genes of a metastasis 
pair (schematic flowchart in Fig. S2). Then the top (bottom) 5 % of 
target genes with highest (lowest) mean impact log2-ratios were taken, 
while only positive (negative) log2-ratios for top (bottom) genes were 
considered. Genes were then subjected to overrepresentation analyses of 
KEGG pathways and gene ontology terms (all three categories) applying 
clusterProfiler [56] (v3.14.0) with a FDR < 0.1. Then, group-specific, 
overrepresented pathways were defined as being shared between at 
least two metastasis pairs of a subgroup (from the clustering mentioned 
above), but not appearing in any other metastasis pair. 

2.9. Identification of top gene candidates and creation of circos plots 

Median impact log2-ratios were summarized over the patient- 
matched metastasis pairs of each of the three revealed pathway 
impact cluster subgroups to prioritize candidate target genes (schematic 
flowchart in Fig. S2). Only consistent target genes were considered with 
either positive or negative impact log2-ratios in all metastasis pairs of a 
subgroup. The mean median impact log2-ratio for each target gene over 
the metastasis pairs was calculated. Literature research (NCBI/pubmed, 
October 2022) was done for the top-ranking target genes focusing on 
those genes with the 10 highest and 10 lowest mean impact log2-ratios. 
Further, two text mining-based analyses were done with these gene lists: 
GEPI [57] was used for gene-gene interaction and single gene events 
with the keyword “melanoma” at sentence level, factuality “assertion”, 
and interaction types positive/negative regulation. Gene disease asso-
ciations were retrieved from the DisGeNET platform using disgenet2r 
[58] and filtering the column “disease_class_name” for “neoplasm”. All 
interactions between potential driver and target genes of a subgroup’s 
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metastasis pairs were further considered for visualization of the 
top-ranking target genes. The mean impact log2-ratio from potential 
driver genes was calculated in cases where a gene appeared in more than 
one metastasis pair. All resulting interactions were sorted by the number 
of metastasis pairs in which the potential driver gene appeared in and 
then by the absolute mean impact log2-ratio. Only the top 100 of these 
sorted interactions were kept. Three circos plots were created based on 
those interactions and genes using the R package circlize [59] (0.4.12), 
one for each of the three metastasis pair subgroups. 

2.10. Validation of impact subgroups and subgroup specific target genes 

We considered another cohort of patients, each with a brain and an 
extracranial melanoma metastasis, for validation (Table S15, validation 
cohort). Therefore, the same RNA sequencing and processing as for the 
discovery cohort was performed for nine additional patient-matched 
metastasis pairs, each with a brain and an extracranial melanoma 
metastasis. Expression log2-ratios between the brain and extracranial 
sample were determined for each metastasis pair, which was possible for 
8184 (99.2 %) of the genes of the discovery cohort. The values of the 
remaining genes were set to zero (Table S15). A methylation matrix of 
genes and metastasis pairs was created that contained only zeros, cor-
responding to an absent methylation influence in the network regression 
models. Network propagation was done as described before, starting 
with all potential driver genes of all metastasis pairs of the discovery 
cohort to find corresponding downstream target genes and pathways in 
the validation cohort. Since only a small subset of 566 of all 8251 genes 
in the network had assigned promoter methylation as a predictor of their 
expression, the calculated impacts of genes were not significantly 
affected. Further, the fact that promoter methylation changes of a gene 
are also reflected in its expression level provides a backup for the 
network-based impact computations. Metastasis pair-specific profiles 
consisting of the average impact ratios between brain and extracranial 
metastases were used together with the profiles of the discovery cohort 
for cluster analyses done in the same manner as before. Further, all 
possible target genes were determined for the validation cohort as for 
the discovery cohort. As one of the subgroups had seven metastasis 
pairs, the constraint of a consistent impact ratio for target genes was 
relaxed: genes were considered consistent when six of the seven 
metastasis pairs showed a ratio into the same direction. The positions of 
the target gene candidates of the discovery cohort were determined in 
the ranked target gene lists of the validation cohort (Table S14). 

3. Results 

3.1. Strong molecular heterogeneity of melanoma metastases motivates a 
personalized network-based analysis of patient-matched metastasis pairs 

Promoter methylation and gene expression profiles of patient- 
matched metastasis pairs of 11 melanoma brain and extracranial me-
tastases from seven patients were used to search for potential driver 
genes that distinguish both metastases types (Table 1, Table S1, dis-
covery cohort). The considered extracranial metastases occurred at 
different sites comprising lung, lymph node, skin and soft tissue. Mul-
tiple patient-matched pairs were available for three of seven patients 
(P08: 3 pairs, P18: 2 pairs, P42: 2 pairs), because histologically distinct 
regions were marked by an experienced pathologist for the extracranial 
metastases of these three patients. Between 11 and 279 potential driver 
candidate genes with differential promoter methylation and corre-
sponding opposite gene expression were identified for each individual 
metastasis pair (Table S2) [32]. Only three potential driver genes were 
shared by five metastasis pairs (ENPP2, LDLRAD2, RFTN1) and eight 
genes by four pairs (CMBL, ESPN, FERMT3, IL12RB2, KLHL6, NLRP1, 
PHGDH, TJP2). More potential driver candidates were shared between 
the matched pairs of patients for which distinct histological regions were 
available from the extracranial metastases (P08: three pairs, 11 genes 

shared, P18: two pairs, 10 genes shared, P42: two pairs, 25 genes 
shared). However, 73 % of all driver candidates occurred in only one 
metastasis pair (Fig. S4). These different observations highlight a strong 
heterogeneity of the patient-matched melanoma metastases, but this 
also clearly indicates that common potential driver genes and their 
downstream impacts on molecular processes cannot be determined by 
such a basic search strategy under these conditions. Thus, gene alter-
ations of patient-matched melanoma metastasis pairs should better be 
analyzed in the context of genome-wide gene regulatory networks to 
enable the prediction of commonly altered pathways in the cohort or in 
patient subgroups to better understand relevant molecular processes 
altered by the specific driver candidates of each metastasis pair. 

3.2. Melanoma-specific gene regulatory networks learned from public 
data predict expression behavior of patient-matched metastases 

Transcriptome and promoter methylation data of 270 melanoma 
patients (215 metastases including one brain metastasis, 55 primary 
tumors) of the TCGA skin cutaneous melanoma cohort were used to 
computationally infer a gene regulatory network for metastatic mela-
nomas [43] (Table S3). For each of these patients, gene expression and 
corresponding promoter methylation levels of 8251 genes, which were 
also measured in our melanoma cohort, were utilized (Table S3). The 
network inference was done with the R package regNet [39], modeling 
the expression of each gene as a linear combination of the gene’s own 
promoter methylation level and the expression levels of all other po-
tential regulator genes (see schematic flowchart in Fig. S1). regNet 
utilizes sparse regression to predict for each gene the most relevant 
genes that best explain the expression of this gene across the patients. 
The resulting edges between genes form a gene regulatory network 
(Table S5). The network inference was repeated 25 times utilizing a 
training set of 202 of 270 (75 %) randomly chosen patients. The 
resulting networks had on average 27,275 ± 634 directed edges be-
tween genes and on average the methylation levels of 566 ± 23 pro-
moters were selected to directly influence the expression of the 
associated genes (false discovery rate < 10− 4 for included edges). About 
three quarters of the edges between genes were potential activator links 
and about one quarter were inhibitor links. Most of the links were be-
tween genes in relative close vicinity on the same chromosome, but 
there were also many links between genes of different chromosomes 
(Fig. S5). Furthermore, many known key drivers of melanoma devel-
opment (ATF3, BRAF, TET1, ARID2, DNMT3B, CTCF, FOS, DNMT3A) [5, 
60,61] were among the genes with the most outgoing edges to other 
genes and were therefore well embedded in the networks (Table S6). 

Next, the learned networks were tested for their capability to predict 
the expression levels of individual genes. These predictions were per-
formed separately for each network with its remaining 25 % of patients 
(68 of 270) that were not used during inference. Then the correlation 
between the predicted and the originally measured expression levels of 
each gene across all test patients was calculated. The vast majority of 
genes showed positive correlations suggesting that the underlying net-
works contain relevant information for the prediction of expression 
levels of genes in metastatic melanomas (Fig. 2A, median correlation 
r = 0.61, p = 1.87⋅10− 8, t-test). This was further supported by the fact 
that random networks of same complexity were not able to predict the 
expression levels of genes (Fig. 2A, r = 0.003, p = 0.49, t-test). 

Moreover, the learned networks were tested for their capability to 
predict the expression levels of individual genes in our melanoma me-
tastases cohort. While the correlations between the network-based 
predicted and the originally measured expression levels were lower 
compared to those obtained for the TCGA test data, the majority of genes 
still showed positive correlations (Fig. 2A, discovery cohort median 
correlation r = 0.39, p = 0.021, t-test). Stratification into brain and 
extracranial metastases revealed the same predictive power (Fig. 2B). 
Thus, despite only one brain metastasis in the TCGA cohort, the trained 
networks demonstrated effective generalization across metastatic 
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tissues. Thus, this clearly shows that for most genes the inferred 
melanoma-specific networks provide solid predictions, and the networks 
can therefore be utilized to analyze the patient-matched melanoma 
metastases of our cohort. 

3.3. Impacts of pair-specific driver candidates on cellular pathways 
separate metastasis pairs into three subgroups 

Next, the putative impacts of all potential driver candidate genes 
with differential promoter methylation and corresponding opposing 
gene expression of each patient-matched metastasis pair were deter-
mined (see schematic flowchart in Fig. S2). Therefore, the network 
propagation algorithm implemented in regNet [39] was applied. This 
algorithm predicts the influence of each driver gene on the expression of 
every other gene by considering all directed network paths between the 
genes, and the predictions for each gene along the path. 

Since alterations of different cellular pathways are known to play 
important roles in melanoma metastases, the results of the network 
propagation were considered to determine the potential impacts of each 
altered driver gene on genes of signal transduction, metabolic and im-
mune pathways (Table S4). This was done for each patient-matched 
brain and extracranial metastasis pair. Intuitively, the impact is the 
potential regulatory influence of a gene on a pathway. The impact log2- 
ratio is the ratio of this influence between the brain metastasis and the 
extracranial metastasis of a patient. The distribution of the impact log2- 
ratios differed from metastasis pair to metastasis pair. However, all these 
ratios mainly range from -5 to 5 indicating that the pair-specific driver 
candidates may influence the expression of specific pathway genes 
(Fig. S6). 

Average impacts of all pair-specific driver candidates on each 
signaling, metabolic and immune pathway were computed to better 
characterize this at the level of individual pathways (Table S7, Fig. S2). 
A hierarchical clustering of these resulting pathway impact ratios 
revealed two phenomena that were consistent across all three pathway 
categories (Fig. 3). First, the pathways received impact ratios from the 
driver candidates that varied in their strength and directionality across 

the 11 patient-matched metastasis pairs. Secondly, the patient-matched 
metastasis pairs were split into three homogeneous subgroups with 
highly consistent subgroup-specific impact ratios across all pathways. 
These subgroups showed on average rather higher (red, subgroup SG1), 
lower (blue, subgroup SG2) and slightly lower (light blue, subgroup 
SG3) impacts of driver candidates on pathways comparing brain to 
extracranial metastases (Fig. 3). A bootstrapping-based stability analysis 
was applied to assess the reliability, and thus, universality of the sub-
groups. It confirmed that these clusters were highly stable for signaling 
and immune pathways (Fig. 3: AU values of 100 for root nodes of sub-
groups) and for some subgroups less stable in the context of metabolic 
pathways (AU-values between 64 and 98 for root nodes of subgroups). 

In addition, the assignment of patient-matched pairs to subgroups 
was very consistent between the three pathway categories, except for 
the metabolic pathways of metastasis pair P08_BSof_3 (Fig. 3). Gener-
ally, the metastasis pairs did not cluster according to the tissue type of 
the extracranial metastases. Moreover, several metastases of the patients 
with multiple pairs were even assigned to different subclusters (patients 
P08, P18 and P42). Thus, histologically distinct regions of a metastasis 
differed in their pathway impact profiles, which may result from 
different subclones within a metastasis. 

3.4. Overrepresented functional terms of target genes influenced by 
potential driver candidates suggest regulatory differences between the three 
subgroups 

The considered signaling, metabolic and immune pathways were 
affected in a similar manner within each of the three revealed metastasis 
pair subgroups (Fig. 3). An overrepresentation analysis was performed 
on the basis of gene ontology (GO) terms using clusterProfiler [56] to 
obtain a detailed overview which of the pathways were significantly 
enriched for differential impacts from the metastasis pair-specific driver 
candidates. To realize this, all potential target genes that received im-
pacts from driver gene candidates via network propagation were ranked 
by their impact log2-ratios of the brain metastasis in relation to the 
corresponding patient-matched extracranial metastasis (see schematic 

Fig. 2. Predictive performance of the learned melanoma-specific gene regulatory network. A: The correlations between predicted and originally measured gene 
expression levels quantify the predictive performance of the learned network for the TCGA test data by the inferred regulatory network (green), for the TCGA test 
data by the random networks (gray), and for the gene expression profiles of the patient-matched melanoma metastases in our discovery cohort (blue) and validation 
cohort (magenta) with the inferred network. The results shown are the medians over all 25 learned networks inferred from the TCGA training sets. The median 
correlations for the prediction of the TCGA test data (r = 0.61, p = 1.27⋅10− 8, t-test), the discovery cohort (r = 0.39, p = 0.020) and the validation cohort (r = 0.42, 
p = 0.041) were significant, whereas random networks of the same complexity as the inferred networks were not able to predict the gene expression levels 
(r = 0.003, p = 0.490). B: Stratification into brain and extracranial metastases showed essentially the same predictive performance for the discovery (red and blue) 
and validation cohort (yellow and green). This proved that the learned gene regulatory networks generalized well over different metastatic tissues. 
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flowchart in Fig. S2). Based on this ranking, the top 5 % of genes that 
received the highest impact log2-ratio (strong positive impact 
log2-ratio) and the top 5 % of genes that received the lowest impact 
log2-ratio (strong negative impact log2-ratio) were used for the over-
representation analysis. This determined those molecular processes that 

best distinguish each brain from its corresponding extracranial metas-
tasis at a false discovery cutoff of 0.1 (Table S8). Next, subgroup-specific 
enrichments were selected based on the criterion that a specific enriched 
ontology term was found in at least two metastasis pairs of the subgroup, 
but not found to be enriched in any other metastasis pair of the two other 

Fig. 3. Heatmap-based cluster analysis of pathway impact profiles of patient-matched metastasis pairs of the discovery cohort. The pathways were grouped into three 
separately displayed categories (signaling, metabolic, immune). For each pathway (row) the plotted values represent the average impact log2-ratios from all potential 
driver genes on all pathway genes for a specific metastasis pair (column). Red tiles in the heatmap represent higher and blue ones represent lower impacts in the brain 
compared to its corresponding extracranial metastasis. The metastasis pair names are shown below the heatmap where a P followed by a number represents the 
individual patient and the subsequent letters represent the two metastases of the pair: brain (B), lung (Lun), skin (Ski), soft tissue (Sof), and lymph node (Lym) 
(Table 1). The full pathway names are in Table S4 and the underlying data are contained in Table S7. The numbers shown in the dendrograms above the heatmap 
represent the approximately unbiased p-values (AU-values) from the corresponding cluster stability analysis, where a value of 100 means that the corresponding 
subcluster was completely stable. 
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subgroups (Table 2, Table S8). 
Overall, the subgroups SG2 and SG3 showed only few subgroup- 

specific overrepresented GO terms, which were observed for target 
genes that received lower impacts in brain compared to extracranial 
metastases. This included proteolysis and negative regulation of cell 
proliferation for SG2 and cytokine receptor activity for SG3. In contrast, 
SG1 was characterized by many subgroup-specific, overrepresented GO 
terms, including plasma membrane, cytokine signaling and interferon 
signaling which were all overrepresented among the target genes that 
received greater impacts in brain compared to extracranial metastases 
from the pair-specific driver genes. In addition, target genes that 
received lower impacts were enriched for GO terms associated with 
functions of the immune system (migration of immune cells, mast cell 
activity, inflammatory response), calcium ion transport, glial cell acti-
vation and PI3K signaling. Thus, subgroup-specific alterations of 
pathway activities triggered by potential driver candidate genes are 
likely to exist. 

3.5. Associations between pathway expression and received impacts from 
driver candidates reveal subgroup-specific commonalities and differences 

Next, we estimated how the impacts of the driver candidates influ-
ence the expression of individual pathways. Therefore, the impact on 
each pathway and the expression of each pathway were considered for 
each metastasis pair by comparing the brain to the corresponding 
extracranial metastasis. The correlation between impact and expression 
changes was calculated over all pathways for each metastasis pair 
(Fig. S7, Table S7). Except for two metastasis pairs (P08_BSof_1, 
P16_BLun), all pairs showed moderate to strong negative correlations 
between the received average differential impacts and the average 
expression alterations of pathways in the brain compared to the corre-
sponding extracranial metastases (Fig. 4). Especially the four observed 

strong negative correlations had all false discovery rates less than 0.031 
(Fig. 4: P04_BSki_1, P08_BSof_3, P39_BLun and P42_BLym_1). Thus, 
increased impacts in the brain metastasis compared to the correspond-
ing extracranial metastasis tend to be associated with a reduced 
expression of pathways, whereas decreased impacts in the brain 
metastasis may lead to an increased expression of pathways. This global 
inverse trend was consistent for all three subgroups SG1, SG2, and SG3 
of the melanoma metastasis pairs (Fig. 4, Fig. S7). 

Next, we were interested in pathways and their behavioral patterns, 
and whether a pattern recurred more frequently in certain subgroups. 
The behavior of a pathway is defined by its higher or lower expression 
and whether its received impact is higher or lower in the brain compared 
to the corresponding extracranial metastasis. A lower impact ratio 
means that the pathway was less influenced by the individual driver 
gene candidates in the brain compared to the extracranial metastasis of a 
patient. This behavior was predominantly seen in the metastasis pairs of 
the subgroups SG2 and SG3. Among these pathways were those with 
higher expression in the brain metastases, especially the pyruvate 
metabolism, the citrate cycle, and the pentose phosphate pathway. 
These pathways were more active in brain metastases, but their activity 
was less influenced by the potential driver genes. The other category of 
pathways less influenced by the driver genes were the less active ones 
(lower expression in brain). They included two pathways known to play 
a role in cytokine receptor signaling and other signaling pathways (e.g. 
MAPK, ErbB, and Wnt signaling) (Table S9). 

On the other hand, pathways that received higher impact ratios were 
more influenced by the individual potential driver genes in the brain 
compared to the extracranial metastasis. This was primarily seen in 
subgroup SG1. Among these pathways were those with less activity 
(lower expression in brain), mainly including cancer signaling (e.g. 
PI3K/Akt, MAPK, and p53 signaling) and immune pathways (e.g. cyto-
kine receptor, T cell receptor, and IL-17 signaling). These pathways were 
potentially downregulated by the candidate driver genes. Furthermore, 
there were pathways receiving higher impacts that were associated with 
increased expression in brain compared to corresponding extracranial 
metastases. These were mainly metabolic pathways (citrate cycle, py-
ruvate metabolism, amino acid metabolic pathways), mTOR signaling, 
non-homologous recombination and telomere maintenance (Table S9). 

3.6. Differentially regulated candidate target genes are distinct between 
subgroups but potentially highly relevant for metastasis formation 

Since metastasis pairs showed group-specific overrepresented path-
ways, it was further analyzed if single subgroup-specific target genes 
with consistent differential impacts between the brain and extracranial 
metastases exist. Therefore, subgroup-specific average impact log2- 
ratios were considered to determine the top 10 target genes with the 
highest and top 10 lowest impact ratios for each of the three subgroups 
SG1, SG2, and SG3 (Table S10, see schematic flowchart in Fig. S2). 
Opposed to the patient-matched metastasis pairs of the subgroup SG1, 
pairs of the two other subgroups, SG2 and SG3, only showed target gene 
candidates with consistently lower impact in brain metastases. Still, the 
three subgroups were nearly perfectly separated by the impact log2- 
ratios of the target candidates (Fig. S8) suggesting that the subgroup- 
specific top target genes are good general representatives of the sub-
groups. Overall, the received impact log2-ratios and corresponding 
expression log2-ratios of these top target candidates were positively 
correlated (r = 0.26) indicating that expression alterations of the po-
tential driver candidates triggered by promoter methylation alterations 
influence the expression of these top target genes. 

Next, the 100 strongest and most consistent impacts on the subgroup- 
specific top target gene candidates and the corresponding potential 
driver genes were visualized for each of the three subgroups (Fig. 5, see 
Methods for selection criteria of displayed potential driver genes). This 
again confirmed the need and advantages of the performed network- 
based analysis, because the included potential driver genes were only 

Table 2 
Overrepresented GO terms exclusively shared within metastasis pair subgroups. 
Target genes with impact ratios in the upper 5 % (higher impact in brain) or 
lower 5 % (lower impact in brain) of each metastasis pair were analyzed by 
clusterProfiler [56] to obtain overrepresented GO terms (FDR < 0.1). Shown are 
the numbers of overrepresented GO terms that were shared between at least two 
metastasis pairs of each respective subgroup, where these terms did not appear 
in metastasis pairs of any other subgroup. The full result list is in Table S8.  

Subgroup Gene 
list 

Number of 
overrepresented GO 
terms 

Summary of overrepresented 
GO terms 

higher in 
brain, SG1 

upper 
5 % 

7 plasma membrane, cytokine 
signaling and interferon I 
signaling, defense response to 
virus 

lower 
5 % 

108 migration of diverse immune 
cells, mast cell activity, 
myeloid cell differentiation, 
PI3K signaling, superoxide 
metabolism, (neuro) 
inflammatory response, 
calcium ion transport and glial 
cell activation 

slightly 
lower in 
brain, SG3 

upper 
5 % 

0  

lower 
5 % 

2 cytokine receptor activity 

lower in 
brain, SG2 

upper 
5 % 

0  

lower 
5 % 

9 negative regulation of cell 
proliferation, (positive) 
regulation of proteolysis, 
cardiac chamber development 
/ morphogenesis, development 
cardiac ventricle, aortic valve, 
ventricular septum and semi- 
lunar valve  
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altered in one or two metastasis pairs, whereas their potential target 
genes were consistently differentially impacted within each subgroup. 
Thus, the subgroup-specific circos plots in Fig. 5 summarize the complex 
relationship between driver candidates and target genes connected 
through all possible network paths. They further enable to focus on the 
most relevant subgroup-specific target genes, which received the 
strongest impacts from the respective driver candidates. Overall, the 
three subgroups showed largely distinct sets of driver candidates and 
target genes. Only four target gene candidates (BCL11B, GGCT, TTLL7, 
SPAG16) and no driver candidates were shared among the subgroups. 
Two text mining-based analyses indicated that nine target gene candi-
dates had gene-gene interactions or single gene events in the melanoma 
context (Suppl. Table S11) and nine partially shared genes showed gene- 
disease associations with melanoma (Suppl. Table S12). Many more 
genes showed disease associations in the broader neoplasm context 
(Suppl. Table S12). Additionally, an extensive, manual literature review 

showed that nearly all target gene candidates are associated with cancer, 
although with different degrees of evidence (Appendix A, Table S13). In 
total, 21 of the 40 genes showed associations with melanoma. 

Table 3 shows a selection of the most promising target candidates for 
each subgroup (see full list in Table S13 and Appendix A). Many of them 
have known associations with melanoma metastasis formation. There 
were two genes for subgroup SG1 (Fig. 5A). RBM38 is involved in DNA 
damage response [62] and promotes proliferation and invasion in mel-
anoma [63]. BCL11B (also in SG2) is the master transcription factor for T 
cell identity, and there is support for its role in melanoma [64,65]. There 
were three very promising candidate genes for SG2 (Fig. 5B). AIM2 
regulates anti-tumor immunity and is a viable therapeutic target for 
melanoma [66]. FES is a driver of melanoma progression [67], and there 
is evidence that it is involved in metastasis formation in melanoma [68]. 
GATA3 promotes invasive behavior in melanoma cells [69]. Finally, 
subgroup SG3 had two very promising target candidates (Fig. 5C). 

Fig. 4. Relation between impacts of potential driver genes on cellular pathways and pathway expression for the patient-matched metastasis pairs of the discovery 
cohort. For each cellular pathway (Table S4), the average impact log2-ratio of the potential driver genes on the pathway genes was computed using network 
propagation, and the average expression log2-ratio was calculated over all pathway genes. For both log2-ratios, the brain and the corresponding extracranial 
metastasis of each metastasis pair were compared. The displayed bars show the correlation between the impact and the corresponding expression log2-ratios over all 
considered pathways for each metastasis pair. For the majority of pairs, negative correlations were observed between the impacts on the pathways and the expression 
of the pathways, meaning that higher (lower) impacts in the brain metastasis were associated with reduced (increased) pathway expression compared to the cor-
responding extracranial metastasis. A star “*” below a bar indicates the significance of the correlation (FDR- adjusted p < 0.05, t-test). The corresponding scatter plots 
of the individual metastasis pairs are shown in Fig. S5 and the underlying data are contained in Table S9. The metastasis pair names are shown above the bars where a 
P followed by a number represents the individual patient and the subsequent letters represent the tissues of the two metastases of the pair: brain (B), lung (Lun), skin 
(Ski), soft tissue (Sof), and lymph node (Lym) (Table 1). 
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SLAMF6 of SG3 is a potential new target for immunotherapy against 
melanoma [70]. PYCARD is involved in inflammatory and apoptotic 
signaling [62]. It is down-regulated in metastatic melanoma [71] and its 
expression is prognostic for effectiveness of anti-PD-1 immunotherapy in 
melanoma [72]. 

3.7. Validation of impact subgroups and subgroup specific target genes 

Gene expression profiles of an additional cohort of nine patient- 
matched brain and extracranial metastasis pairs were available for an 
independent validation (Table S15, validation cohort). The TCGA-based 

Fig. 5. Subgroup-specific accumulation of top impacts from potential driver genes on target genes. The circos plots visualize selected impacts for each of the three 
revealed subgroups SG1, SG2, and SG3 that flow through the learned melanoma-specific gene regulatory network form potential driver genes to target genes. The 
included target genes (purple) either received higher (orange interaction arrows) or lower (blue interaction arrows) impacts in the brain metastasis compared to the 
corresponding extracranial metastasis from the corresponding potential driver genes of specific patient-matched metastasis pairs of each subgroup. The shown top 
genes were selected by their co-occurrence in the metastasis pair of a specific subgroup and their magnitude of the impact ratio between brain and extracranial 
metastases in our melanoma metastasis discovery cohort (see Methods for details). The driver genes are either more highly expressed (red) or more lowly expressed 
(green) in the brain compared to the patient-matched extracranial metastasis of a subgroup, or ambiguous (brown). Numbers in brackets behind the gene names 
indicate the number of metastasis pairs in which a gene occurred in. General functions of driver and target genes are annotated with colored dots. Detailed data are 
in Table S10. 
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gene regulatory network showed equally good predictive performance 
for both the validation and the discovery cohort (Fig. 2A), also when 
stratifying into brain and extracranial metastases (Fig. 2B). Impact ratio 
analyses were performed with the same TCGA-based gene regulatory 
networks as for the discovery cohort with the exception that no pro-
moter methylation data was available (see Methods for details). 
Genome-wide impact log2-ratios were obtained for each patient- 
matched metastasis pair of the validation cohort. Then, a joint hierar-
chical clustering was performed with the profiles of the discovery and 
validation cohort. The nine validation pairs clustered closely together 
with the pairs of the initial discovery cohort that formed the subgroups 
SG2 and SG3 (Fig. S9). Thus, the validation metastasis pairs belong 
either to SG2 or SG3, which clearly supports the existence of these two 
subgroups. Again, a stability analysis was done with pvclust that showed 
that the subgroups from this joint clustering were fully stable (Fig. S9: 
AU values 96–100 at the root nodes of subgroups). Further, subgroup- 
specific consistent target genes were determined for the subgroups 
SG2 and SG3 of the validation cohort in the same way as for the dis-
covery cohort. The target genes were also ranked by their impact log2- 
ratios. Nine of ten (SG2) and five of ten (SG3) target genes that were 
identified with the discovery cohort were also part of the validation 
ranking lists. Moreover, ten of these genes were also ranked at the top of 
the lists (SG2: AIM2, BCL11B, FES, GATA3, RGS1, SPAG16, TC2N, SG3: 
GGCT, KRT10, ZNF620), as observed in the ranking of the discovery 
cohort (Table S14, percentiles of genes < 15 %). Thus, the subgroup- 
specific target genes between the validation and the discovery cohort 
showed a good overlap. This further supports that the reported target 
genes may contribute to the establishment of the observed subgroups. 

4. Discussion 

Melanoma presents an ongoing, huge burden for patients and society 
[1]. Melanoma brain metastases are particularly difficult to treat [73]. A 
deeper understanding of molecular mechanisms is needed to develop 
new prognostic and therapeutic tools. We here contributed to this field 
by presenting an innovative computational analysis of 11 
patient-matched brain and extracranial melanoma metastasis pairs. 
Melanomas are highly individual tumors because of their elevated mu-
tation rate [4]. Therefore, we decided against a mere description of 
methylation and expression differences and instead performed an inte-
grative analysis of promoter methylation and gene expression data with 
the help of a specifically developed network-based approach. Thus, 
starting with highly individual, heterogeneous driver gene candidates of 
patient-matched metastasis pairs, the network-based analysis allowed us 
to discover three homogeneous subgroups and corresponding 
subgroup-specific downstream targets. 

The basis of the presented analysis were genome-wide melanoma- 
specific gene regulatory networks inferred from the large TCGA mela-
noma cohort. Thereby, the expression of each gene was modeled as a 
linear combination of its promoter methylation and the expression levels 

of all other genes adapting the basic approach by Seifert et al. [39,40]. 
The obtained networks were well-suited to predict the expression 
behavior of genes in independent test data sets, clearly showing that 
predictive connections between genes were captured. The networks also 
showed good power for the prediction of the expression behavior of 
most genes in our small discovery and validation cohorts of 
patient-matched melanoma metastasis pairs, whose data were measured 
on different experimental platforms than the TCGA cohort. Although the 
predictive power was slightly reduced in comparison to the TCGA test 
data, it still demonstrated that the obtained networks generalized well 
across cohorts with different patients and technologies. Moreover, even 
though the training cohort contained only one brain metastasis, the 
observation of the good predictive power for our melanoma discovery 
and validation cohort was in accordance with prior findings that net-
works learned with regNet are able to generalize well, even across tumor 
entities [39]. Thus, the networks learned on public TCGA data repre-
sented a valuable basis for our analysis. This is also supported by the fact 
that known melanoma driver genes were well embedded in the network 
and ranked among the top connected genes. 

Both metastases of each patient-specific pair were compared and 
driver gene candidates with differential promoter methylation and 
opposed expression were determined. Unfortunately, the obtained gene 
sets only barely overlapped between patients. However, this was an 
ideal motivation and starting point to perform an analysis of individual 
patient-matched metastasis pairs with the help of the learned networks. 
We applied the networks to elucidate which downstream target genes 
and pathways were affected by the potential driver gene candidates. The 
impacts of each driver candidate on all other genes were determined for 
each patient-matched metastasis pair. The impact ratios obtained by 
comparing a brain with its corresponding extracranial metastasis yiel-
ded patient-specific impact profiles. Hierarchical cluster analysis of 
these profiles allowed metastasis pairs to be classified into three robust 
subgroups. Bootstrap resampling validated the reliability of the sub-
groups. This was critical given the relatively small cohort size when 
assessing the universality of subgroups. The revealed subgroups had 
rather higher (SG1), slightly lower (SG3) and lower average impact ra-
tios (SG2) on known pathways in the brain metastases. A higher impact 
ratio means that the potential driver genes had a higher influence on the 
expression of the pathways in the brain compared to the extracranial 
metastasis of a patient. A lower impact ratio means, the expression of the 
pathway was more independent of the potential driver genes in the brain 
metastasis of the patient. The patterns of higher or lower impact ratios 
were of global nature, that is, almost all pathways were affected in the 
same way within a metastasis pair. As these were marked global dif-
ferences, subsequent analyses were performed on a subgroup compari-
son basis. 

The presented pathway analyses uncovered regulatory differences of 
the subgroups. Subgroups SG2 and SG3 had lower average impacts on 
pathways in the brain metastases. Cell proliferation was overrepresented 
in SG2. This hints at a reduced control of cellular growth, a major 

Table 3 
Most promising candidate target genes of each subgroup. Biological functions were taken from genecards.org. Last column lists the literature references with the 
highest relevance for melanoma. The full list of all candidate genes is given in Table S11.  

Gene Chromosome Subgroup Mean log2 impact 
ratio 

Mean log2 expression 
ratio 

Biological function Melanoma 
references 

RBM38 chr20 SG1 - higher 0.71 -0.20 DNA damage response, regulation of proliferation [63] 
BCL11B chr14 SG1 - higher -0.45 -2.26 transcription regulation, nucleosome and histone 

regulation, T cell identity 
[64,65] 

SG2 - lower -1.76 -1.28 
AIM2 chr1 SG2 - lower -1.92 -0.71 cell proliferation [66,95] 
FES chr15 SG2 - lower -1.94 -0.95  [67,68] 
GATA3 chr10 SG2 - lower -1.76 -1.12 transcription factor, regulator of T-cell development [69,96] 
SLAMF6 chr1 SG3 - slightly 

lower 
-0.76 -1.93 immunoglobulin, NK cell activation [70,97] 

PYCARD chr16 SG3 – slightly 
lower 

-0.77 -0.33 inflammatory and apoptotic signaling, activates caspase [71,72,98,99]  
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characteristic of cancers. Regulation of proteolysis, a process involved in 
tumor progression and metastases [74,75], was also overrepresented. 
Cytokine receptor activity was overrepresented in SG3. Melanoma 
modulate immune cells in the tumor micro-environment by excreting 
cytokines that affect regulatory T cells and dendritic cells [8]. The SG1 
subgroup had many more subgroup-specific overrepresented GO terms, 
including cytokine and interferon I signaling from target genes with 
higher impact in the brain metastases. The application of the cytokine 
interleukin-2 was an early, moderately successful treatment option for 
metastatic melanoma, and combinations with other cytokines and 
modern therapies have been explored [76]. More targeted delivery using 
oncolytic viruses is still being investigated [77]. Terms from genes with 
lower impact in SG1 brain metastases included migration of diverse 
immune cells, mast cell activity, myeloid cell differentiation, (neuro) 
inflammatory response and glial cell activation. The lower impact in 
brain metastases could provide a potential hint to a reduced control of 
the adaptive immunity and rather uncontrolled inflammation-like pro-
cesses. Neuroinflammation and the tumor micro-environment are 
increasingly thought to play a role in brain tumors and metastases [78]. 
Distinct glial and myeloid cells were shown to have immunosuppressive 
and tumor-promoting effects in brain tumors and glioma [79]. Gonzalez 
et al. proposed the coexistence of an inflammatory and a proliferative 
archetype in brain metastases, which was derived from single cell ana-
lyses [25]. The inflammatory archetype may be more active in the 
subgroup SG1 discovered here. PI3K signaling was another over-
represented term of the subgroup SG1. PI3K regulates many cellular 
functions including growth, proliferation, survival and migration and is 
often dysregulated in cancer [80]. The PI3K/AKT pathway is upregu-
lated in melanoma brain compared to matched extracranial metastases 
[15,16]. Its inhibition may resensitize brain metastases to BRAF in-
hibitors [16] and control melanoma brain metastases growth [23]. The 
PI3K/AKT/mTOR pathway plays a key role in early metastatic coloni-
zation of the brain in melanoma, and drug intervention may even help to 
prevent the formation of brain metastases [81]. Calcium ion transport 
was also overrepresented in the subgroup SG1. Recent studies have 
uncovered the role of calcium signaling in brain tumor proliferation, 
resistance and metastasis [82,83]. Several in vitro and xenograft studies 
have shown that blocking of T-type calcium channels can reduce 
viability, migration and invasion of melanoma cells, and may be a new 
strategy against melanoma progression and therapy resistance [84]. 

To uncover the significance of changed impacts on gene sets, we 
looked at the relationship of impact and expression ratios between the 
brain and extracranial metastases. There was a global tendency that 
pathways with higher impact ratios had lower expression ratios in all 
subgroups. However, there were different trends in the pathways of the 
subgroup SG1 on the one hand and the subgroups SG2 and SG3 on the 
other hand. The latter two often behaved similar throughout this study. 
For example, citrate and pyruvate metabolism and the pentose phos-
phate pathway (PPP) showed higher transcription in the brain metas-
tases of all subgroups. Still, the underlying regulation seems to be very 
complex, because higher impacts on these pathways was observed for 
SG1 and lower impacts were observed for SG2 and SG3. Upregulation of 
the PPP enables tumors to switch to aerobic glycolysis [85], and to 
counteract the elevated oxidative stress [85,86]. In melanoma, PPP is 
involved in conferring metastatic potential, manages oxidative stress 
[87], and also contributes to therapy resistance [88]. An in vitro thera-
peutic intervention that downregulated PPP showed potential for a 
resensitisation to melanoma treatment [88]. 

Another interesting finding was a lower expression of many immune 
cell differentiation and signaling pathways in all subgroups comparing 
brain and extracranial metastases. While these pathways experienced a 
higher regulatory impact in brain metastases of subgroup SG1, there was 
a reduced impact on these pathways in subgroups SG2 and SG3. These 
findings suggest that all brain metastases experience transcriptional 
hindrance of immune processes, but the underlying regulation differs 
between the three subgroups. Our findings are supported by Fischer 

et al. who also reported immunsuppression comparing patient-matched 
brain and extracranial melanoma metastases [21]. Melanoma can 
develop various immune escape strategies including blocking of T-cell 
activation via PD-1/PD-L1 interaction [8]. This is also well supported in 
our data by the observation that the PD-1/PD-L1 pathway was more 
lowly expressed in brain metastases in almost all cases. Corresponding 
clinical trials with PD-1/PD-L1 checkpoint inhibitors have shown 
promising results in patients with melanoma brain metastases [89]. 

This motivated us to obtain a more detailed view on the changed 
impacts between patient-matched metastasis pairs by determining 
subgroup-specific target genes with consistently highly differential im-
pacts between brain and extracranial metastases. While the initially 
determined transcriptional driver candidates were nearly exclusive for 
individual patients, the target candidate genes represented their regu-
latory consequences with higher relevance for a patient subgroup. 
Importantly, the role in cancer was demonstrated in several studies for 
nearly all target candidates, and half of them showed relevant studies in 
melanoma (Appendix A, Table S13). 

Overall, functions in innate immunity, and lymphocyte development 
and activation were frequently associated with the predicted target 
genes of all three subgroups. Melanoma can modulate their micro- 
environment with immune signals [7], and enriched categories related 
to chemokines also indicate this for our cohort. This is also supported by 
other studies that showed that melanoma brain metastases that suppress 
immune reactions have a worse prognosis and that heterogeneous im-
mune infiltration correlates with survival [21]. Focusing on the three 
revealed subgroups, predicted target genes of subgroup SG1 were 
frequently involved in transcriptional regulation and some also showed 
associations with melanoma [62,90–92]. Promising target genes of 
subgroup SG2 are known to be involved in melanoma invasion (FES 
[67], GATA3 [69]) and in immune response in diverse tumors (BCL11B 
[65], AIM2 [66]). Predicted promising target genes of subgroup SG3 are 
known to be involved in melanoma immune response (SLA2 [93], 
SLAMF6 [70]) and metastasis formation (CD247 [94], PYCARD [71]). 
Thus, each of the three revealed subgroups is potentially influenced by 
genes that could represent promising targets for future experimental 
studies. 

Further, the multiple metastasis pairs of each of the three patients 
P08, P18 and P42 showed a quite interesting behavior concerning the 
subgroups-specific pathway clustering. They were part of our study, 
because an experienced pathologist had marked histologically distinct 
regions in the extracranial metastases of these patients. Such distinct 
regions may result from different subclones within a metastasis. They 
can show different pathway activities, which were confirmed for all 
three patients. All their pairs were assigned to different subgroups. The 
two pairs of patient P18 were in SG2 and SG3. The two pairs of patient 
P42 were in SG1 and SG2. The three pairs of patient P08 were even 
distributed across all three subgroups SG1, SG2 and SG3. Since espe-
cially the pathway impact profiles of SG1 were clearly different from 
those of SG2 and SG3 (Fig. 3), the patients P08 and P42 had pairs that 
differed more strongly than those of P18. Thus, a brain metastasis and 
histologically distinct regions of the corresponding matched extracranial 
metastasis can show varying degrees of pathway differences, which 
could be an important information for the treatment of both metastasis 
types. 

Globally, a limitation of our study is the small sample size, because 
patient-matched melanoma metastases are generally difficult to obtain 
[20] and study cohorts typically range from about 8–40 patients with 
matched samples [15,16,21]. However, our cohort consists of nearly 
untreated metastasis pairs, which allows for highly valuable insights, 
and the personalized analysis of the patient-matched metastasis pairs 
enabled predictions for each individual patient. Another limitation is 
that network training had to be performed on a large independent pa-
tient cohort with data from different experimental conditions and 
sequencing platforms, which may reduce the power of discoveries. 
Additionally, only less than half of the known protein-coding genes 
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could be included in the analyses, mainly because of the different plat-
forms involved. Finally, the formalin fixation and paraffin embedding of 
the tissue samples may have introduced artifacts. Despite all these 
drawbacks, the existence of two of the three subgroups and their char-
acteristic target genes were confirmed by the analysis of metastasis pairs 
from an independent validation cohort. An extensive literature search 
and text mining further confirmed the relevance of the findings. For 
example, the predicted subgroup-specific target genes RBM38, FES and 
GATA3 are known to play a role in melanoma progression and metas-
tasis and the subgroup-specific target genes AIM2 and SLAMF6 have 
already been reported as therapeutic targets in melanoma (Table 3). This 
indicates the clinical relevance of our findings, and future experimental 
studies could explore their potential for new treatment strategies for 
melanoma metastases. 

Further, single-cell transcriptome studies of melanoma metastasis 
are emerging [25,26]. It will be intriguing to see if subgroups of 
differentially regulated brain metastases can be found when looking into 
pure tumor cells. Likewise, the role of the diverse immune cells can be 
discovered with that technology. However, patient-matched single cell 
melanoma metastasis pairs are not yet available. 

In summary, our innovative network-based analysis of patient- 
matched melanoma metastasis pairs enabled us to determine potential 
impacts of individual patient-specific driver candidates on downstream 
genes. The resulting impact profiles allowed us to group the virtually 
private metastasis pairs into three robust subgroups that were charac-
terized by more actionable target genes that are potentially triggered by 
the individual driver candidates. Our study has demonstrated how one 
can go from heterogeneous patient-specific metastases pairs with indi-
vidual driver candidates down to a limited number of subgroups and 
their associated subgroup-specific gene alterations. This contributes to a 
better molecular stratification of melanoma brain metastases and could 
provide a basis for experimental validation of specific genes. Further, the 
developed computational network-based data analysis strategy can also 
be transferred to other types of cancer. 
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[57] Faessler E, Hahn U, Schäuble S. GePI: large-scale text mining, customized retrieval 
and flexible filtering of gene/protein interactions. Nucleic Acids Res 2023;51: 
W237–42. https://doi.org/10.1093/nar/gkad445. 
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channels: a potential novel target in melanoma. Cancers (Basel) 2020;12:391. 
https://doi.org/10.3390/cancers12020391. 

[85] Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N. The pentose 
phosphate pathway in cancer: regulation and therapeutic opportunities. 
Chemotherapy 2021;66:179–91. https://doi.org/10.1159/000519784. 

[86] Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The role of the pentose phosphate 
pathway in diabetes and cancer. Front Endocrinol (Lausanne) 2020:11. https://doi. 
org/10.3389/FENDO.2020.00365. 

[87] Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. 
Metabolic heterogeneity confers differences in melanoma metastatic potential. 
Nature 2020;577:115–20. https://doi.org/10.1038/s41586-019-1847-2. 

[88] Wang L, Otkur W, Wang A, Wang W, Lyu Y, Fang L, et al. Norcantharidin 
overcomes vemurafenib resistance in melanoma by inhibiting pentose phosphate 
pathway and lipogenesis via downregulating the mTOR pathway. Front Pharmacol 
2022:13. https://doi.org/10.3389/FPHAR.2022.906043. 

[89] Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain 
immunology and immune checkpoint blockade in brain metastases. Brain 2021; 
144:1046–66. https://doi.org/10.1093/brain/awab012. 

[90] Wang J, Li L, Liu S, Zhao Y, Wang L, Du G. FOXC1 promotes melanoma by 
activating MST1R/PI3K/AKT. Oncotarget 2016;7:84375–87. 

[91] Lv L, Wei Q, Wang Z, Zhao Y, Chen N, Yi Q. Clinical and molecular correlates of 
NLRC5 expression in patients with melanoma. Front Bioeng Biotechnol 2021:9. 
https://doi.org/10.3389/FBIOE.2021.690186. 

[92] Wu L, Hu X, Dai H, Chen K, Liu B. Identification of an m6A regulators-mediated 
prognosis signature for survival prediction and its relevance to immune infiltration 

in melanoma. Front Cell Dev Biol 2021:9. https://doi.org/10.3389/ 
FCELL.2021.718912. 
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