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Ischemic stroke is the most widespread cause of disability and a leading cause of

death in developed countries. To date, the most potent approved treatment for acute

stroke is recanalization therapy with thrombolytic drugs such as tissue plasminogen

activator (rt-PA or tPA) or endovascular mechanical thrombectomy. Although tPA and

thrombectomy are widely available in the United States, it is currently estimated that

only 10–20% of stroke patients get tPA treatment, in part due to restrictive selection

criteria. Recently, however, tPA and thrombectomy selection criteria have loosened,

potentially allowing more patients to qualify. The relatively low rate of treatment may

also reflect the perceived risk of brain hemorrhage following treatment with tPA. In

translational research and a single patient study, protease activated receptor 1 (PAR-1)

targeted therapies given along with thrombolysis and thrombectomy appear to reduce

hemorrhagic transformation after recanalization. Such adjuncts may likely enhance the

availability of recanalization and encouragemore physicians to use the recently expanded

selection criteria for applying recanalization therapies. This narrative review discusses

stroke therapies, the role of hemorrhagic transformation in producing poor outcomes,

and presents the data suggesting that PAR-1 acting agents show promise for decreasing

hemorrhagic transformation and improving outcomes.

Keywords: hemorrhagic transformation, ischemic stroke, tissue plasminogen activator, intracranial hemorrhage,

activated protein C, stroke therapy, thrombectomy, bleeding

INTRODUCTION

Each year about 795,000 people in the United States experience a stroke (1). Of all types of
stroke, 87% are ischemic (i.e., caused by an interruption of blood supply), 10% are intracerebral
hemorrhage strokes (i.e., caused by a ruptured blood vessel), and 3% are subarachnoid hemorrhage
strokes (bleeding into the outermost layer of the brain) (2). Ischemic stroke is the most widespread
cause of disability and a leading cause of death in developed countries (3).

The most potent treatment for stroke is recanalization, that is, treatment with intravenous
thrombolytics, mechanical revascularization (removal of the clot) known as intra-arterial
thrombectomy (IAT), or both. Not all patients respond fully to recanalization; therefore, adjunctive
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cytoprotective treatments are needed and many development
efforts are ongoing to overcome the long history of failed
neuroprotection trials (likely due to lack of recanalization
documentation). Agents acting on the protease activated receptor
1 (PAR-1) exhibit pleiotropic actions on neurons, glia, and
cerebral vascular cells, including cytoprotection and anti-
inflammation (4). In the RHAPSODY trial, the PAR-1 acting drug
3K3A-APC appeared to reduce hemorrhagic transformation (5).

In 2015, several successful trials proved the efficacy of IAT
for acute ischemic stroke with large vessel occlusions (6–10).
Then, it was shown that multimodal imaging permits clinicians
to select patients for IAT with great success. Recently, the
feasibility of combining IAT with a putative cytoprotectant has
been shown in 2 trials. The RHAPSODY trial was the first
to include IAT in the clinical trial of a cytoprotectant (5). A
larger recent trial allowed IAT use, but only in patients with
evidence of good collateral flow (11). These results confirm
that recanalization may powerfully influence the effect of
putative cytoprotectants.

Stroke continues to be a major public health concern
despite significant previous research that has produced treatment
approaches addressing acute reperfusion and revascularization
(12–14), neuronal protection (12), and regeneration of damaged
brain tissue (15, 16). All these tactics were based on scientific
principles and preclinical data, yet no candidate cytoprotective
therapy has successfully entered clinical practice (15). It is
now clear that single-action, single-target agents fail to treat
stroke because ischemia produces a combination of pathologic
pathways proceeding in parallel that damage neural tissue (17).

This narrative review presents a discussion of stroke therapies,
the role of hemorrhagic transformation in producing poor
outcomes, and presents the data suggesting that PAR-1 acting
agents show promise for decreasing hemorrhagic transformation
and improving outcomes.

STROKE THERAPY

Recanalization therapy with thrombolytic drugs such as
recombinant tissue plasminogen activator (rt-PA or tPA) is the
most common treatment for acute stroke. tPA is approved for
intravenous administration within 3 h of onset of acute ischemic
stroke in the United States and for up to 4.5 h following the
stroke in Europe (1, 18). Thrombolytic therapy with intravenous
tPA beyond 4.5 h in select subjects with diffusion/fluid attenuated
inversion recovery mismatch on magnetic resonance imaging
(MRI) is also recommended, but less frequently possible (19).
The most widely feared adverse effect of tPA is symptomatic
intracranial hemorrhage (SICH; 3–6%); other risks include
systemic bleeding, myocardial rupture (when used to treat
acute myocardial infarction), and, in rare cases, anaphylaxis,
or angioedema (20). Although tPA is widely available in the
United States, only 10–20% of stroke patients receive such
treatment (21, 22), primarily because patients may present with
mild deficits, are beyond 4.5 h after onset, have conditions or
concomitant medications that increase bleeding risk, or for
other reasons.

Another effective (however, less frequently used)
recanalization therapy for stroke is mechanical thrombectomy
(7–9, 23). Use of mechanical thrombectomy (with or without
tPA) is considered standard-of-care treatment in patients with
documented large vessel occlusion, defined as thromboembolic
blockage of the distal internal carotid artery, the M1 or proximal
M2 portions of the middle cerebral artery, or the proximal
anterior cerebral artery. As shown in Table 1, several well-
controlled randomized clinical trials showed benefit following
combination therapy of thrombectomy and tPA. In some of these
trials, however, patients benefited who were ineligible for tPA and
were treated with thrombectomy alone. With careful imaging
selection, recanalization with thrombolysis or thrombectomy
may be successful as late as 16 or 24 h after last known well time
(12, 25, 26).

Although recent trials suggest that recanalization therapy
for stroke offers great promise, there remains a very large
unmet need to reduce stroke-related deficit and ensure improved
outcomes. First, not all patients treated with thrombolysis
or thrombectomy recover full function. Second, the risk
of hemorrhage after recanalization therapies dissuades some
practitioners from using them. Thus, adjuvant cytoprotectants
are needed to complement recanalization therapies in such
patients, or to provide improved outcomes in patients unable
to receive thrombolytic or thrombectomy therapy. In past
clinical trials that did not include mechanical thrombectomy
as a treatment option, it is likely that many patients failed to
reperfuse; the candidate adjuvant cytoprotectants may therefore
have appeared less likely to benefit the patients. In modern
clinical stroke trial design, candidate adjuvant therapy is studied
in concert with recanalization. In patients with large vessel
occlusion, more than 80% receiving mechanical thrombectomy
do recanalize. In patients without documented large vessel
occlusion, thrombolytic therapy alone is generally sufficient to
reperfuse the microvasculature.

HEMORRHAGIC TRANSFORMATION

Hemorrhagic transformation (HT) is a consequence of ischemic
blood–brain barrier breakdown that occurs mainly within 2
weeks of ischemic stroke (27). Following an acute stroke, the
cerebral vasculature is damaged, which increases the risk for HT.

The presentation of HT includes minor petechial bleeding
(hemorrhagic infarct) and large mass-producing hemorrhages
(parenchymal hematoma). Intracranial hemorrhages are
classified by both imaging characteristics and the presentation of
clinical worsening.

Radiologic classification uses the location and extent of
hemorrhage to distinguish among hemorrhage subtypes
(see Table 2).

Symptomatic vs. Asymptomatic
Hemorrhagic Transformation
In addition to radiologic classification, intracranial hemorrhages
are labeled asymptomatic, or symptomatic based on an
accompaniment of observable neurologic decline.
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TABLE 1 | Summary of mechanical thrombectomy study outcomes.

Study Percent achieving

reperfusion

mRS 0–2 SICH Mortality

ESCAPE (7)

N = 238

72.4%a

[31.2%]b
53%

[29.3%]

p < 0.001

3.6%

[2.7%]

p = 0.75

10.4%

[19.0%]

p = 0.04

EXTEND-IA (8)

N = 70

89%c [34%]c

p < 0.001

71% [40%]

p = 0.01

0%

[6%]

9%

[20%]

MR CLEAN (9)

N = 500

58.7%a

[57.5]b
32.6%

[19.1%]

(95% CI: 5.9–21.2)

7.7%

[6.4%]

21%

[22%]

REVASCAT (10)

N = 206

65.7%a

[Not Reported]

43.7%

[28.2%]e

(95% CI: 1.1–4.0)

1.9%

[1.9%]e

p = 1.00

18.4% [15.5%]e

p = 0.60

SWIFT PRIME (23)

N = 196

82.8%d

[40.4%]d

p < 0.0001

60.2%

[35.5%]

p = 0.0008

1.0%

[3.1%]

p = 0.37

9.2%

[12.4%]

p = 0.50

THRACE (24)

N = 414

- - 3 (2%) of 192 f;

p = 0.71

27 (13%) of 206;

p = 0.70

IV, intravenous; mRS, modified Rankin Scale; SICH, symptomatic intracranial hemorrhage; tPA, tissue plasminogen activator. Data are displayed as Mechanical Thrombectomy Arm

[tPA-only Control Arm].
aDefined as achieving thrombolysis in cerebral infarction score of 2b or 3.
bDefined as achieving modified arterial occlusive lesion score of 2 or 3.
cDefined as reperfusion >90% without SICH.
dDefined as reperfusion ≥90%.
e23 of 103 control subjects did NOT receive IV tPA treatment.
fSICH at 24 h.

TABLE 2 | Anatomic descriptions of intracranial hemorrhages according to the

heidelberg bleeding classification (28).

Class Type and description

1 Hemorrhagic transformation of infarcted brain

tissue

1a HI1 Scattered small petechia, no mass effect

1b HI2 Confluent petechia, no mass effect

1c PH1 Hematoma within infarcted tissue, occupying

<30%, no substantive mass effect

2 Intracerebral hemorrhage within and beyond the

infarcted brain tissue

PH2 Hematoma occupying ≥30% of the infarcted tissue,

with obvious mass effect

3 Intracerebral hemorrhage outside the infarcted

brain tissue or intracranial-extracerebral

hemorrhage

3a Parenchymal hematoma remote from infarcted brain

tissue

3b Intraventricular hemorrhage

3c Subarachnoid hemorrhage

3d Subdural hemorrhage

HI, hemorrhagic infarction; PH, parenchymatous hematoma.

The term SICH was first used by Levy et al. (29). The National
Institute of Neurological Disorders and Stroke (NINDS) trials,
defined SICH as “any hemorrhagic transformation temporally

related to any worsening in neurologic condition (30).”Over the
next 2 decades, this definition was recognized as over-inclusive.
Other groups such as the Safe Implementation of Thrombolysis
in Stroke-Monitoring Study (SITS-MOST) investigators (31), the
European Cooperative Acute Stroke Study (ECASS) II and III
investigators (18, 32), and the International Stroke Trial-3 (IST-3)
investigators (33) have sought more comprehensive definitions of
SICH.Widely used definitions are the SITS-MOST and ECASS II:

• SITS-MOST definition of SICH: Local or remote
parenchymatous hematoma (PH)-2 with a worsening
(i.e., increase of ≥4) on the National Institutes of Health
Stroke Scale (NIHSS) score.

• ECASS II definition of SICH: Any intracranial hemorrhage
with a clinical worsening (indicated by clinical deterioration
or adverse events) or causing a worsening (i.e., increase of≥4)
in NIHSS score.

Asymptomatic intracranial hemorrhage (AICH) does not have
a rigorous definition like SICH. In general, it is described as an
imaging-documented brain bleed without a concomitant marked
deterioration in the patient’s neurologic state observable using a
neurological rating scale. Thus, the descriptor “asymptomatic” is
a misnomer, as the patient very well may exhibit subtle findings,
or more robust findings were they to be examined weeks or
months later. In many studies, AICH classification is generally
not included so that when meta-analyses are performed, those
patients with AICH can only be identified as those patients not
having SICH. To complicate matters, there are only a handful of
studies that specifically enroll subjects with AICH.
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Symptomatic Hemorrhage—Clearly a
Detriment
Regardless of how SICH is defined, it is consistently associated
with worse clinical outcomes (34, 35). Hao et al. (34) reported
that patients with and without SICH differed significantly using
the modified Rankin score (mRS) scores (odds ratio: 1.45; 95%
confidence interval [CI]: 1.10–1.81), 90-day mortality (higher
in patients with SICH [65.3%] vs. without [18.8%]; p < 0.001);
furthermore, favorable neurological outcome (defined as mRS
0–2) at 90 days was proportionally lower in patients with SICH
(8.9%) than without (51.2%) (p < 0.001).

Asymptomatic Hemorrhage—Likely a
Detriment as Well
Whether AICH fosters a negative prognosis remains
controversial. Some studies confirmed that AICH has a
negative effect on functional outcome. Although there is little
clinical trial information regarding possible adverse effects
of AICH, the limited available evidence indicates it may not
be harmless.

In a study by Kent et al. (36), patients with AICH tended
toward worse outcomes, even after adjusting for other prognostic
variables (odds ratio: 0.69); however, this trend did not
reach statistical significance. The investigators cautioned against
concluding that AICH are clinically innocuous based on a lack of
statistical effect.

Dzialowski et al. (37) used data obtained from the Canadian
Alteplase for Stroke Effectiveness Study to investigate the
association between HT type and functional outcome. The
authors concluded that the likelihood of a poor outcome
following thrombolysis was associated with the extent of
hemorrhage. The proportion of patients with a good outcome
was 41% with no HT, 30% with HI-1, 17% with HI-2, 15% with
PH-1, and 7% with PH-2 (p < 0.0001). Although HI-1 was not a
predictor of outcome, other types of bleeds were after adjusting
for covariates: HI-2 (odds ratio: 0.38; 95% CI: 0.17–0.83), PH-
1 (odds ratio: 0.32; 95% CI: 0.12–0.80), and PH-2 (odds ratio:
0.14; 95% CI: 0.04–0.48), thereby suggesting that HI grades of
hemorrhagic transformation may not be benign.

Park et al. (38) who sought to determine the impact
of asymptomatic hemorrhage transformation on the 3-month
outcome, found the odds of a worse outcome were increased by
a factor of 2 in patients with AICH compared with those without
after acute ischemic stroke. The crude and adjusted odds ratios of
AICH for an increment of mRS score at 3 months were 2.94 (95%
CI: 2.05–4.24) and 1.90 (95% CI: 1.27–2.82), respectively.

Lei et al. (39) examined whether AICH affects risk of stroke
recurrence and a long-term poor outcome. Both SICH and AICH
post acute ischemic stroke impacted long-term clinical outcomes.
Moreover, patients with SICH or AICH suffered a lower survival
rate than did patients without HT in the 1st year following stroke
(p< 0.001). The investigators suggested that AICH should not be
considered clinically innocuous.

In acute ischemic stroke patients undergoing thrombectomy,
AICH appeared to be associated with high mortality and worse
functional outcomes (40). Specifically, AICH appeared to result

in lower odds of functional independence (61.9% of patients
without AICH and 35.9% with AICH achieved functional
independence at the 3-month follow-up; adjusted p= 0.117) and
higher odds of deaths (35.9% of patients with AICH vs. 11.1%
without AICH died; adjusted p= 0.015).

Hao et al. (41) reported that in an Asian population, patients
with AICH after endovascular treatment had a lower ratio of
excellent outcome (odds ratio: 0.53; 95% CI: 0.33–0.84; p =

0.007) compared with patients without ICH. According to the
researchers: “Considering the relatively higher incidence (33.5%)
and negative impacts on functional outcomes in this study, AICH
after endovascular treatment may not be innocuous.”

In a recent study, Li et al. (42) evaluated the prevalence of
previous chronic cerebral hemorrhage, especially asymptomatic
cases, and the associated factors in patients who experienced an
acute ischemic stroke. Overall, 9.4% of patients were determined
to have had a previous chronic cerebral hemorrhage, with
almost half of these being asymptomatic, indicating that previous
chronic cerebral hemorrhage is not uncommon in acute ischemic
stroke patients. Furthermore, there were no differences in the
clinical characteristics of symptomatic vs. asymptomatic previous
chronic cerebral hemorrhage, which complicates the detection of
asymptomatic hemorrhage, and according to the authors, could
increase the risk of re-bleeding.

While AICH may not be associated with acute observable
neurologic deterioration, its presence may undermine long-term
neurological functions. As the red blood cells in the microbleeds
break down over the following days to weeks, neural toxic effects
can emerge including heme-induced cerebral inflammation,
neuronal apoptosis, and demyelination (43, 44).

Although many studies report the rate of AICH to be ∼10%
(30, 45, 46), other studies indicate the rate may be as high as
30–40% when using CT scan (24, 34, 47). AICH occurs at a
sufficient frequency such that hemorrhages initially presenting as
asymptomatic can eventually result in substantial complications,
cause an increase in hospital length of stay, lead to poorer long-
term outcomes, and incur higher healthcare costs (48); thus, any
bleeding, asymptomatic or not, is a concern following stroke.

APC AND APC ANALOGS

A promising approach for stroke therapy is based on
recently discovered biological properties of APC, which is
an endogenous plasma protease with multiple properties
including antithrombotic action, cytoprotective propensity,
and anti-inflammatory activity in the brain and spinal cord
(4). Based on known cellular and molecular mechanisms, an
APC approach showed promise in experiments consistent
with Stroke Therapy Academic Industry Roundtable and other
guidelines (49). Wildtype APC shows potent anticoagulant
effects along with cytoprotection and reduced inflammation, and
anticoagulants often carry an increased risk for serious bleeding.
Therefore, protein engineering of APC was undertaken to reduce
bleeding risk.

Signaling-selective APC analogs were engineered to retain
normal cell-signaling activity (50–53) but to have greatly
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diminished anticoagulant activity (<10%) (54), thereby
reducing in vivo risk for bleeding compared with wildtype
APC (55–57).

An engineered form of APC, called 3K3A-APC reflecting
lysine to alanine substitutions at positions 191, 192, and 193,
offers advantages over wildtype APC (4, 53, 58, 59). 3K3A-
APC is a 405-residue APC variant engineered to maximize
neuroprotective and cytoprotective activities and minimize
anticoagulant activity. It was developed by altering factor Va
binding exosites (reducing anticoagulation) on APC without
modifying the exosites that recognize and bind to the G-protein
coupled receptors, protease-activated receptor 1 (PAR-1), and
PAR-3. This mutant retains the cytoprotective cell-signaling
effects of native (wildtype) APC but has>90% less of the wildtype
anticoagulant effects (54). Glycosylation of recombinant 3K3A-
APC differs fromwildtype APC because it is expressed in Chinese
hamster ovary cells.

Anticoagulants do not improve outcome following stroke
(60–62). Thus, the residual anticoagulant activity of 3K3A-APC
is not responsible for the benefits seen in animal models (63).

RATIONALE FOR APC AND APC ANALOGS
IN TREATING STROKE

APC is an endogenous serine protease with systemic
anticoagulant activity as well as cell-signaling actions that
convey endothelial stabilizing, anti-inflammatory, and anti-
apoptotic activities, and that promote neurogenesis (59, 64–67).
APC is normally generated in vivo from zymogen protein C
through activation by thrombin on the surface of endothelial
cells. This activation requires 2 membrane receptors: the
thrombomodulin receptor (which binds thrombin) and the
endothelial protein C receptor (which binds protein C). The

FIGURE 1 | Anticoagulant and cell-signaling pathways of APC and the structure of signaling-selective 3K3A-APC. APC, activated protein C; BBB, blood–brain barrier;

EGF, endothelial growth factor; EPCR, endothelial protein C receptor; GLA, gamma-carboxyglutamic acid; PAR, protease-activated receptor. Reprinted from blood,

vol. 132(2), Griffin et al. (67) activated protein C, protease activated receptor 1 and neuroprotection; 159–169, 2018, with permission from the American Society of

Hematology. (A) Anticoagulant activity of APC involves the proteolytic inactivation of factors Va and VIIIa on membrane surfaces containing phospholipids that are

derived from cells, platelets, lipoproteins, or cellular microparticles. The irreversible inactivation of factors Va and VIIIa to yield inactive factors Vi and VIIIi by APC is

accelerated by a variety of lipid and protein cofactors (e.g., glucosyl ceramide, protein S, etc). (B) Beneficial direct effects of APC on cells require the EPCR and

PAR-1. One distinction between pro-inflammatory thrombin signaling and cytoprotective APC signaling is the localization of APC signaling in the caveolin-1–rich

microdomains (caveolae). (C) Neuroprotective mechanisms for APC effects on cells may also involve other receptors including PAR-3. APC-initiated signaling effects

on cells can include anti-apoptotic activities, anti-inflammatory activities, inhibition of the inflammasome, stabilization of endothelial barrier functions, including the

BBB, and neurogenesis. (D) The polypeptide structure of APC comprises an N-terminal GLA domain (green) that binds to negatively charged lipids and EPCR, 2

EGF-like domains (light blue and dark blue), and the protease domain containing the active site triad of serine, histidine, and aspartic acid residues (red). Four

glycosylation sites are indicated by gray-shaded moieties. Substrate selectivity of this protease is determined by interactions between the targeted substrates and the

active site and also by multiple unique binding exosites on APC that vary for different substrates. The protease domain space–filled model (see insert in D) highlights in

the yellow box 3 positively charged lysine (K) residues within the so-called 37 loop (KKK 191–193), which is an exosite for APC’s recognition of factors Va and VIIIa.

Mutation of these 3 lysine residues to alanine (3K3A-APC) reduces APC’s anticoagulant activity by >90% but does not affect its interactions with the cytoprotective

substrates, PAR-1, PAR-3, or its other known cell-signaling receptors. Thus, 3K3A-APC is very “signaling-selective”.
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multiple properties of APC should combine in reversing the
effects of an ischemic stroke and in protecting ischemic brain
tissue from further damage.

The anticoagulant activity of APC is independent of its
direct cellular effects and is mediated by irreversible proteolytic
degradation of factors Va and VIIIa with contributions by
other cofactors. Its cytoprotective cell-signaling activities require
multiple cell-surface receptors and, in most cases, proteolytic
activation of PAR-1 (Figure 1) (51, 59, 65–68).

The cellular signaling by APC gives rise to cytoprotective
alterations in gene expression profiles resulting in
multiple cytoprotective actions due to anti-inflammatory
and anti-apoptotic activities, as well as a reduction of
endothelial barrier disruption (Figures 1, 2) (70–74). APC
crosses the blood brain barrier via an active transport
mechanism (75).

For 3K3A-APC cytoprotective actions in murine preclinical
ischemic stroke studies, not only is PAR-1 required but also
the arginine 46 residue in PAR-1. The requirement for arginine
46 strongly supports the concept that APC cytoprotection
requires “biased” signaling initiated by the G-protein coupled

receptor PAR-1 (50, 68). Activation of PAR-1 by APC occurs
after proteolysis of the PAR-1 extracellular N-terminal domain
at arginine 46, producing a tethered ligand peptide that
begins at asparagine 47 causing APC biased, β-arrestin-2-
dependent cytoprotective signaling (Figure 3) (50, 68, 76–79).
In contrast, activation of PAR-1 by thrombin involves cleavage
at arginine 16, which generates thrombin-receptor activated
peptide, a tethered ligand peptide that begins at residue 42,
initiating cytotoxic effects viaG-protein-dependent signaling and
causing human platelet activation, pro-inflammatory changes,
endothelial vascular leakage and CNS toxicity (67, 68, 80). PAR-
1-tethered ligand peptides beginning at asparagine 47, but not
those beginning at amino acid 42, exert cytoprotective effects
(Figure 3) (68). Similarly, APC activates human PAR-3 by non-
canonical cleavage at arginine 41, whereas thrombin cleaves PAR-
3 at lysine 38 (81). PAR-3-tethered ligand peptides beginning
at amino acid 42, but not those beginning at amino acid 39,
exert cytoprotective effects (82), suggesting that human PAR-3
cleavage at arginine 41 by APC causes cytoprotection, whereas
PAR-3 cleavage at lysine 38 initiates thrombin-like cytotoxic
pro-inflammatory effects (82).

FIGURE 2 | Cell-Specific APC protective signaling pathways. Akt, protein kinase B; APC, activated protein C; BBB, blood–brain barrier; EPCR, endothelial protein C

receptor; MMP, matrix metallopeptidase; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; PAR, protease-activated receptor; Rac1, Ras-related

C3 botulinum toxin substrate 1; S1PR1, sphingosine 1-phosphate receptor 1. Reprinted from neuropharmacology, vol. 134, Amar et al. (69) can adjunctive therapies

augment the efficacy of endovascular thrombolysis? A potential role for activated protein C, 293–301, 2018, with permission from Elsevier. 3D structure reprinted from

blood, vol. 132(2), Griffin et al. (67) activated protein C, protease activated receptor 1 and neuroprotection; 159–169, 2018, with permission from the American

Society of Hematology. (A) In endothelial cells, APC helps to seal the BBB and is vasculoprotective. APC/EPCR activates PAR-1 and inhibits caspase-8 activation of

caspase-3, thereby limiting the extrinsic apoptotic pathway in endothelium. APC/EPCR-dependent PAR-1 activation suppresses the pro-apoptotic p53 transcription

factor inhibiting caspase-3 activation blocking the intrinsic apoptotic pathway. Also, APC suppresses the NFkB-dependent transcriptional activation of MMP-9,

thereby blocking degradation of the BBB basement membrane. Furthermore, APC blocks the expression of pro-inflammatory cytokines, limiting inflammation by

controlling NFkB nuclear translocation. APC’s cytoprotective effects on endothelial cells require EPCR and PAR-1 to cross-activate S1PR1. Cross-activation of S1PR1

activates Rac1, leading to stabilization of the BBB cytoskeleton, thereby supporting the integrity of the BBB. (B) In neurons, APC/EPCR is cytoprotective via PAR-1

and PAR-3, which inhibits caspase-8 upstream of caspase-3 and thereby limits the extrinsic apoptotic pathway. Also, an APC-PAR-1-PAR-3 pathway blocks p53

activation in injured neurons, thereby blocking the caspase-9-dependent intrinsic apoptotic pathway. Furthermore, APC promotes neurogenesis via a

PAR-1-PAR-3-S1PR1-Akt pathway. (C) APC’s inhibition of NFkB-dependent transcriptional expression of different pro-inflammatory cytokines suppresses microglial

activation. Suppression of NLRP3 inflammasome development by APC is another activity but is not shown in this figure.
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STUDIES WITH THE APC ANALOG
3K3A-APC

Signaling-selective APC analogs, such as 3K3A-APC, were
engineered to retain normal cell-signaling activity (50–53)
but to have greatly diminished anticoagulant activity

FIGURE 3 | Biased Agonism of PAR-1 by APC. Akt, protein kinase B; APC,

activated protein C; BBB, blood–brain barrier; PAR, protease-activated

receptor; P13K, phosphoinositide 3-kinase; Rac, Ras-related C3 botulinum

toxin substrate; RhoA, ras homolog gene family member A; TRAP,

thrombin-receptor activated peptide. Reprinted from Blood, vol. 120(26),

Mosnier et al. (68) biased agonism of protease-activated receptor 1 by

activated protein C caused by noncanonical cleavage at Arg46; 5237–5246,

2012, with permission from the American Society of Hematology. Activation of

PAR-1 by APC and its cytoprotective analogs involves cleavage of PAR-1

N-terminal domain at Arg46, which reveals a tethered ligand peptide that

begins at Asn47 causing APC’s biased, β-arrestin-2-dependent cytoprotective

signaling. Activation of PAR-1 by thrombin involves cleavage at Arg41, which

generates a tethered ligand that begins at Thr42, initiating cytotoxic effects via

G-protein-dependent signaling causing human platelet activation,

inflammatory changes, vascular leakage, and CNS toxicity.

(54), thereby reducing in vivo risk for bleeding compared
with wildtype APC (55–57). In in vitro assays, 3K3A-
APC retains the cytoprotective activity of recombinant
wildtype APC but has <10% of its anticoagulant activity
(e.g., see Table 3) (54).

The effects of 3K3A-APC on the fibrinolytic activity of tPA has
also been studied in vitro; no statistically significant effects were
noted when rt-PA was applied to induce clot lysis in the presence
of either wildtype APC or 3K3A-APC (83).

3K3A-APC has beneficial effects in rodent models of stroke
(50, 55–57, 72, 84–89), brain trauma (90, 91), amyotrophic
lateral sclerosis (92–94), multiple sclerosis (95) and Alzheimer’s
disease (96), as well as ischemic injury of heart, kidney or
liver, organ transplant, total body radiation, diabetes, sepsis, and
wound healing (59, 67). In the CNS, PAR-1 and PAR-3 are
both necessary for neuronal protection by APC (84, 85, 92),
PAR-1 and endothelial protein C receptor for vasculoprotection
and stabilization of the blood–brain barrier (4, 67, 69, 71–
73, 84, 85, 97, 98), and PAR-1 for suppression of microglia
activation and anti-inflammatory activity.(4,66,91,94) The extensive
preclinical studies of the cytoprotective actions of APC and
3K3A-APC have been summarized in several reviews (Figure 2)
(4, 59, 65–67, 69, 99).

In studies with human progenitor and fetal neural cells, 3K3A-
APC promoted neurogenesis in vitro (52) as well as in vivo
using a mouse middle cerebral artery occlusion (MCAO) stroke
model (57).

3K3A-APC acts synergistically with tPA in both mouse and
rat stroke models (55). tPA alone or in combination with 3K3A-
APC, was administered 4 h after MCAO, followed by 3K3A-APC
for 3–4 consecutive days afterward. In this delayed treatment
paradigm, tPA alone had no beneficial effects on infarct volume,
or behavior (neurological score, foot-fault, forelimb asymmetry,
adhesive removal) compared with controls. In contrast, the
combination of tPA plus 3K3A-APC as compared with control
significantly reduced infarct volume at 24 h (65% reduction)
and at 7 days (63% reduction) following MCAO in mice
and at 7 days (52% reduction) after embolic stroke in rats
(p< 0.05). Furthermore, the combination significantly improved
behavioral outcomes and eliminated tPA-related intracerebral
microhemorrhages (p < 0.01–0.05).

These positive effects of 3K3A-APC extend to elderly animals
and animals with comorbidities such as might be seen in
the target patient population of this study. 3K3A-APC alone

TABLE 3 | Cytoprotective and anticoagulant activity of recombinant wildtype APC vs. 3K3A-APC.

APC type Anticoagulant

activity (% rwt)a
Cytoprotective

activity (% rwt)b
Cytoprotective to

anticoagulant ratio

Recombinant wildtype APC 100 100 1.0

3K3A-APC 4.6c 114c 25

APC, activated protein C; rwt, recombinant wildtype.
aBased on the activated partial thromboplastin time dose-response.
bDerived from the concentrations of APC required for half-maximal inhibition of apoptosis induced by the protein kinase inhibitor, staurosporine.
cFrom Mosnier et al. (54).

Numbers for recombinant wildtype APC are definitional and represent the standard.
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or with tPA was given 4 h after transient MCAO in aged
female mice and 4 h after embolic stroke in spontaneously
hypertensive rats (56). 3K3A-APC was then administered from
3 to 7 days afterward. Assessments included neurological
scores, foot-fault, forelimb asymmetry, and adhesive removal.
In both models, tPA alone given 4 h after stroke had
no effect on infarct volume or behavior. Treatment with
3K3A-APC alone or 3K3A-APC in combination with tPA
reduced the infarct volume determined at 7 days by 62–
66% (MCAO in aged mice) and 50–53%, (embolic stroke in

spontaneously hypertensive rats), as well as improved behavior
(p < 0.05) and significantly reduced tPA-induced intracerebral
microhemorrhages (Figure 4).

Overall, in preclinical studies, 3K3A-APC appears to have
a reduced risk for bleeding and provides at least equivalent if
not greater cytoprotection compared with recombinant wildtype
APC in mouse models of stroke. When 3K3A-APC is combined
with tPA, infarct volumes are reduced and intracerebral
microhemorrhages are greatly reduced and/or eliminated. At the
same time, behavioral outcomes in both mouse and rat models of

FIGURE 4 | Effects of 3K3A-APC and 3K3A-APC combined with tPA on hemorrhage (upper panel) and neuropathological (hematoxylin and eosin staining; infarct

volume) and neurological (neurological score) outcomes (lower panel) in young male spontaneously hypertensive rats within 7 days after embolic stroke. APC,

activated protein C; SD, standard deviation; tPA, tissue plasminogen activator. Reprinted from Stroke, vol. 44(12), Wang et al. (56) activated protein C analog protects

from ischemic stroke and extends the therapeutic window of tissue-type plasminogen activator in aged female mice and hypertensive rats, 3529–3536, 2013, with

permission from Wolters Kluwer Health, Inc. 3K3A-APC and tPA were administered 4 h after embolic stroke. 3K3A-APC was administered for 3 consecutive days

afterward. Mean + SD, N = 8–9 rats per group.
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stroke are improved. Furthermore, 3K3A-APC expands the tPA
therapeutic window, supporting further development of tPA and
3K3A-APC combination therapy (69, 99). Of note, the transient
suture model of stroke that has been used in several of these
studies closely mimics the clinical procedure of thrombectomy
as recently reviewed (69, 99). This implies the combination
of thrombectomy and 3K3A-APC for focal ischemic stroke in
humans may be efficacious.

Currently, 3K3A-APC is in clinical development for stroke
therapy and other indications (5).

NEED FOR A STROKE THERAPY WITH
DECREASED BLEEDING

As previously mentioned, bleeding is a risk following stroke
therapies. In a randomized, controlled trial in patients who
had had an arterial occlusion, the control group received
standard care alone (including the use of tPA) and the
thrombectomy group received mechanical thrombectomy in
addition to standard care (100). AICH was more common in
the thrombectomy group (51%) compared with the control
group (25%).

Although mechanical thrombectomy is associated with
greater bleeding and despite tPA being widely available in the
United States, it is currently estimated that only 10–20% of stroke
patients get tPA treatment (21, 22). According to von Kummer in
2002 (101): “The risk of brain hemorrhage is the main argument
of the European authorities not to approve rt-PA, and the fear
of hurting patients with rt-PA explains some of its limited use in
North America. The common argument is, ‘Treatment with rt-
PA may have some beneficial effect, but that is traded off by a
considerable risk of symptomatic hemorrhage.”’

Fear of thrombolytic-related hemorrhage influences
physicians away from treating stroke (102). To quantify the
effect on physicians’ prescribing behavior from fear that tPA
will cause intracerebral bleeding, a biopharmaceutical company
obtained focus group and survey data from a private polling
service for its developmental therapy for stroke, 3K3A-APC.
The market research firm interviewed 34 key opinion leaders
and high-volume practitioners who were practicing stroke
specialists, split evenly between the United States and Europe.
The majority of interviewees were neurologists who routinely
treat stroke patients at a comprehensive stroke center. Each
interviewee received an honorarium for his or her time. The
interviewees remained anonymous to the company and to each

TABLE 4 | Market research survey data from stroke specialists about stroke therapies.

Question Unites States

neurologists

Unites States

ER physicians

Unites States

total

Europe total Total

What percentage of patients in your personal practice

who are eligible for tPA receive tPA?

84% 54% 79% 87% 83%

What percentage of patients in your geographic area

currently receiving tPA would receive 3K3A-APC?

93% 98% 94% 81% 88%

What percentage of patients in your personal practice

currently not receiving tPA would receive the

combination of tPA + 3K3A-APC were it available?

8% 13% 9% 5% 7%

What percentage of patients in your nation currently not

receiving tPA would receive the combination of tPA +

3K3A-APC were it available?

17% 13% 16% 13% 15%

ER, emergency room; tPA, tissue plasminogen activator.

FIGURE 5 | Unmet medical needs concerning physician satisfaction with tPA therapy in the United States and Europe. IV, intravenous; tPA, tissue plasminogen

activator. The terms in the figure were provided to the physician interviewees without further definitions, and interviewees were asked to rank each term on a 10-point

scale. For importance: 0 = unimportant and 10 = essential. For satisfaction: 0 = fully unsatisfactory and 10 = entirely satisfactory. The numbers are mean responses

of the 32 interviewees.
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other. They were interviewed one-on-one over the telephone
in November, 2014, using a formatted target product profile
and standardized questionnaire. The interviews were digitally
recorded for subsequent data capture and aggregation. See
Table 4 and Figure 5.

The interviews provided insights into physicians’ perceptions
of the relative importance of several aspects of tPA treatment,
compared with their perceived satisfaction with the therapy
(Figure 5). The data revealed that physicians perceive the
“efficacy” of tPA to be very important (9.4/10) but not fully
satisfactory (5.3/10). In contrast, the cost of the treatment was
rated less important (4.5/10). Of most relevance to the present
discussion, the “safety” of the drug was perceived to be very
important, and rated an 8.8/10, but physicians are not satisfied
with the current safety profile, giving a rating of 5.7/10. These
data suggest that physicians perceive there to be a critical need
for improving the safety of tPA for acute ischemic stroke.

Approximately 20% of interviewed physicians’ patients
eligible for intravenous (IV) tPA were not being prescribed IV
tPA (Table 4) because of patient, family, or physician assessment
that bleeding risk outweighed benefit (Table 4). However, the
percentage of eligible patients not administered tPA was much
higher in the emergency room setting (46%) relative to stroke
centers (16%) (Table 4).

Physician responses suggest ∼90% of patients currently being
prescribed IV tPAwould also be prescribed 3K3A-APC (Table 4);
according to the interviewers, many physicians stated it would be

a requirement in their opinion to prescribe 3K3A-APC to those
patients who received IV tPA.

CONCLUSION

Hemorrhagic transformation after ischemic stroke—
even if labeled “asymptomatic”—may lead to long term
disability and cognitive impairment. Fear of hemorrhagic
transformation leads some physicians to hesitate to use
indicated recanalization therapies. The PAR-1 acting agent,
3K3A-APC, reduces hemorrhagic transformation, and in
animal models appears to improve long term outcomes
after ischemic stroke. Agents that reduce hemorrhagic
transformation may lead to wider acceptance of recanalization
therapies and improved long-term outcome for ischemic
stroke patients.
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