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Abstract
Mountain climbing at high altitude implies exposure to low levels of oxygen, 
low temperature, wind, physical and psychological stress, and nutritional in-
sufficiencies. We examined whether right ventricular (RV) and left ventricular 
(LV) myocardial masses were reversibly altered by exposure to extreme altitude. 
Magnetic resonance imaging and echocardiography of the heart, dual x-ray ab-
sorptiometry scan of body composition, and blood samples were obtained from ten 
mountain climbers before departure to Mount Everest or Dhaulagiri (baseline), 
13.5 ± 1.5 days after peaking the mountain (post-hypoxia), and six weeks and six 
months after expeditions exceeding 8000 meters above sea level. RV mass was un-
altered after extreme altitude, in contrast to a reduction in LV mass by 11.8 ± 3.4 g 
post-hypoxia (p = 0.001). The reduction in LV mass correlated with a reduction 
in skeletal muscle mass. After six weeks, LV myocardial mass was restored to 
baseline values. Extreme altitude induced a reduction in LV end-diastolic volume 
(20.8 ± 7.7 ml, p = 0.011) and reduced E’, indicating diastolic dysfunction, which 
were restored after six weeks follow-up. Elevated circulating interleukin-18 after 
extreme altitude compared to follow-up levels, might have contributed to reduced 
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1   |   INTRODUCTION

A zest for mountain climbing has developed since expe-
ditions to high altitude started in the middle of the 19th 
century, and a concomitant interest in high altitude phys-
iology emerged. High altitude expeditions expose moun-
taineers to a hostile environment with low temperature, 
wind, physical and psychological stress, nutritional in-
sufficiencies, and hypobaric hypoxia. The severity of 
hypoxia influences alterations in body composition, like 
reduced body and skeletal muscle mass and induction 
of pro-inflammatory cytokines (Dünnwald et al., 2019; 
Lundeberg et al., 2018; Wilkins et al., 2015), and in our 
study mountaineers were exposed to severe hypoxia 
at extreme altitude. The effect of hypobaric hypoxia on 
the pulmonary circulation has been an object of inves-
tigation, mainly by use of echocardiography, showing 
elevated pulmonary artery pressure and increased right 
ventricular (RV) afterload during exposure to high alti-
tude (Boussuges et al., 2000a; Swenson, 2013; Wagner, 
2010). With regard to the morphology of the left side of 
the heart, smaller cavity, thicker walls and decreased left 
ventricular (LV) mass has been reported at Mount Everest 
Base Camp at 5300 m (Boussuges et al., 2000a; Holloway 
et al., 2011, 2014; Osculati et al., 2016; Reeves et al., 1985). 
The smaller LV cavity is compatible with findings of re-
duced end-diastolic and end-systolic volumes, whereas in 
the RV, both increased and unaltered end-diastolic vol-
ume have been found and might reflect hypoxia-induced 
pulmonary hypertension, dilatation and possible RV hy-
pertrophy (Boussuges et al., 2000a; Maufrais et al., 2019). 
The relation between LV and RV mass has not been ex-
amined before after extreme altitude, and whether pos-
sible changes are reversible at an early time point of six 
weeks follow-up. Hypoxia can induce circulating pro-
inflammatory cytokines (Dünnwald et al., 2019; Larsen 
et al., 2008; Lundeberg et al., 2018; Wilkins et al., 2015), 
which are prone to mediate loss of muscle mass (Li 
et al., 2019; Petersen et al., 2007; Takenaka et al., 2014). 
Whether such a mechanism could exert comparable ef-
fects on both the masses of the LV and skeletal muscle is 

not known. In the current study, 10 mountain climbers 
were studied prior and subsequent to a climb to extreme 
altitude. We hypothesized that extreme altitude and hy-
pobaric hypoxia induce an increase in RV mass, due to in-
creased afterload related to pulmonary hypertension, in 
contrast to a reduction in LV mass. We further proposed 
that a reduction in LV mass would correlate with a reduc-
tion in skeletal muscle mass. Magnetic resonance imag-
ing (MRI) and echocardiography were performed prior to 
ascent, 13.5 ± 1.5 days after peaking the mountain (post-
hypoxia), and six weeks and six months after expeditions 
to Mount Everest, (8847 m) or Dhaulagiri (8167 m). We 
were also able to examine possible alterations in RV and 
LV volume and function, and whether the changes were 
reversible within this time frame. Moreover, body mass 
composition and levels of pro-inflammatory cytokines, 
which can be induced by hypoxia, were measured.

2   |   MATERIALS AND METHODS

2.1  |  Participants and setting

Seventeen volunteers were invited to the study, of which 
7 were not able to fulfill the baseline or post-hypoxia 
investigations due to unforeseen, not health related, in-
cidents. Thus, our study was carried out on 10  healthy 
volunteers (7 male, 3 female, aged 44 ± 3 years) who par-
ticipated in climbs to extreme altitude above 6000  m in 
the Himalayas (Table 1). The participants were informed 
about the procedures and gave written informed consent. 
Baseline examinations were performed close to the depar-
ture. The participants traveled to Kathmandu in Nepal 
by flight, then to expedition start points for Mt Everest 
(8848 m) or Dhaulagiri (8167 m) in the Himalayas. One 
participant did not reach the peak due to an avalanche, 
still he reached extreme altitude of 6500 m. The expedi-
tions lasted 6–8  weeks, including ascent/decent and ac-
climatization. The participants spent two days descending 
from the peak of the mountain to Base Camp at 5300 m, 
stayed there for one day, before hiking to Kathmandu over 

muscle mass and diastolic dysfunction. In conclusion, the mass of the RV, possibly 
exposed to elevated afterload, was not changed after extreme altitude, whereas 
LV mass was reduced. The reduction in LV mass correlated with reduced skeletal 
muscle mass, indicating a common denominator, and elevated circulating inter-
leukin-18 might be a mechanism for reduced muscle mass after extreme altitude.
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the next two-three days. The participants were examined 
in Norway 13.5  ±  1.5  days after peaking the mountain 
(post-hypoxia), and at six weeks and six months follow 
up. The study was approved by the Norwegian Regional 
Committee for Medical and Health Research Ethics 
(#2011/587).

2.2  |  Cardiac magnetic resonance    
imaging

Left and right ventricular cardiac masses and volumes 
were assessed using cardiac MRI, in a 1.5 T Philips clini-
cal scanner (Philips Healthcare, Best, The Netherlands). 
Two and four chamber long-axis cine images were ac-
quired. Images with late gadolinium enhancement ob-
tained 15 min after contrast injection (gadolinium-DTPA 
469  mg/ml, 0.15  mmol/kg; Magnevist, Schering AG, 
Germany) (in seven of the ten climbers) were used to ana-
lyze possible myocardial necrosis (Limalanathan et al., 
2013). Two chamber short-axis images were obtained with 
8  mm thick slices covering the ventricles from the base 
to the apex. Thirty cardiac cycle phases were obtained. 
LV and RV endocardium and epicardium of the short-
axis cine images were manually contoured in a blinded 
manner, and reviewed by a second investigator, before 
the masses were calculated on a View Forum workstation 
(Philips Medical Systems, Best, The Netherlands). To as-
sess LV and RV myocardial function, the cine loops were 
analyzed with feature tracking using Segment v3.2 R8456 
(http://segme​nt.heibe​rg.se) (Heiberg et al., 2010). Briefly, 
the LV and RV endo- and epicardial borders of the short-
axis cine images were manually traced before an auto-
matic tissue tracking algorithm calculated peak LV and 
RV long-axis strain and strain rates. Key imaging param-
eters include an in-plane resolution of between 0.63 mm2 
and 1.13 mm2, slice thickness 8 mm and a temporal reso-
lution of 23–48 ms, depending on heart rate.

2.3  |  Echocardiography

LV and RV cardiac structure and function were assessed 
using two-dimensional, M-mode and Doppler echocar-
diography (Vivid 7 ultrasound scanner, GE Vingmed 
Ultrasound, Horten, Norway). Images were stored 
digitally, and analyzed (Echopac 202, GE Vingmed 
Ultrasound) by a single physician blinded to clinical and 
subject related information. Three cardiac cycles were re-
corded, at a minimum (Schwartz et al., 2014).

2.4  |  Body composition

Total lean body mass, fat mass, skeletal muscle mass in 
arms, legs and truncus, and total bone mineral content 
were assessed by dual x-ray absorptiometry (DXA) using 
a GE Lunar Prodygi with enCore v.16 (Madison, WI). 
Examinations were performed by skilled radiographers. 
Lean mass was defined as tissue without fat and bone min-
erals and is referred to as skeletal muscle mass. Total bone 
mineral content (TBMC) is the sum of bone, presented in 
grams (Bonnick & Lewis, 2013).

2.5  |  Blood samples

Ten milliliters of venous blood from the participants were 
collected in vacutainer tubes. Serum samples were allowed 
to clot for 60 min at room temperature, before separated by 
15 min centrifugation at 3500 rpm. Plasma samples were col-
lected in ethylenediaminetetraacetic acid (EDTA) tubes (BD, 
Plymouth, UK), stored on crushed ice immediately after sam-
pling and centrifuged at 3000 g for 20 min at 4°C. All samples 
were aliquoted and stored at −80°C, thawed only once, and 
analyzed immediately. Hematocrit and hemoglobin were 
measured in EDTA whole blood, and cholesterol, creati-
nine kinase (CK), CK-MB, troponin T (TnT) and pro-brain 

ID Sex Age
Height 
(cm)

Weight 
(kg)

Achieved 
height (m)

Oxygen 
supply (h)

1 Male 42 177 80.8 6500 0

2 Female 51 167 60.8 8167 60

3 Male 35 175 79.5 8167 20

4 Male 57 174 86.1 8848 60

5 Male 37 180 78.6 8848 60

6 Male 41 182 88.9 8848 20

7 Male 27 182 90.2 8848 60

8 Female 43 177 68.0 8848 40

9 Female 53 168 62.5 8848 60

10 Male 54 176 80.5 8848 60

T A B L E  1   Characteristics of 
participants of treks to extreme altitude

http://segment.heiberg.se
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natriuretic peptide (proBNP) were measured in serum. By 
commercially available ELISA-kits (Human interleukin (IL)-
18/IL-1F4 ELISA #7620, Human IL-6 Quantikine ELISA 
#D6050, and Human IFN-ɣ Quantikine ELISA #DIF50C, all 
from R&D systems, Minneapolis, MN), protein levels of IL-
18, IL-6, and IFN-ɣ were measured in serum. Each sample 
was assayed in duplicate on 96-well microplates according 
to the manufacturer's instructions, and detection carried out 
with a Hidex Microplate Reader (Hidex, Turku, Finland).

2.6  |  Statistical analysis

Data are presented as mean  ±  standard deviation (SD) 
if normally distributed, otherwise as median (range). 
Normality analyses were performed by GraphPad Prism 
(San Diego, CA). Differences between values at differ-
ent time points were tested using repeated measure-
ment ANOVA, followed by Dunnett's post hoc test for 
parametric statistics, or by an overall Friedman test, fol-
lowed by Dunn's test post hoc for non-parametric data.  	
 p-value < 0.05 was considered statistically significant.

3   |   RESULTS

3.1  |  Unchanged RV mass and reduced 
LV mass after extreme altitude

Exposure to extreme altitude and hypobaric hypoxia did 
not induce significant changes in RV mass (Figure 1a). 

In the LV, however, an 11.8 g (9.0%, p = 0.001) reduction 
in myocardial mass was observed after extreme altitude 
(Figure 1b). At six weeks and six months follow-up, LV 
mass was restored to baseline values (Figure 1b). CK-MB 
values were reduced by 27.3% post-hypoxia (p  =  0.039), 
corresponding with a reduction in LV myocardial mass 
(Figure 1c). There was no late gadolinium enhancement 
present after extreme altitude, indicating no signs of myo-
cardial necrosis. This finding corresponds with no signifi-
cant changes in Troponin T, a marker of cardiac muscle 
damage, post-hypoxia (Figure 1d).

3.2  |  Body composition after extreme   
altitude

Body weight was reduced by 7.2  kg (9.2%, p  =  0.001) post-
hypoxia (Figure 2a), with a 4.8% reduction in skeletal muscle 
mass (p = 0.001) (Figure 2b). A correlation in differences be-
tween baseline and post-hypoxia values for skeletal muscle 
mass and LV mass was found (r = 0.697, p = 0.013) (Figure 2c), 
suggesting a common denominator. The reduction in skeletal 
muscle mass was found in both arms (11.1%), legs (6.5%), and 
truncus (1.5%). The reduction in kilograms was most profound 
in the legs (1.2 kg). For truncus alone, the muscle mass reduc-
tion was not significant after extreme altitude. After 6 months, 
skeletal muscle mass showed no significant change from base-
line values (Figure 2b). In the blood, extreme altitude induced 
a 41.9% (p = 0.002) reduction in CK from baseline, which may 
reflect loss of muscle after hypoxic exposure (Figure 2d). A re-
duction of 2.7 kg (14.0%, p = 0.001) in fat mass was measured 

F I G U R E  1   Cardiac masses and 
biomarkers in mountain climbers before 
(baseline) and after extreme altitude. Post-
hyp, post-hypoxia; 6 wk, six weeks; 6 mo, 
six months; RV, right ventricular; LV, left 
ventricular; CK-MB, creatinine kinase-
MB. Overall test p-values; (a) p = 0.228, 
(b) p = 0.004, (c) p = 0.047, (d) p = 0.567Baseline Post-hyp 6 wk 6 mo
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after hypobaric hypoxia (Figure 2e), and a decrease in total 
cholesterol was found (16.2%, p = 0.001) in blood post-hypoxia 
(Figure 2f). The body weight and fat mass were not altered from 
baseline at six months follow-up, showing reversibility after ex-
treme altitude (Figure 2a and e). Overall test for TMBC showed 
p = 0.016. At baseline TMBC values were 3058 ± 485.8 g which 
decreased to 3020 ± 472.7 g (p = 0.037) after extreme altitude. 
In contrast to fat mass and skeletal muscle mass which were 
reversible after six months follow-up, TBMC was still de-
creased by 0.5% (p = 0.019) at six months follow-up to values 
of 3027 ± 496.7 g, showing slower recovery of bone mineral 
content. Taken together, extreme altitude induced reversible 
reductions in total body mass, skeletal muscle mass and fat 
mass. TBMC was still decreased at six months follow-up.

3.3  |  RV afterload and LV diastolic 
dysfunction after extreme altitude

RV hypertrophy was not found, and no significant changes in 
tricuspid annular plane systolic excursion (TAPSE) (14.6%, 

p = 0.056) (Figure 3a) were found post-hypoxia by echocar-
diography. MRI analysis showed no significantly altered RV 
longitudinal strain post-hypoxia (Figure 3b). RV EF, RV EDV 
and RV ESV were not significantly changed after extreme 
altitude, indicating preserved RV systolic function without 
dilatation after extreme altitude (Table 2). Moreover, velocity 
of blood flow across the pulmonary valve, PV Vmax was un-
altered post-hypoxia (Table 3), and no tricuspid regurgitation 
was detected (Table 3). In the LV, EDV decreased with 11.4% 
(p  =  0.011) post-hypoxia (Figure 3c). Peak LV myocardial 
relaxation, estimated by peak velocity of early diastolic mi-
tral annular motion (E′), was reduced by 13.4% (p = 0.011) 
post-hypoxia (Figure 3d), indicating diastolic dysfunction. 
The mitral inflow velocity (E)/E′ ratio was not significantly 
changed post-hypoxia (Table 3). Preserved LV systolic func-
tion after extreme altitude was shown by unchanged EF, CO, 
SV, and ESV (Table 2). ProBNP was not significantly changed 
post-hypoxia (p = 0.345) (Figure 3e). Taken together, exami-
nation of cardiac function showed no significant changes in 
measurements of RV afterload, whereas a LV diastolic dys-
function was detectable after extreme altitude.

F I G U R E  2   Body composition in 
mountain climbers before (baseline) 
and after extreme altitude. Post-hyp, 
post-hypoxia; 6 wk, six weeks; 6 mo, six 
months; LV, left ventricular. Overall test 
p-values; (a) p = 0.001, (b) p = 0.001,  	
(d) p = 0.001, (e) p = 0.001, (f) p = 0.001
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F I G U R E  3   Right ventricular 
afterload and left ventricular diastolic 
function in mountain climbers before 
(baseline) and after extreme altitude. 
Post-hyp, post-hypoxia; 6 wk, six weeks; 
6 mo, six months; TAPSE, tricuspid 
annular plane systolic excursion; RV, right 
ventricular; LV EDV, left ventricular end 
diastolic volume; E’, peak velocity of early 
diastolic mitral annular motion; proBNP, 
pro-brain natriuretic peptide. Overall test 
p-values; (a) p = 0.056, (b) p = 0.176, (c) 
p = 0.015, (d) p = 0.012, (e) p = 0.237
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T A B L E  2   Cardiac volumes and systolic function after extreme altitude assessed by magnetic resonance imaging

Baseline 
(n = 10)

Post-hyp 
(n = 10)

6 wk 
(n = 10)

6 mo 
(n = 9)

Overall 
test
p-value

Post hoc test
p-value

Baseline 
vs. 
post-hyp

Baseline 
vs. 6 wk

Baseline 
vs. 6 mo

Right ventricle

End diastolic volume (ml) 212 ± 59 203 ± 63 218 ± 55 191 ± 47 0.052 0.364 0.631 0.310

End systolic volume (ml) 100 ± 49 98 ± 41 102 ± 36 83 ± 31 0.326 0.986 0.954 0.365

Stroke volume (ml) 112 ± 15 105 ± 24 116 ± 22 105 ± 17 0.196 0.385 0.811 0.802

Ejection fraction (%) 55 ± 11 53 ± 5.4 54 ± 5.9 57 ± 5.4 0.419 0.627 0.934 0.844

Cardiac output (L/min) 6.9 ± 1.2 6.4 ± 1.6 6.8 ± 1.2 6.3 ± 1.2 0.594 0.584 0.992 0.575

Left ventricle

End systolic volume (ml) 72 ± 25 65 ± 17 72 ± 18 61 ± 18 0.102 0.210 0.999 0.148

Stroke volume (ml) 110 ± 20 96 ± 14 109 ± 27 107 ± 15 0.054 0.044 0.989 0.994

Ejection fraction (%) 61 ± 8 60 ± 3 60 ± 6 64 ± 6 0.246 0.910 0.899 0.050

Cardiac output (L/min) 6.8 ± 1.3 5.9 ± 1.1 6.4 ± 1.5 6.3 ± 0.9 0.284 0.140 0.747 0.633

Note: Data are presented as mean ± SD.
Abbreviations: 6 wk, six weeks; 6 mo, six months.
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3.4  |  Pro-inflammatory cytokines after 
extreme altitude

Circulating levels of IL-18 were elevated post-hypoxia 
compared to six months follow-up (Table 4). Levels of the 
pro-inflammatory cytokines IFN-ɣ and IL-6, both able to 
influence muscle mass and cardiac function, were not 
changed post-hypoxia (Table 4). Hematocrit and hemo-
globin were increased after extreme altitude (Table 4).

4   |   DISCUSSION

In this study we have shown that exposure to extreme al-
titude and hypobaric hypoxia leads to a reduction in LV 
mass and end-diastolic volume, while RV mass and vol-
umes were not significantly impacted. The reduction in 
LV mass correlated with a more modest decrease in skel-
etal muscle mass post-hypoxia. The changes in LV were 
reversed already after six weeks at sea level.

This is, to our knowledge, the first study comparing 
RV and LV mass and function by MRI and echocardiogra-
phy after extreme altitude and severe hypobaric hypoxia. 
Arterial oxygen saturation drops rapidly to approximately 
70% at 6000  m, and further ascendance leads to more 
profound desaturation, as reported by Grocott et al of a 
mean arterial oxygen value of 24.6  mmHg (3.28  kPa) 
at 8400  m on descent from the summit of Mt Everest 
(Grocott et al., 2010). Houston and co-workers simulated 
ascent of Mt Everest in an altitude chamber and assessed 
the development of hypoxia-induced pulmonary hyper-
tension by right heart catheterization (Groves et al., 1985). 
Pulmonary hypertension occurred from a simulated al-
titude of 3000  m (Groves et al., 1985). In the field, pul-
monary hypertension has been shown from an altitude 
of 2500 m (Bartsch & Swenson, 2013). With regard to RV 
systolic performance, the results are more diverging. In a 
field study at high altitude (5050 m) impaired RV systolic 
performance, shown by reduced RV strain, was observed 
(Stembridge et al., 1985). This is in contrast to a study after 

T A B L E  3   Cardiac function after extreme altitude assessed by echocardiography

Baseline 
(n = 10)

Post-hyp 
(n = 10)

6 wk 
(n = 10)

6 mo   
(n = 9)

Overall 
test
p-value

Post hoc test
p-value

Baseline 
vs. 
post-hyp

Baseline 
vs. 6 wk

Baseline 
vs. 6 mo

Right ventricle

PV Vmax (m/s) 0.9 (0.6, 1.2) 0.9 (0.7, 1.3) 0.9 (0.7, 1.2) 0.8 (0.6, 1.2) 0.173 0.999 0.999 0.281

TR Vmax (m/s) 1.5 ± 0.6 1.5 ± 0.5 1.6 ± 0.4 1.6 ± 0.5 0.614 0.963 0.434 0.835

TR max PG 9.9 ± 6.9 10.2 ± 7.2 10.8 ± 5.6 10.8 ± 6.2 0.738 0.992 0.585 0.969

Right atrial area (cm2) 17.0 ± 3.2 17.3 ± 3.2 17.9 ± 2.5 18.3 ± 3.6 0.673 0.989 0.741 0.564

Left ventricle

Left atrial diameter (cm) 3.7 ± 0.4 3.4 ± 0.5 3.5 ± 0.4 3.6 ± 0.5 0.076 0.038 0.587 0.937

Left atrial area (cm2) 17.2 ± 3.3 16.2 ± 2.5 16.9 ± 1.8 18.1 ± 2.6 0.183 0.455 0.957 0.618

MV E velocity (m/s) 0.6 ± 0.1 0.6 ± 0.1 0.7 ± 0.2 0.6 ± 0.1 0.020 0.070 0.669 0.999

MV A velocity (m/s) 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.012 0.273 0.133 0.968

MV E/A ratio 1.3 ± 0.2 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 0.889 0.842 0.828 0.948

MV Dec T (ms) 273.1 ± 40.6 271.3 ± 64.8 265.3 ± 48.6 263.4 ± 55.5 0.883 0.994 0.917 0.910

MV Dec slope (m/s2) 2.5 ± 0.7 2.2 ± 0.8 2.7 ± 1.0 2.4 ± 0.7 0.369 0.672 0.724 0.910

MV E velocity/E′ 5.9 ± 1.2 6.1 ± 1.5 6.3 ± 1.7 6.2 ± 0.7 0.182 0.865 0.338 0.114

Long. strain 4 chamber 17.7 ± 1.7 17.6 ± 2.3 17.8 ± 1.8 18.2 ± 3.5 0.889 0.996 0.998 0.885

Long. strain 2 chamber 19.6 ± 2.0 20.0 ± 2.3 20.3 ± 1.8 19.2 ± 2.2 0.596 0.906 0.689 0.963

Circumferential strain MV 18.7 ± 3.8 18.7 ± 4.1 18.4 ± 4.3 20.0 ± 3.2 0.586 0.999 0.993 0.589

MAPSE lateral (cm) 1.5 ± 0.2 1.5 ± 0.2 1.4 ± 0.3 1.5 ± 0.2 0.688 0.735 0.508 0.903

MAPSE medial (cm) 1.3 ± 0.3 1.3 ± 0.2 1.4 ± 0.3 1.3 ± 0.1 0.237 0.967 0.268 0.922

Note: Data are presented as mean ± SD or median (range).
Abbreviations: 6 mo, six months; PV, pulmonary valve; 6 wk, six weeks; MAPSE, mitral annular plane systolic excursion; MV, mitral valve; PG, pressure 
gradient; TR, tricuspid regurgitation.
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one hour in normobaric hypoxia (FiO2 12.5%) in which 
an enhanced RV systolic function, evident by increased 
TAPSE, was demonstrated (Kjaergaard et al., 2007). In our 
study, no significant changes in RV function, including 
longitudinal strain, were detectable two weeks after hypo-
baric hypoxia. It is well established that prolonged pulmo-
nary hypertension causes RV hypertrophy due to elevated 
afterload (Swenson, 2013). By using magnetic resonance 
imaging, the gold standard for examination of cardiac 
mass and volumes, we found no significant changes in RV 
mass after exposure to extreme altitude. Thus, an expected 
RV hypertrophy post-hypoxia did not materialize. The un-
altered RV mass could indicate that other mechanisms, 
like those inducing reduced LV mass, may counteract the 
hypertrophic stimulus of elevated afterload.

We report a 9% reduction in LV mass after extreme alti-
tude and a more modest decrease of 4.8% in skeletal mus-
cle mass. Interestingly, a significant correlation between 
the reduction in LV mass and skeletal muscle mass was 
found post-hypoxia. Holloway and co-workers also docu-
mented reduced LV mass by MRI, whereas skeletal mus-
cle mass was unaltered after their expedition to Mt Everest 
Base Camp (5300  m) (Holloway et al., 2011). They put 
forward that the hypoxia-induced reduction in LV mass 
can be an autophagic process, analogous to wasting of 
skeletal muscle mass or reduced protein synthesis, mech-
anisms which might explain our findings of reduced LV 
and skeletal muscle mass after extreme altitude (Holloway 
et al., 2011, 2014; Howald & Hoppeler, 2003). Other pos-
sible mechanisms for reduction in LV and skeletal muscle 
mass are muscle deconditioning or detraining related to 
less activity, like physical inactivity during acclimatization 
and lower workloads at extreme altitude (Ferrando et al., 
1996; Pedlar et al., 1985; Perhonen et al., 1985). There 
was no late gadolinium enhancement present at any time 

point, indicating that there was no myocardial necrosis 
after extreme altitude. Hypoxia, affecting both the LV and 
RV, can induce apoptosis of cardiomyocytes via endoplas-
matic reticulum stress (Luo et al., 2015). High altitude 
and hypobaric hypoxia leading to reduced LV mass may 
have similar effects on the RV. Hence, processes of car-
diac muscle wasting, may occur in LV and RV, whereas 
in the RV hypertrophic stimuli due to possible elevated 
afterload may result in our finding of unaltered RV mass 
post-hypoxia.

Skeletal muscle wasting seems to be related to the ex-
tent of altitude and ensues predominantly at altitudes 
above 5000  m (D'Hulst & Deldicque, 1985). In fact, the 
severity of hypoxia, which increases with altitude, cor-
relates negatively with percentage decrease in muscle 
fiber area, suggesting that hypoxia is important in the re-
duction of muscle mass after a hypoxic sojourn (D'Hulst & 
Deldicque, 1985). Thus, the discrepancy in loss of skeletal 
muscle mass between studies at Mt Everest Base Camp 
(Holloway et al., 2011, 2014) and our study at extreme 
altitude can be due to different levels of altitude and hy-
poxic dose. Interestingly, the few studies which have in-
vestigated skeletal muscle mass and LV mass after high 
altitude, show no reduction in skeletal muscle mass post-
hypoxia (Holloway et al., 2011, 2014), whereas LV mass 
was reduced, indicating a LV vulnerability at both high 
and extreme altitudes. In addition to hypoxia, the low 
barometric pressure at Mt Everest summit (253 mmHg or 
1/3 of barometric pressure at sea level) can reduce intra-
thoracic pressure due to the decreased gravitational com-
pression. Effects of reduced gravity and loading on the LV 
have been shown during spaceflight and horizontal bed 
rest for six weeks, where a gravity of nearly zero or hori-
zontal position in bed induced a LV atrophy of 8% in spite 
of continuous oxygen supply in the spacecraft (Henry 

T A B L E  4   Pro-inflammatory cytokines, hematocrit, and hemoglobin after extreme altitude

Baseline 
(n = 10)

Post-hyp 
(n = 10) 6 wk (n = 10) 6 mo (n = 10)

Overall 
test
p-value

Post hoc test
p-value

Baseline vs. 
post-hyp

Baseline   
vs. 6 wk

Baseline   
vs. 6 mo

IL-18 (pg/ml) 209.4  	
(94.5, 342.3)

278.2  	
(54.0, 862.8)*

164.0  	
(34.3, 320.0)

173.0  	
(41.0, 246.0)

0.006 0.865 0.999 0.267

IFN-ɣ (pg/ml) 15.4  	
(14.5, 17.0)

17.4  	
(14.7, 19.4)

15.3  	
(14.3, 21.1)

15.7  	
(14.4, 37.2)

0.208 0.301 0.999 0.999

IL-6 (pg/ml) 3.2  	
(2.5, 10.9)

4.4  	
(2.8, 22.1)

3.3  	
(2.5, 11.0)

3.4  	
(1.7, 36.5)

0.269 0.204 0.999 0.999

Hematocrit 0.43 ± 0.02 0.48 ± 0.04 0.44 ± 0.03 0.43 ± 0.03 0.001 0.001 0.648 0.995

Hemoglobin 
(g/dl)

14.6 ± 1.00 16.1 ± 1.02 14.6 ± 1.08 14.6 ± 1.25 0.001 0.001 0.999 0.997

Note: Data are presented as mean ± SD or median (range).
*p = 0.003, post-hypoxia vs. 6 mo.
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et al., 1974; Perhonen et al., 1985). Hence, lower baromet-
ric pressure, occurring at Mt Everest summit, may have 
contributed to the reduced LV mass observed in the cur-
rent study, in synergy with hypoxia. Other processes in the 
body, such as bone mineralization, are also hampered in 
low atmospheric pressure (Penttinen et al., 1972; Tanaka 
et al., 1992). Thus, reduced atmospheric pressure can, at 
least partly in our study, explain both reduced total bone 
mineral content and LV mass after extreme altitude.

LV end-diastolic volume was reduced by 11% post-
hypoxia, which has been related to the well-known re-
duction in plasma volume at high altitude, that also 
contributes to the observed increase in hemoglobin and 
hematocrit values, together with hypoxia-induced eryth-
rocytosis (Pugh, 1964). Reduction in LV EDV has been 
observed by others (Fowles & Hultgren, 1983; Maufrais 
et al., 2019; Osculati et al., 2016; Stembridge et al., 1985), 
as well, and it was interesting to observe that this reduc-
tion was still evident nearly two weeks after descent. The 
decrease in LV volume and mass were reversed to baseline 
values at six weeks follow-up, showing earlier restoration 
of LV mass than previously shown (Holloway et al., 2011). 
In our study, reduced E’ indicates impaired left heart myo-
cardial relaxation post-hypoxia. Impairment of the early 
phase of diastole has been shown at high altitude and 
during experimental hypobaric hypoxia (Huez et al., 2005; 
Kjaergaard et al., 2006; Osculati et al., 2016; Reeves et al., 
1985). Reduction in LV preload post-hypoxia, evident by 
reduced LV EDV, may decrease LV early filling (Boussuges 
et al., 2000b). Another possible mechanism for impaired 
LV relaxation is diastolic chamber stiffness due to reduced 
energy supply in hypoxia (Gomez & Mink, 1992). In the 
cardiomyocytes, the rate of relaxation is primarily regu-
lated by removal of cytosolic Ca2+ by the activity of the sar-
coendoplasmic reticulum Ca2+  ATPase pump  (SERCA), 
an ATP consuming process. Reduced cardiac phospho-
creatine/ATP ratio was found after expedition to high al-
titude and in experimental hypoxia, which can decrease 
energy available for the SERCA pump and lead to dia-
stolic dysfunction (Holloway et al., 2011; Portman et al., 
1996). The SERCA pump activity is regulated by phos-
phorylation of phospholamban, and in animal studies 
we have previously shown that hypoxia-induced IL-18, 
leading to reduced phosphorylation of phospholamban, 
can inhibit SERCA activity and impair myocardial relax-
ation (Larsen et al., 2006, 2008). In this study, circulating 
IL-18 was elevated post-hypoxia compared to follow-up, 
and IL-18-mediated development of diastolic dysfunc-
tion after hypobaric hypoxia is a possibility. Interestingly, 
increased circulating levels of IL-18  have been found in 
patients with decreased skeletal muscle mass, including 
sarcopenia, heart failure, and chronic obstructive pulmo-
nary disease (COPD) (Imaoka et al., 2008; Li et al., 2019; 

Petersen et al., 2007; Seta et al., 2000). The skeletal muscle 
alterations in COPD, heart failure, and deconditioning/
detraining are similar, including atrophy, apoptosis, and 
altered fiber type distribution to a faster phenotype (Rehn 
et al., 2012). Experimentally, overproduction of IL-18 in 
transgenic mice induced loss of muscle weight (Takenaka 
et al., 2014), indicating that IL-18 might be a contributing 
mechanism for muscle loss in our study, as well.

A limitation of our study is the modest sample size 
which may conceal possible differences between values ob-
tained at baseline and at the various time points. Strengths 
of the study are that both cardiac MRI and echocardiog-
raphy are performed at four time points, before and after 
climbs to extreme altitude. Simultaneous examination of 
body composition and blood samples enabled comparison 
of alterations in the heart with changes in other organs as 
well as levels of circulating cytokines.

In conclusion, climbing to extreme altitude resulted in 
diverging effects on RV and LV mass, being unaltered and 
reduced, respectively. The unaltered RV mass indicates 
counteracting stimuli on the RV myocardium; hypertro-
phy related to increased pulmonary arterial pressure and 
afterload, and myocardial wasting, as observed in the LV, 
induced by hypobaric hypoxia. Reduction in LV mass 
correlated with loss of skeletal muscle mass, both being 
reversed to baseline values after 6  weeks at sea level. 
Elevated levels of IL-18 might be studied further as a com-
mon contributing mechanism for cardiac remodelling 
and loss of muscle mass at extreme altitude (Lankford & 
Swenson, 2014).
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