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Abstract

Metformin is a biguanide drug that is widely used in the treatment of diabetes. Epidemiologi-

cal studies have indicated that metformin exhibits anti-cancer activity. However, the molecu-

lar mechanisms underlying this activity currently remain unclear. We hypothesized that

metformin is cytotoxic in a tumor-specific environment such as glucose deprivation and/or

low oxygen (O2) tension. We herein demonstrated that metformin was highly cytotoxic

under glucose-depleted, but not hypoxic (2% O2) conditions. In order to elucidate the under-

lying mechanisms of this selective cytotoxicity, we treated exposed DNA repair-deficient

chicken DT40 cells with metformin under glucose-depleted conditions and measured cellu-

lar sensitivity. Under glucose-depleted conditions, metformin specifically killed fancc and

fancl cells that were deficient in FANCC and FANCL proteins, respectively, which are

involved in DNA interstrand cross-link repair. An analysis of chromosomal aberrations in

mitotic chromosome spreads revealed that a clinically relevant concentration of metformin

induced DNA double-strand breaks (DSBs) in fancc and fancl cells under glucose-depleted

conditions. In summary, metformin induced DNA damage under glucose-depleted condi-

tions and selectively killed cells. This metformin-mediated selective toxicity may suppress

the growth of malignant tumors that are intrinsically deprived of glucose.

Introduction

Metformin (1, 1-dimetyhlbiganide) is a biguanide drug that is used in the treatment of type II

diabetes. Metformin primarily acts in the liver to inhibit gluconeogenesis by reducing hyper-

glycemia and associated elevations in circulating insulin [1–3]. It is also potentially beneficial

for cancer prevention. A number of retrospective studies established a relationship between

PLOS ONE | https://doi.org/10.1371/journal.pone.0185141 September 19, 2017 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kadoda K, Moriwaki T, Tsuda M,

Sasanuma H, Ishiai M, Takata M, et al. (2017)

Selective cytotoxicity of the anti-diabetic drug,

metformin, in glucose-deprived chicken DT40 cells.

PLoS ONE 12(9): e0185141. https://doi.org/

10.1371/journal.pone.0185141

Editor: Ferenc Gallyas, Jr., University of PECS

Medical School, HUNGARY

Received: May 28, 2017

Accepted: September 5, 2017

Published: September 19, 2017

Copyright: © 2017 Kadoda et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by JSPS

KEKENHI grant number 15K00537 to KT, http://

www.jsps.go.jp/english/e-grants/index.html; and

JSPS KEKENHI grant number 15H04295 to SM,

http://www.jsps.go.jp/english/e-grants/index.html.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185141
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185141&domain=pdf&date_stamp=2017-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185141&domain=pdf&date_stamp=2017-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185141&domain=pdf&date_stamp=2017-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185141&domain=pdf&date_stamp=2017-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185141&domain=pdf&date_stamp=2017-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185141&domain=pdf&date_stamp=2017-09-19
https://doi.org/10.1371/journal.pone.0185141
https://doi.org/10.1371/journal.pone.0185141
http://creativecommons.org/licenses/by/4.0/
http://www.jsps.go.jp/english/e-grants/index.html
http://www.jsps.go.jp/english/e-grants/index.html
http://www.jsps.go.jp/english/e-grants/index.html


the use of metformin and improved cancer-related mortality. Diabetic patients treated with

metformin displayed a 31% lower overall relative risk of cancer and cancer-related mortality

than those treated with other therapeutics [4]. Furthermore, metformin has been shown to

exhibit selective cytotoxicity during glucose deprivation [5].

Cancer cells in solid tumors are surrounded by an extremely hostile environment that is

characterized by glucose deprivation and low oxygen tension (hypoxia) due to compromised

vascularization from surrounding normal tissues into the tumor mass [6–8]. This specific

microenvironment of tumors represents an attractive target for the development of new anti-

tumor drugs. Thus, the selective cytotoxic effects of metformin on malignant cells, but not nor-

mal cells may be attributable to the toxicity associated with the cancer-specific microenviron-

ment. In addition, the microenvironment of tumors may modify the activities of other drugs.

We previously reported that tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide), which is

a well-known hypoxic cytotoxic drug, preferentially induced lethal DNA damage under hyp-

oxic conditions [9]. Thus, the selective toxicity of metformin may be attributable to the tumor-

specific microenvironment.

We herein hypothesized that metformin preferentially induces DNA damage under glu-

cose-depleted and/or hypoxic conditions and selectively kills cells. In order to test this hypoth-

esis, we used DNA repair-deficient chicken DT40 cells and examined their sensitivity to

metformin. Chicken DT40 cells derived from B lymphocytes exhibit higher gene-targeting effi-

ciency and have provided a unique opportunity for detecting the genotoxicity of chemical

compounds using a reverse genetic approach [10]. Since these mutant cell lines are completely

isogenic to each other and the parental wild-type cell, there are no concerns regarding the

influence of genetic bias on the results obtained.

In the present study, we found that metformin was highly cytotoxic against wild-type cells

under glucose-depleted, but not hypoxic (2% O2) conditions. Furthermore, under glucose-

depleted conditions, metformin specifically killed fancc and fancl cells deficient in Fanconi

anemia (FA)-related FANCC and FANCL proteins, respectively, which are involved in DNA

interstrand cross-link (ICL) repair. Furthermore, chromosome breakages were efficiently pro-

duced by metformin in fancc and fancl, but not wild-type cells under glucose-depleted condi-

tions. The present results suggest that therapeutic concentrations of metformin induce DNA

double-strand breaks (DSBs) in cancer cells in a low glucose microenvironment.

Materials and methods

Cell lines and cell culture

The gene-disrupted DT40 cells used in this study were generated in the Laboratory of Radia-

tion Genetics, Graduate School of Medicine, Kyoto University and the Laboratory of DNA

Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate

School of Medicine, Kyoto University (Kyoto, Japan). The genotypes of all mutant clones were

confirmed by Southern blotting, PCR, and Western blotting. Cells were cultured at 39˚C with

5% CO2 in RPMI 1640 medium supplemented 10% fetal bovine serum, 1% chicken serum, 100

U/ml penicillin, 100 U/ml streptomycin, 50 μM β-mercaptoethanol, and 2 mM L-glutamine

[11]. Regarding glucose deprivation, cells were incubated in glucose-deprived RPMI 1640

medium (Wako Pure Chemical, Japan) supplemented as described above.

Measurement of viability following exposure to chemicals

Colony formation was measured as described previously [12]. Briefly, serially diluted cells

were plated in triplicate on 60-mm dishes with 8 ml of DMEM/F-12 containing 1.5% methyl-

cellulose, 2 mM L-glutamine, 15% of FCS, and 1.5% of chicken serum with or without different
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concentrations of metformin. After a 24-h incubation, serially diluted cells were plated in trip-

licate on methylcellulose containing DMEM/F-12 medium. In each experiment, colonies were

counted after a 7-day incubation at 39˚C. Relative viabilities were measured as N/N0, where N

is the mean number of colonies treated with drugs, and N0 is that of non-treated controls. We

obtained survival curves from a three-parameter logistic curve using the package dose

response curve in R [13].

Measurement of chromosomal aberrations

An analysis of chromosomal aberrations was performed as described previously [11]. Briefly,

cells were treated for 2.5 h with medium containing 0.1 μg/ml colcemid (Gibco). Harvested

cells were incubated in 1 ml of 75 mM KCl at room temperature for 15 min and fixed in a 5-ml

freshly-prepared 3:1 mixture of methanol-acetic acid. The cell suspension was dropped onto a

slide, which was dried. Slides were stained with 5% Giemsa solution (pH6.4, Nacalai Tesque,

Japan) for 8 min. Data are presented as macro chromosomal aberrations per 50 meta-phase

spreads.

Statistical analysis

Three independent experiments were performed for each data set, unless stated otherwise. The

results obtained are expressed as the mean ± SD, unless stated otherwise. The significance of

differences was examined using the Student’s t-test, and p values of<0.05 were considered to

be significant. A multiple-comparison one-way ANOVA was performed using Tukey’s test.

Results

Metformin induces DNA damage under glucose-depleted conditions

In order to investigate whether metformin exerts cytotoxicity under glucose-depleted and/or

low oxygen tension (2% O2) conditions, we measured the cellular sensitivity of wild-type

DT40 cells to metformin. Cells were treated with various concentrations of metformin in glu-

cose-free media or under 2% O2 in complete media for 24 h. After the treatment, cells were

grown in complete media and cellular sensitivity was measured using a colony formation

assay. Metformin was highly cytotoxic under glucose-depleted, but not hypoxic conditions

(Fig 1A). This result is consistent with previous findings showing the selective cytotoxicity of

metformin when combined with the hypoglycemia-mimicking agent 2-deoxy-D-glucose

[5,14]. Thus, glucose deprivation augments the cytotoxic effects of metformin.

FA-related proteins are involved in the repair of DNA damage induced by

metformin

In an attempt to elucidate whether metformin induces DNA damage under glucose-depleted

conditions, we measured the cytotoxic effects of metformin on a panel of DNA repair-deficient

DT40 cells. The DNA repair-deficient mutants used in the present study covered homologous

recombination repair (HR), non-homologous end joining (NHEJ), base excision repair (BER),

nucleotide excision repair (NER), ICL repair (the FA pathway), the repair of DNA-topoisom-

erase (Topo) crosslinks, and translesion DNA synthesis (TLS) (Listed in S1 Table). These cells

were incubated with metformin in glucose-free media for 24 h, and subsequently incubated in

complete media to measure cell survival using a colony formation assay. The concentration of

metformin that killed cells to the level of 50% of untreated cells (IC50) was assessed for each

mutant (Fig 1B). fancc cells deficient in FANCC showed increased sensitivity to metformin
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under glucose-depleted conditions. FANCC is a component of the core FA complex that is

required for the DNA damage-induced mono-ubiquitination of FAND2 and FANCI.

In order to assess the involvement of FA proteins in counteracting the cytotoxic effects of

metformin in more detail, a panel of DT40 cells defective in the FA repair pathway (S2 Table)

was treated with metformin in glucose-free media for 24 h and subsequently incubated in

complete media to measure cell survival using a colony formation assay. Fig 2A shows the IC50

of cells deficient in the FA repair pathway. Among the cell lines deficient in the FA repair path-

way, one HR-deficient cell line (rad51c) and three FA-deficient cell lines (fancc, fancl, and

fanci) were hypersensitive to metformin. Other HR-deficient cell lines (brca1 and brca2) and

FA-deficient cell lines (fancg, fance, fancj, fancm, and fancd2) were not sensitive to metformin.

The expression of GFP-FANCC and GFP-FANCL in fancc and fancl cells, respectively,

restored resistance to metformin (Fig 2B), confirming that FANCC and FANCL were respon-

sible for increased sensitivity in the absence of glucose.

The FA repair pathway is the main repair pathway of ICLs produced by crosslinking agents

such as cis-platinum (CDDP) and mitomycin C. In order to identify the type of DNA damage

induced by metformin under glucose-depleted conditions, DT40 cells deficient in the FA

repair pathway were treated with CDDP and IC50 values were assessed (S1 Fig). All nine FA

cell lines tested were sensitive to CDDP. Among fanc cells, the orders of IC50 values for CDDP

Fig 1. Toxicity of metformin and comparison of cellular sensitivities to metformin among various DNA repair-deficient DT40 cell lines under

glucose-depleted conditions. (A) Wild-type cells were treated with the indicated doses of metformin for 24 h in complete medium, no glucose medium,

or the 2% O2 hypoxic condition with complete medium, and colonies formed on methylcellulose-containing complete media under normal conditions for 7

days. All data represent the mean ± S.D. normalized to cells not treated with metformin from three independent experiments. In each experiment, relative

viabilities were measured as N/N0 where N is the mean number of colonies at each dose of metformin in treated cells and N0 is the mean number of

colonies in untreated controls; (B) Histograms of the IC50 values of metformin in the wild-type and various DNA repair-deficient cell lines. Cells were

treated with metformin under glucose-depleted conditions for 24 h and colonies formed on complete media. All data represent IC50 values ± 95%

confidence intervals normalized to cells not treated with metformin from three independent experiments. In each experiment, relative viabilities were

measured as N/N0 where N is the mean number of colonies at each dose in metformin-treated cells and N0 is the mean number of colonies in untreated

controls. Abbreviations: Wt, wild type; NER, nucleotide excision repair; BER, base excision repair; Topo-DNA, repair of DNA-topoisomerase (Topo)

crosslinks; TLS, translation DNA synthesis; NHEJ, non-homologous end joining; HR, homologous recombination repair; FA, FA pathway (ICL repair).

https://doi.org/10.1371/journal.pone.0185141.g001
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and metformin were as follows:

IC50 ðCDDPÞ : wt > e ¼ m ¼ g > 100 > j ¼ d2 ¼ i ¼ c ¼ l

IC50 ðmetforminÞ : g > e > j ¼ m > d2 ¼ wt ¼ 100 > i > l > c

Fig 2. FA pathway-related proteins involved in removing DNA lesions induced by metformin. (A) Histograms of the IC50 values of

metformin in wild-type cells and cell lines deficient in various FANC-related proteins. Cells were treated with metformin under glucose-

depleted conditions for 24 h and colonies formed on complete media. All data represent IC50 values ± 95% confidence intervals; (B) The

toxicity of metformin to cells deficient in the FANCC or FANCL protein and deficient cell lines stably expressing the indicated transgenes.

Data represent the mean ± S.D.; (C) The toxicity of metformin to cells deficient in the TDP1 or PARP1 protein and cells simultaneously

deficient in both TDP1 and PARP1 proteins. Data represent the means ±S.D.

https://doi.org/10.1371/journal.pone.0185141.g002
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Although only three FA cell lines (fancc, fancl, and fanci) were sensitive to metformin, they

were also highly sensitive to CDDP. Collectively, these results suggest that although metformin

induces DNA damage that is repaired by the FA pathway, this DNA damage may not be

canonical ICLs such as those induced by CDDP. Alternatively, the efficacy of ICL introduction

by metformin under glucose-depleted conditions was less than that by CDDP, obviating the

apparent need for some FA factors.

DT40 tdp cells deficient in tyrosyl-DNA phosphodiesterase 1 (TDP1) were moderately sensi-

tive to metformin under glucose-depleted conditions (Fig 1B). TDP1 is involved in the repair of

Topo 1, which is covalently trapped at the 3´ end of DNA, thereby contributing to the repair of

DNA-protein crosslinks (DPCs) [15]. We also found that parp1 cells deficient in poly(ADP-

ribose) ribose polymerase 1 (PARP1) were moderately sensitive to metformin under glucose-

depleted conditions (Fig 2C). Furthermore, the tdp1 parp1 double mutant showed an epistatic

profile with the corresponding single mutant (Fig 2C). PARP1 catalyzes the addition of poly

(ADP-ribose) to various proteins. A previous study reported that TDP1 and PARP1 were epistatic

for the repair of trapped Topo1-DNA crosslinks [16]. PARP1 was shown to bind the regulatory

domain of TDP1, and this coupling stimulated the excision of trapped Topo1-DNA crosslinks by

the phosphodiesterase activity of TDP1. These findings clearly demonstrated that PARP1 was a

key component for the repair of Topo1-trapped DNA crosslinks [16]. Thus, our results obtained

with tdp1 and parp1 cells (Fig 2C) suggest that metformin produces DPC-type DNA damage (i.e.,

trapped Topo 1-DNA crosslinks) under glucose-depleted conditions together with ICL-type

DNA damage, which is repaired by the FA pathway. Future studies are needed in order to charac-

terize the DNA lesion(s) induced by metformin under glucose-depleted conditions.

A therapeutic concentration of metformin induces chromosomal

aberrations in glucose-depleted fancc and fancl cells

The hypersensitivities of repair-deficient DT40 cells to metformin (Fig 1B) suggest that metfor-

min induces DNA damage under specific physiological conditions, particularly cells deficient in

the FA pathway. Previous studies reported that defects in FA proteins markedly increased chro-

mosomal breaks in mitotic chromosome spreads following the exposure of cells to crosslinking

agents [17–19]. Thus, we analyzed chromosomal breaks in mitotic chromosome spreads follow-

ing exposure to metformin. Under glucose-depleted conditions, metformin at 13 μM induced

chromosome breakages in fancc and fancl DT40 cells, but not wild-type cells (Fig 3A). Further-

more, the expression of GFP-FANCC or GFP-FANCL in fancc or fancl cells reversed the level of

chromosomal breakages to that of wild-type cells (Fig 3A), confirming that FANCC and

FANCL proteins are required for the repair of DNA damage induced by metformin under glu-

cose-depleted conditions.

Metformin has been widely used to treat type 2 diabetes with proven safety for clinical use. The

serum concentration of metformin during clinical treatments is reported to be between 0.1 and

20 μM [20]. Therefore, we treated fancc and fancl DT40 cells with lower concentrations of metfor-

min in glucose-free media and analyzed mitotic chromosomal aberrations. As shown in Fig 3B,

chromosomal breakages were hardly detected at 0.013 μM of metformin in glucose-depleted fancc
and fancl cells. However, chromosomal breakages were detected at 0.13 μM of metformin in glu-

cose-depleted fancc and fancl cells. Thus, clinically relevant concentrations of metformin produce

chromosomal breakages in the FA pathway-deficient genetic background, killing cells.

Discussion

Previous studies showed that chronical exposure at high concentrations of metformin may be

toxic at physiological concentrations of glucose [5,14]. However, the toxic effects of therapeutic
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concentrations of metformin remain unclear. We herein provide compelling evidence for the

cytotoxicity/genotoxicity of metformin in the absence of glucose. Metformin was highly cyto-

toxic to DNA repair-deficient fancc and fancl cells and moderately cytotoxic to fanci cells in

the absence of glucose. Moreover, metformin induced mitotic chromosomal breaks in fancc
and fancl cells, but not wild-type cells under glucose-depleted conditions. These results indi-

cate that metformin is cytotoxic and genotoxic under specific conditions, namely, glucose-free

medium. The lack of genotoxicity of metformin has been demonstrated in clinical trials with

diabetic patients and healthy control groups. However, the mechanisms by which metformin

acquires selective cytotoxicity/genotoxicity in the absence of glucose currently remain unclear.

Fig 3. Induction of chromosomal breakages by metformin under glucose-depleted conditions. (A)

Wild-type cells, cell lines deficient in FANCC or FANCL, and reconstituted cells were incubated with or without

13 μM metformin for 24 h under glucose-depleted conditions; (B) Wild-type cells and cell lines deficient in

FANCC or FANCL were incubated with the indicated doses of metformin for 24 h in glucose-depleted or

-containing medium. We analyzed 50 metaphase nuclei, and quantified the number of chromosomal

aberrations per cell (Y-axis). Data represent the mean ± S.E. Asterisks (*) indicate p < 0.05 by a multiple

comparison one-way ANOVA (Tukey’s test). N.S.: not significant (p� 0.05).

https://doi.org/10.1371/journal.pone.0185141.g003
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We herein showed that all nine FA-deficient cell lines tested were sensitive to CDDP, whereas

three out of the nine FA-deficient cell lines were sensitive to metformin (Fig 2A and S1 Fig).

Thus, metformin may not generate typical ICLs such as those generated by CDDP and mito-

mycin C and repaired by the canonical FA-repair pathway. For example, previous studies

reported that psoralen-induced ICLs were repaired by a DNA glycosylase mediated-pathway

that is independent of the canonical FA repair pathway [21,22]. In the case of the DNA glyco-

sylase-mediated pathway, the generation of apurinic/apurimidinic sites by the action of DNA

glycosylases may trigger a canonical base excision repair (BER) response involving DNA poly-

meraseβ. We speculated that the moderate sensitivity observed in polβ cells was partially due

to the involvement of BER in the repair of DNA lesions formed by metformin (Fig 1B).

In addition, DT40 cells deficient in either TDP1 or PARP1 showed moderate sensitivity to

metformin under glucose-depleted conditions (Fig 2C). These DNA repair factors are involved

in the removal of the abortive topoisomerase 1 covalently associated with the 3´-end of single-

strand breaks [15,16]. Thus, metformin may induce DPC-type DNA damage (i.e., trapped

Topo 1-DNA crosslinks) together with ICL-type DNA damage, which is repaired by the FA

pathway under glucose-depleted conditions. For example, endogenous aldehydes generate a

number of lethal crosslink products such as ICLs and DPCs [23–26].

In summary, we propose that metformin induces non-canonical ICLs and trapped Topo1

DPCs when glucose is depleted. Since cells present in malignant tumors are deprived of glu-

cose [27], the cytotoxicity/genotoxicity of metformin may play an important role in suppress-

ing the growth of malignant tumors. During the preparation of this manuscript, Grompe’s

group reported that metformin delayed the formation of tumors in FA-deficient mice [28]. It

is tempting to speculate that metformin selectively killed glucose-deprived tumors in these

FA-deficient mice and exhibited protective activity against tumor formation in these mice.

Future studies need to identify the endogenous metabolic products that are cytotoxic and

genotoxic and induced by metformin under glucose-depleted conditions. Glucose deprivation

causes a marked shift in metabolism and induces oxidative stress, the activation of oncogenes

such as c-Myc, and several signaling pathways [27]. Thus, it is not unexpected that metformin,

directly and/or indirectly, induces different types of DNA damage in cells with physiological

concentrations of glucose. In addition, we successfully detected cytotoxicity/genotoxicity asso-

ciated with therapeutic concentrations of metformin by measuring cell viability and mitotic

chromosomal breaks following the exposure of DT40 cells deficient in the FA pathway to met-

formin. Even though the cytotoxicity of metformin to wild-type cells under glucose-depleted

conditions is not significant, its administration to patients with a FA-deficient background or

its combined use with anti-tumor drugs, particularly ICL inducers such as CDDP, needs to be

carefully considered [29–31].

Supporting information

S1 Table. DT40 isogenic DNA repair mutant cells used in this study.

(DOCX)

S2 Table. DT40 cells defective in FA repair pathway cell lines used in this study.

(DOCX)

S1 Fig. Histograms of IC50 values of CDDP in the wild-type and various FANC-deficient

cell lines. Cells were treated with CDDP in complete media for 24 h and colonies formed on

complete media. All data represent IC50 values ± 95% confidence intervals normalized to cells

not treated with CDDP from three independent experiments. In each experiment, relative via-

bilities were measured as N/N0 where N is the mean number of colonies at each dose in
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metformin-treated cells and N0 is the mean number of colonies in untreated controls.

(TIF)
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