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Abstract

Motivation: The biomedical community’s collective understanding of how chemicals, genes and

phenotypes interact is distributed across the text of over 24 million research articles. These interactions

offer insights into the mechanisms behind higher order biochemical phenomena, such as drug-drug

interactions and variations in drug response across individuals. To assist their curation at scale, we

must understand what relationship types are possible and map unstructured natural language descrip-

tions onto these structured classes. We used NCBI’s PubTator annotations to identify instances of

chemical, gene and disease names in Medline abstracts and applied the Stanford dependency parser

to find connecting dependency paths between pairs of entities in single sentences. We combined a

published ensemble biclustering algorithm (EBC) with hierarchical clustering to group the dependency

paths into semantically-related categories, which we annotated with labels, or ‘themes’ (‘inhibition’

and ‘activation’, for example). We evaluated our theme assignments against six human-curated data-

bases: DrugBank, Reactome, SIDER, the Therapeutic Target Database, OMIM and PharmGKB.

Results: Clustering revealed 10 broad themes for chemical-gene relationships, 7 for chemical-

disease, 10 for gene-disease and 9 for gene–gene. In most cases, enriched themes corresponded

directly to known database relationships. Our final dataset, represented as a network, contained

37 491 thematically-labeled chemical-gene edges, 2 021 192 chemical-disease edges, 136 206 gene-

disease edges and 41 418 gene–gene edges, each representing a single-sentence description of an

interaction from somewhere in the literature.

Availability and implementation: The complete network is available on Zenodo (https://zenodo.

org/record/1035500). We have also provided the full set of dependency paths connecting biomed-

ical entities in Medline abstracts, with associated sentences, for future use by the biomedical

research community.

Contact: bethany.percha@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The network of interactions among biomedical entities—chemicals,

genes and phenotypes—has long been of interest to biomedical re-

searchers. Over the years, scientific curators have painstakingly

excavated these relationships from the unstructured text of research

articles, translating natural language descriptions into structured,

machine-computable data. Manual curation provides researchers

and clinicians with cross-sectional, domain-specific views of the
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literature and is responsible for such valuable resources as

PharmGKB (Whirl-Carrillo, 2012), OMIM (Hamosh, 2005) and

DrugBank (Wishart, 2006). Structured relationships offer insights

into the mechanisms behind important higher-order relationships,

such as drug-drug interactions (Percha and Altman, 2013; Swanson,

1986b). Combining them with an appropriate inferential model can

also generate predictions of entirely new relationships, an approach

called ‘literature-based discovery’ (Cohen and Hersh, 2005; Simpson

and Demner-Fushman, 2012; Swanson, 1986a; Zweigenbaum et al.,

2007). As the literature grows, however, manual curation becomes in-

creasingly time-consuming and expensive. It also limits the nature of

questions we can ask of the literature to those for which substantial

personnel and funding are available.

Curation maps diverse natural language descriptions onto a set

of discrete, structured categories. Recent work in natural language

processing has led to a class of methods, falling under the umbrella

term ‘distributional semantics’, that perform a similar task using

large corpora in place of human experts: these methods assess the se-

mantic similarity of various terms by examining how they are used

in context (Mikolov, 2013a; Turney and Pantel, 2010). Clustering

words and phrases based on distributional similarity groups terms

with similar meaning (Baker and McCallum, 1998; Cohen and

Widdows, 2009), a feature that parallels the basic semantic mapping

curators perform in their minds. Although most distributional se-

mantics algorithms focus on words and phrases, they have also been

applied to relationships (Section 2.1).

In earlier work (Percha and Altman, 2015), we showed that a dis-

tributional semantics algorithm called EBC could be combined with

hierarchical clustering to derive clusters of drug-gene pairs that were

related in similar ways. In this paper, we apply the same algorithm to

cluster textual descriptions into classes, grouping descriptions of

chemical-gene, gene–gene, gene-phenotype and chemical-phenotype

relationships into ‘themes’. We then map thousands of natural lan-

guage descriptions to one or more of these themes, including a quanti-

tative score that represents the strength of the mapping. The result is a

labeled, weighted network of biomedical relationships for all Medline

abstracts. We compare our themes to known relationships from

several biomedical databases, and provide the full network on

Zenodo (https://zenodo.org/record/1035500).

2 Background

2.1 Biomedical relation extraction and curation
Biomedical relation extraction has a long history (Buyko, 2012;

Chang and Altman, 2004; Coulet, 2010; Giuliano, 2006; Liu, 2016;

Segura-Bedmar, 2011; Singhal, 2016), and many authors have sug-

gested that the automated extraction of structured relationships from

the literature can expedite database curation (Alex, 2008; Yeh 2003).

However, relation extraction typically begins with a predefined

schema: a set of one or more relationship classes onto which natural

language descriptions are mapped. Sometimes the focus is simply to

learn whether a particular sentence describes a relationship or not

(Mallory, 2015). Our approach uses distributional semantics both to

learn a schema and to map diverse surface forms onto relational

classes. It draws from ideas in biomedical ontology learning (Liu,

2011) and entailment recognition as well as relation extraction.

2.2 Distributional semantics for relation extraction
While word models have dominated the distributional semantics litera-

ture (Deerwester, 1990; Mikolov, 2013a), distributional approaches

have also been used to build representations of longer stretches of text

such as phrases (Cho, 2014; Mikolov, 2013b; Passos, 2014), sentences

(Kim, 2014), and documents (Le and Mikolov, 2014). Importantly,

they have also been used to model relationships between pairs of enti-

ties, a type of similarity (‘relational similarity’) distinct from properties

of the entities themselves (Levy, 2015; Turney and Pantel, 2010).

Several papers in the distributional semantics literature have

examined relational similarity outside the biomedical domain

(Dagan, 2013; Lin and Pantel, 2001; Riedel, 2013; Turney, 2005).

Models that assess relational similarity typically operate on a matrix

where the rows are pairs of entities (e.g. drug-gene pairs, chemical-

gene pairs) and the columns are patterns that connect the entity pairs

in the text (Section 2.4). Different methods may focus on the rows,

columns, or both. Some cluster patterns in the text to discover

groups of entity pairs that are related in similar ways (Hasegawa,

2004; Rosenfeld and Feldman, 2007; Shinyama and Sekine, 2006;

Zhang, 2005), while others use the entity pairs to group the patterns

(Lin and Pantel, 2001). Some methods, like EBC (Section 2.3), group

both patterns and entity pairs at once (Bollegala, 2010; Kok and

Domingos, 2008; Riedel, 2013; Yao et al., 2011).

2.3 Ensemble Biclustering for Classification
Ensemble Biclustering for Classification (EBC) is a published distri-

butional semantics method based on ensemble biclustering (Dhillon

et al., 2003; Percha and Altman, 2015) that has been shown to iden-

tify biomedical entity pairs expressing a certain type of relationship

based on very few examples. It can be applied in an unsupervised

fashion to generate a semantic ‘distance’ for the relationships be-

tween any two pairs of entities, similar to the cosine distance be-

tween word vectors in (Mikolov, 2013a). Combining EBC with

hierarchical clustering produces a dendrogram of entity pairs that,

at least in the case of drug-gene pairs, separates into recognizable

groups (proteins that metabolize drugs, drugs that inhibit proteins,

etc.; Percha and Altman, 2015). Because EBC is symmetric with re-

spect to entity pairs and patterns, it can also be applied to cluster the

patterns themselves, an approach we follow in this paper.

2.4 Dependency paths as patterns
Applying EBC, or indeed any distributional semantics algorithm, to

assess relational similarity requires us to define what constitutes a

‘pattern’ that connects pairs of entities in the text. For our purposes,

a pattern is a structure called a dependency path. Dependency paths

are produced automatically using the Stanford dependency parser

(De Marneffe and Manning, 2008a). The input to the parser is a

raw Medline sentence, and the output is a dependency graph. A de-

pendency graph (Fig. 1) is one way to represent the grammatical

architecture of a sentence; the nodes are words, and the edges are

grammatical dependencies (grammatical relationships between pairs

of words, described in detail in De Marneffe and Manning, 2008b).

A dependency path is a path through a dependency graph that

connects two entities. Focusing on the dependency path helps prune

out irrelevant terms and phrases and focus the algorithm’s attention

on the part of the sentence directly relevant to the relationship be-

tween the two entities. It is possible for a single sentence to generate

multiple dependency paths if more than two entity names are pre-

sent in the sentence.

3 Materials and methods

3.1 Named entity recognition using PubTator
The NCBI project PubTator (Wei, 2013) provides high-quality

named entity annotations of (1) drugs and other chemicals, (2) genes
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and proteins and (3) diseases, side effects and other phenotypes for

all of Medline. Following PubTator’s convention, we use the catego-

ries ‘chemical’, ‘gene’ and ‘disease’ to refer to groups 1, 2 and 3, re-

spectively. PubTator annotations for a single abstract consist of the

full text of the abstract, its title and a series of annotated concepts

for which it provides: the location and string in the raw text that

matched the concept, its entity type (chemical, gene, disease, etc.)

and its closest database identifier. There are approximately 16.5 mil-

lion Medline abstracts annotated by PubTator as of this writing.

Annotations are updated monthly. Our version of the PubTator an-

notations was downloaded on April 30, 2016.

3.2 Extraction of dependency paths
We used the PubTator annotations to concatenate phrases corres-

ponding to annotated biomedical entities; for example, the phrase

‘cytochrome p450 3A4’, if identified as an entity by PubTator, was

changed to ‘cytochrome_p450_3A4’ (using the underscore). We

then divided the annotated and concatenated abstracts into sen-

tences and parsed each sentence using the Stanford Dependency

Parser (De Marneffe and Manning, 2008a) to produce a dependency

graph. From there, we found the dependency paths connecting (a)

chemicals to genes, (b) chemicals to diseases, (c) genes to diseases,

(d) genes to genes, using the method in Figure 1.

The extraction of the gene–gene paths introduced an additional

layer of complexity, since there is no natural way to orient the paths.

We therefore extracted two paths for a dependency graph connect-

ing two genes G1 and G2: the path from G1 to G2, and the path

from G2 to G1.

As in (Percha and Altman, 2015), we eliminated paths contain-

ing dependencies of type conj (two elements connected by a coordi-

nating conjunction; De Marneffe and Manning, 2008b), because

these were usually errors arising from how the dependency parser

represents lists.

3.3 Creating the data matrices
We selected the most frequent �700 dependency paths connecting

(a) chemicals to genes, (b) chemicals to diseases, (c) genes to dis-

eases, (d) genes to genes and sampled 2000 entity pairs from the

total set connected by one or more of those paths. We reasoned that

we needed enough different dependency paths to capture the diver-

sity of potential themes, but not so many that the resultant dendro-

grams would be too large for manual review.

We arranged the data in matrices in which the rows were entity

pairs and the columns were dependency paths. There was a ‘1’ in

matrix cell ij if dependency path j connected entity pair i somewhere

in Medline, and a ‘0’ if not. Descriptions of the four matrices can be

found in Table 1.

3.4 Applying EBC and hierarchical clustering
We found optimal row and column cluster numbers (K and L in

Table 1) for EBC using the heuristic described in (Percha and

Altman, 2015). Using the optimal K and L, we applied EBC (Section

2.3) to the four matrices, performing the biclustering 2000 times

and recording the number of times each column (dependenc path)

clustered with every other column. We followed the technique

described in (Percha and Altman, 2015) to convert this array of

coclustering frequencies into a correlation matrix and applied hier-

archical clustering with minimax linkage (Bien and Tibshirani,

2011) to produce dendrograms. The major difference between our

approach here and that in (Percha and Altman, 2015) is that here

the dendrogram leaves are dependency paths, and in that paper they

were drug-gene pairs. We produced one dendrogram for each of

four relationship types: chemical-gene, chemical-disease, gene-dis-

ease and gene–gene.

3.5 Cluster theme labeling
We cut the four dendrograms at a level that produced 30 clusters.

Any clusters of 10 or fewer dependency paths were not examined

further, and upon visual inspection of the dendrograms, very large

clusters with obvious internal structure were cut further down to

Fig. 1. Process of converting a sentence to a structured relationship. Step 1:

Named entity recognition. Step 2: Dependency parsing to produce depend-

ency graph. Step 3: Dependency path extraction from dependency graph.

Step 4: Mapping of dependency path to relationship data structure, which

consists of the two entities, a direction and a structured ‘theme’ that reflects

the nature of the relationship between the two entities. The methods in this

paper focus on Step 4
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produce smaller subclusters. For each cluster, a set of 10 dependency

paths was selected at random and a human annotator examined the

paths and several associated example sentences from the literature

to assign a label. Nearby clusters sometimes shared similar themes,

so we simplified the clusters into thematically-related groups and as-

signed each theme a symbol. Supplementary Material contains the

complete set of intermediate labels and sample dependency paths for

each cluster.

3.6 Assigning remaining paths to themes
The themes derived from the dendrograms are based on only the

most frequent �700 dependency paths (Section 3.4). We call these

the flagship paths for each theme. However, there are vastly more

dependency paths than this in the full dataset. To assign the remain-

ing paths to themes, we counted the number of times each path co-

occurred with the flagship paths for each theme. A co-occurrence is

a situation where both the unassigned path and a flagship path con-

nect the same entity pair. We calculated co-occurrence frequencies

for the flagship paths as well as the non-flagship paths. We refer to

the number of co-occurrences of each path with flagship paths for a

particular theme as that path’s support for that theme.

3.7 Evaluating against database relations
We used known relationships from six human-curated databases to

evaluate the validity of our themes. The evaluation databases included

DrugBank (Wishart, 2006), PharmGKB (Whirl-Carrillo, 2012), the

Therapeutic Target Database (TTD; Zhu, 2011), SIDER (Kuhn,

2015), OMIM (Hamosh, 2005) and Reactome (Croft, 2010). In all

six cases, interactions were converted from database identifiers to

strings using whatever synonym mapping files were available from

each database, if any. Strings were lowercased and multi-word terms

were concatenated using the underscore, and these lists were then fil-

tered against our dataset of co-occurring entities from PubTator.

Table 2 contains information about the databases we used and

the number and type of relationships pulled from each. In the case

of SIDER, we used UMLS to find the set of all strings corresponding

to each drug concept identifier but did not use synonyms for disease

names beyond what was reported in SIDER itself. We also restricted

drug side effects to those with an occurrence frequency >30% in

SIDER. For Reactome, we queried the UniProt API to convert its na-

tive UniProt protein identifiers to strings. We used the PharmGKB

relationships file to find gene–gene pathway interactions and also

considered gene-disease interactions (‘association’ in Table 2) des-

pite the fact that PharmGKB gene-disease associations can include

both the obvious causal mutations as well as situations in which a

polymorphism in a gene impacts response to a drug used to treat a

disease, thus leading to a gene-disease association. DrugBank gene–

gene associations were those drug-target associations for which the

‘chemical’ was actually a protein.

Figure 2 shows a summary of our evaluation process. We sought

to evaluate our theme assignments, but themes are assigned to

dependency paths, whereas the database relations are entity pairs

(a single entity pair can have multiple dependency paths correspond-

ing to multiple sentences). We therefore evaluated the degree to

which ranking the dependency paths by their supports for a particu-

lar theme would cause the paths connecting known database pairs

to filter to the top (see Fig. 2 caption). Our evaluation metric for

each theme was the AUC of the ranked lists of dependency paths,

averaged across 100 bootstrap replicates.

We considered a positive outcome to be a situation in which (a)

one or a few themes produced significantly higher AUCs than

others, and (b) the themes producing the highest AUCs corres-

ponded to the type of relationship(s) contained in the database.

Negative outcomes included situations in which no theme produced

a better AUC than any other, as well as situations where a non-

corresponding theme ranked the database relationships more highly

(e.g. ranking chemical-disease dependency paths by their supports

for the ‘side effect’ theme would mysteriously cause drug-indication

pairs to filter to the top).

4 Results

4.1 Four dendrograms
The dendrograms for all four relationship types are shown in

Figure 3a (chemical-gene), Figure 3b (chemical-disease), Figure 3c

(gene-disease) and Figure 3d (gene–gene), along with sample de-

pendency paths from a few of the major clusters. Full descriptions of

all of the clusters with descriptions and dependency paths can be

found in the Supplementary Material.

Table 1. Descriptions of data matrices for all four interaction types

Type Dependency paths Minimum path occur. Nonzero elements Row clusters (K) Column clusters (L)

Chemical-gene 697 5 6276 100 100

Chemical-disease 636 5 6022 150 170

Gene-disease 739 12 6450 190 150

Gene–gene 693 100 7903 90 70

Note: Each contained 2000 entity pairs.

Table 2. Databases and associated relationship types used for

evaluation

Type Database Relation type Count

Chemical-gene DrugBank Drug-target 619

TTD

Metabolism 286

Transport 143

Inhibition 195

Agonism 40

Antagonism 43

Chemical-disease SIDER Side effect 521

TTD

Indication 1611

Indication 1234

Biomarkers 52

Gene-disease PharmGKB Association 375

TTD Disease target 688

OMIM Causal mutation 918

Gene–gene PharmGKB Pathway 147

Reactome Protein complex 216

DrugBank Protein-target 38

Note: The relationship counts are the numbers of entity pairs (represented

as strings, not database identifiers) found in the database that also occurred in

our dataset.
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4.2 Simplified relationship themes
Table 3 contains the complete list of themes for each of the four rela-

tionship types. Two of the groups in the chemical-gene dendrogram

contained relationships where we perceived the directionality to be

important for future applications: activation (agonism versus antag-

onism; cluster 6) and changes in expression (up, down or neutral;

clusters 8–10). The clusters were small enough that we decided to

label the positive and negative directional dependency paths manu-

ally to ensure perfect separation; this is what the ‘þ’ and ‘–’ signs

refer to in Table 3.

As expected, nearby clusters sometimes reflected similar themes.

Occasionally, clusters that were not close together in the dendro-

grams also shared similar themes. This most often occurred when

the same relationship type was described in slightly different ways

within distinct groups of entity pairs. For example, clusters 6, 15

and 16 in Figure 3b all referred to descriptions of side effects or ad-

verse events related to the administration of a chemical, yet cluster 6

was also closely related to clusters 8 and 9, which described investi-

gations of experimental agents.

4.3 Evaluation of themes using known database

relations
Figure 4 shows the results of our evaluation against the human-

curated database relations described in Table 2. We consider a

theme enriched if the mean AUC for that theme was more than one

standard deviation above 0.5 across 100 bootstrap replicates.

In Figure 4a (chemical-gene), both drug-target and inhibition

database relations were enriched for the N (inhibition) and

E- (decreased expression) themes (Table 3) and no others. Since

drugs administered to target a particular protein are often inhibitors

of that protein, this consistency makes sense (note: only 71 drug-

gene pairs overlapped between the DrugBank ‘drug-target’ and TTD

‘inhibitor’ datasets, so this was not just due to overlapping entity

pairs in the two datasets). Known transport relations from

DrugBank were enriched for themes O (transport), B (binding) and

Z (enzyme activity) with the strongest enrichment for theme

O. Agonism versus antagonism relations from the same database

(TTD) displayed no overlapping enriched themes. Agonism relations

were enriched for theme Aþ (agonism) and E (affect on expression),

whereas antagonism relations were enriched for theme A- (antagon-

ism), E- (decreased expression) and N (inhibition). Metabolism rela-

tions, which we obtained from the DrugBank ‘enzymes’ field, were

enriched for the K (metabolism/pharmacokinetics) theme, as well as

the E- theme.

In Figure 4b (chemical-disease), drug indications and side effects

from the same database (SIDER) showed opposing patterns of enrich-

ment. Indication relations were enriched for the T (treatment), C (can-

cer treatment) and Pa (prevention and alleviation of symptoms)

themes, while side effect relations were only enriched for the Sa (side

effect/adverse event) theme. The pattern of enrichment for drug indi-

cation relations was repeated when we used the TTD database (178

overlapping relations with SIDER, representing 14% of the smaller

dataset), with the exception of the Pa theme, which was not enriched.

Biomarkers were enriched for the J (role in pathogenesis) and Mp

(biomarkers) themes and none of the side effect or treatment themes.

Fig. 2. Evaluation against known database relations. In this example, the

squares represent diseases, the circles represent genes and we are evaluat-

ing one particular gene-disease theme. The database contains two relations

(gene-disease pairs) that also appear in our dataset (i.e. co-occurred in a sen-

tence at least once, connected by a dependency path to which theme sup-

ports could be assigned). There are also six other gene-disease pairs in our

dataset that are not found in the database; these serve as our negative ‘back-

ground’. We create 100 bootstrap samples by sampling with replacement

from both the database and background sets (only a single sample is shown

here). We rank all dependency paths that connect our sampled entity pairs

based on their supports for the theme. Note that the scores here are fractions

and not the raw supports because we normalize the supports across all

themes (by dividing by the total support across all themes) so as not to disad-

vantage less common dependency paths. We then calculate an AUC for

the ranking against labels representing whether the entity pair connected

by the path was a known database relation (1) or not (0). We repeat this pro-

cess across all 100 samples and calculate a mean and standard deviation for

the AUC

ID Size Description Dependency Path Examples  
(represented as phrases) 

3 36 inhibition “C, a G inhibitor” 
“G specific inhibitor, C” 
“C, an inhibitor of G” 
“G inhibition by C” 
“effects of the G inhibitor, C, on…” 

11c 96 metabolism, 
secretion/ 
uptake  

“effect of G on C metabolism” 
“effects of G on C formation” 
“effect of G on the secretion of C” 
“control of G by C” 
“G stimulates C uptake” 
“[chemical] may reduce G concentration 
via C” 
“G stimulates C transport” 
“effect of C on G release” 

19 38 channels / 
transporters 

“regulation of G transporters C and…” 
“G is a C channel that modulates…” 
“G C transporter expression” 
“C transporter, G” 
“distribution of G C channel subunits” 

(a)

Fig. 3. (a) Chemical-gene dendrogram. Each leaf node represents one

dependency path. In the example patterns above, C represents the chemical

and G the gene/protein
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In Figure 4c (gene-disease), the known causal/pathogenic muta-

tion relationships extracted from OMIM were strongly enriched

for the U (causal mutation) and Ud (mutation affecting disease

prognosis) themes and no others. The disease target relationships

from TTD and the gene-disease associations from PharmGKB were

each enriched for several themes. Disease targets from TTD, which

describe situations where a protein is being targeted for treatment

of a disease, were enriched for themes D (drug target), Te (possible

therapeutic effect by targeting protein), L (improper regulation

linked to disease), Md (diagnostic biomarkers), X (overexpression

in disease) and Ud (mutation affecting disease prognosis). While

the PharmGKB relations shared enrichment for themes D and L,

they had no enrichment for the other TTD themes but were en-

riched for themes U (causal mutations) and Y (polymorphisms

altering risk).

In Figure 4d (gene–gene), database relations involving protein

complexes (Reactome) and proteins targeting other proteins

(DrugBank) were both enriched for the same two themes: H (protein

complexes) and I (signaling pathways). The relations from

PharmGKB, which describe situations where two proteins are part

of a pharmacokinetic or pharmacodynamics pathway for a drug,

were enriched for theme Vþ (activation/stimulation) and no other

themes.

4.4 Description of the final network
Our final dataset is a network with labeled, weighted edges. Because

a single dependency path can support multiple themes, the network

is a multigraph.

The full network is available in two parts on Zenodo (https://zen

odo.org/record/1035500).

Part I connects dependency paths to themes. Each record con-

tains a dependency path followed by the supports for each theme,

and indicators for whether or not the path is part of the flagship

path set for each theme.

Part II connects sentences to dependency paths. It consists of

sentences and associated metadata, entity pairs found in the sen-

tences and dependency paths connecting those entity pairs. Each

record contains all of the information shown in Table 4. Part II

contains 4 451 661 records, of which 92 465 (2.1%) represent

chemical-gene dependency paths, 3 875 209 (87.1%) are

chemical-disease paths, 338 306 (7.6%) are gene-disease paths

and 145 681 (3.3%) are gene–gene paths. We have arranged the

paths in alphabetical order of the entity pairs, so that different

sentences referring to the same two entities appear next to each

other in the file.

ID Size Description Dependency Path Examples  
(represented as phrases) 

8h 80 treatment of 
disease 
(indication of 
efficacy) 

“C may be useful for the treatment of D” 
“evaluate the protective efficacy of C in D” 
“C is a promising treatment option for pa-
tients with D” 
“C is approved for the treatment of D” 
“C is commonly prescribed for D” 

15 37 side effects 
(association) 

“D associated with C therapy” 
“the use of C has been associated with D” 
“C intake was associated with D” 
“incidence of D in patients receiving C” 
“D occurred after C” 

20 63 levels associ-
ated with 
disease risk / 
progression 

“high C levels are associated with increased 
risk of D” 
“C implicated in D” 
“effect of D on serum C levels”  
“patients with D and increased C concentra-
tions” 
“C has been implicated in the pathogenesis of 
D” 
“C intake may be associated with [low-
er/higher] risk of D” 
“C supplementation and incidence of D: …” 

(b)

Fig. 3. (b) Chemical-disease dendrogram. Each leaf node represents one

dependency path. In the example patterns above, C represents the chemical

and D the disease/phenotype

ID Size Description Dependency Path Examples  
(represented as phrases) 

2j 33 influences 
disease 
treatment 

“the use of G in the treatment of D” 
“D in patients treated with G” 
“effect of G on [event] in D patients” 
“G therapy in patients with D” 
“efficacy of G in D” 

7 26 biomarkers, 
diagnostic 

“G is a robust diagnostic biomarker for D” 
“G is an independent predictor of D” 
“G as an indicator of D in patients with…” 
“prognostic significance of G in D patients” 
“effects of [situation/event] on G levels in 
D” 
“G is a potential marker of D” 

14 91 causal muta-
tions 

“mutation of G in a patient with D” 
“G mutation is associated with D” 
“novel mutation in G gene associated with 
D” 
“characterization of G mutations causing 
D” 
“mutations of the G gene in patients with 
D” 
“D: a novel G mutation…” 
“D: novel G mutations and…” 
“the recurrent mutation of G in C patients” 
“G mutations can cause D” 

(c)

Fig. 3. (c) Gene-disease dendrogram. Each leaf node represents one depend-

ency path. In the example patterns above, G represents the gene/protein and

D the disease/phenotype
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4.5 A note on coverage
We were able to assign theme supports to 37 491 chemical-gene de-

pendency paths (13.6% of total), 2 021 192 chemical-disease depend-

ency paths (33.3%), 136 206 gene-disease dependency paths (20.0%)

and 41 418 gene–gene dependency paths (11.0%). The rest of the de-

pendency paths never co-occurred with a single flagship path for any

theme, so we could not calculate theme supports for them.

However, since some dependency paths occur more frequently

than others, our coverage at the sentence level is somewhat higher.

If we consider all extractable relationship triples somewhere in the

literature (two entities connected by a dependency path in a single

sentence), we are able to assign themes to 92 465 chemical-gene con-

nections out of 556 487 (16.6%). For chemical-disease connections,

of which there are 13 658 821 in Medline, we can assign themes to

3 875 209 (28.4%). For gene-disease connections, we can assign

themes to 338 306 out of 1 071 043 (31.6%), and for gene–gene, we

can assign themes to 145 681 out of 1 274 010 (11.4%).

5 Discussion

5.1 Summary of our approach and its advantages
We have constructed a labeled, weighted network of structured bio-

medical relationships for all Medline abstracts. Inputs to our method

were (a) the complete set of named entity annotations from PubTator

and (b) human annotation of the clusters produced by EBC. The discov-

ery of clusters of dependency paths corresponding to different classes of

biomedical relations was handled by EBC and based solely on patterns

in the text. In our approach, a theme is not just an abstract concept like

‘inhibits’; it is a set of dependency paths that tend to connect similar

entities. Some of our themes may have been obvious to a human

schema creator, but others were less obvious, and EBC often distin-

guishes themes that a human may have lumped together (‘mutations af-

fecting disease course’ versus ‘causal mutations’) and combines themes

that a human may have separated (directionality of expression changes,

for example). We believe making theme decisions based on clusters of

textual patterns represents a principled approach to schema creation.

ID Size Description Dependency Path Examples  
(represented as phrases) 

6 39 cell populations, 
protein production 
/ gene expression 

“G1 production by G2 + T cells” 
“G1 producing G2 + T cells” 
“G1 signaling in G2 + T cells” 
“G1 expression on G2 + T cells” 
“the role of G1 in the function of G2 + 
T cells” 

10 76 binding, regula-
tion of activity 

“G1 binds G2” 
“G2 interaction with G1” 
“G1 is a receptor for G2” 
“G1 binding to G2”  
“G1 mediates activation of G2” 

14 67 activation, stimu-
lation, signaling 

“G2 activates [protein] via G1” 
“G1 stimulates G2”  
“G1 modulates G2 signaling” 
“G2 stimulates G1 expression”  
“G1 induces phosphorylation of G2”  

(d)

Fig. 3. (d) Gene–gene dendrogram. Each leaf node represents one depend-

ency path. In the example patterns above, G1 represents the first gene/

protein and G2 the second gene/protein

Fig. 4. (a) Chemical-gene theme evaluations. This caption refers to (a)–(d).

In all cases, the y-axis refers to AUC for ranking dependency paths connecting

known database relations against others using scores based on their sup-

ports for a given theme (Fig. 2). Descriptions of the theme symbols are in

Table 3. Error bars are one standard deviation of AUC across 100 bootstrap

replicates. A bar is colored if the mean AUC is >1 SD above 0.5. Some themes

led to AUCs <0.5 (i.e. database relations were depleted for these themes in-

stead of enriched) and were cut off because the y-axis starts at 0.5

Fig. 4. (b) Chemical-disease theme evaluations. See caption (a)
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Mapping other dependency paths to the schema is as simple as

looking for co-occurrence of new paths with the flagship paths for the

different themes. A single dependency path can provide support for

multiple themes, so the themes can be reconfigured and new themes

can be introduced at any time, without altering the supports for exist-

ing themes. As Medline grows, new data can be labeled quickly and

seamlessly simply by considering co-occurrence frequencies with the

flagship paths for different themes, as described earlier. The most dif-

ficult and time-consuming part of the process is the manual labeling

of the clusters, and this need only be performed once.

5.2 An illustrative example
Unfortunately, due to space limitations, we needed to place the de-

tailed descriptions of most of the different clusters in Figure 3 and

Table 3 in the Supplementary Material, along with the sample de-

pendency paths used in the manual labeling process. However, we

present one example here to illustrate the power of this approach.

Consider a situation where we believe a particular genetic mu-

tation will decrease the body’s ability to metabolize a certain drug.

We may want to search the literature for all of the side effects that

have ever been observed for that drug, so we can monitor those

symptoms in patients with the mutation. Unfortunately, the vast

majority of sentences in which a phenotype occurs with the drug

describe treatment relationships, where the drug is being used to

treat or prevent a certain condition and does not cause it. Unless

we have extensive knowledge of the drug and its indications, sift-

ing through hundreds of sentences to identify side effect relation-

ships can be time consuming. Restricting our search to dependency

paths with high support for theme Sa (Table 2) can help us prune

away irrelevant data.

In addition, very few sentences in the literature actually say ‘D is

a side effect of drug C’. However, clusters 15 and 16 in Figure 3b

contain multiple different dependency paths indicating that idea,

corresponding to patterns like ‘the use of C has been associated with

D’, ‘C intake was associated with D’, ‘administration of C resulted

in D’ and ‘patient developed D after receiving C’ (see Fig. 3b cap-

tion). The grouping of these various patterns, which contain diverse

word choice and phrasing, occurred automatically during the clus-

tering process. All of the sentences containing one of these patterns,

along with dozens more just like them, would receive a high score

for theme Sa. From a practical standpoint, thematic labeling repre-

sents a filtering process on the text of the literature that can help tar-

get literature searches for a variety of research and clinical needs.

Table 3. Simplified relationship themes derived from the clusters shown in Figure 3a–d

Type Symbol Theme Relevant figure Supporting cluster(s)

Chemical-gene Aþ Agonism, activation 3a 6þ
A� Antagonism, blocking 6–

B Binding, ligand (esp. receptors) 14–16

E1 Increases expression/production 8þ, 9þ
E� Decreases expression/production 8–, 9–, 10

E Affects expression/production (neutral) 8, 9, 11a

N Inhibits 3

Gene-chemical O Transport, channels 3a 19, 21

K Metabolism, pharmacokinetics 11c

Z Enzyme activity 20

Chemical-disease T Treatment/therapy (incl. investigatory) 3b 8g, 8h, 9

C Inhibits cell growth (esp. cancers) 2, 3

Sa Side effect/adverse event 6, 15, 16

Pr Prevents, suppresses 1, 9, 21, 24, 28

Pa Alleviates, reduces 26, 30

J Role in pathogenesis 20

Disease-chemical Mp Biomarkers (progression) 3b 18, 19

gene-disease U Causal mutations 3c 14

Ud Mutations affect disease course 13

D Drug targets 10, 12

J Role in pathogenesis 2h, 4, 6, 8, 9

Te Possible therapeutic effect 2j, 3

Y Polymorphisms alter risk 22, 26, 27

G Promotes progression 29

Disease-gene Md Biomarkers (diagnostic) 3c 5, 7

X Overexpression in disease 15, 17, 30

L Improper regulation linked to disease 18, 19, 21

Gene–gene B Binding, ligand (esp. receptors) 3d 10

W Enhances response 13

Vþ Activates, stimulates 14, 16

E1 Increases expression/production 21, 22

E Affects expression/production (neutral) 7, 17

I Signaling pathway 24

H Same protein or complex 25

Rg Regulation 28, 30

Q Production by cell population 1, 2, 6

Note: A symbol is bolded if it refers to a theme that appears in multiple dendrograms. Complete descriptions of the individual clusters can be found in the

Discussion. Examples of dependency paths from each cluster are in the Supplementary Material for this article.
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5.3 Notes on evaluation
We used known biomedical database relations to evaluate our

themes because they constitute the largest and most objective sour-

ces of structured biomedical relationships of interest to the scientific

community. We observed two promising findings: (1) our themes

often corresponded directly to relationship types captured in data-

bases, and (2) in nearly all cases, the correct themes were enriched

among database entity pairs. For example, drug indication themes

(T, C, Pa) were enriched among drug indication pairs from SIDER,

whereas the Sa, or side effect, theme was enriched among drug-side

effect pairs from the same database. For OMIM, which tracks the

relationships between genetic variants and their resultant pheno-

types, the only enriched themes were for mutations causing disease

or affecting its course. This means that if we were to rank natural

language descriptions of gene-phenotype relationships by their

scores on the U (causal mutations) theme, we would be more likely

to prioritize descriptions of relationships appropriate for OMIM

than if we were to rank them by their scores on some other theme. If

we want to build a database like OMIM from scratch, we should

consider not only gene-phenotype entity pairs that frequently co-

occur in sentences; we should focus our attention on sentences re-

flecting this particular theme.

We did not begin evaluating our themes against biomedical data-

bases until long after the network had been created, so we were

encouraged to see strong enrichment for the appropriate themes in

many cases. Aside from OMIM and its relationship to the U (causal

mutations) theme, the O (transport) theme is strongly enriched for

chemical-protein transport relationships and the E- (decreased ex-

pression) and N (inhibition) themes are strong indicators of drug-

target and protein-inhibitor relationships. Protein–protein binding is

indicated by the H (protein complexes) and I (signaling) themes,

while chemical biomarkers for diseases can be found by looking for

enrichment of the J (role in pathogenesis) and Mp (biomarker)

themes.

5.4 Study limitations
However, our approach is not without limitations. Its most signifi-

cant downside is that it relies on the co-occurrence of different de-

pendency paths to map rarer paths to themes. There are a large

number of dependency paths that (a) never co-occur with another

path, and (b) occur with only one entity pair. These orphan paths

cannot be assigned to themes using the current method (Section 4.5).

In the future, addition of a pre-processing step that simplifies and

unifies diverse dependency paths, such as Biosimplify (Jonnalagadda

and Gonzalez, 2010), might help rescue some of these orphan paths.

In addition, a dependency path can only capture the relationship

between two entities in a sentence, but many relationships involve

more than two entities. Right now, we miss these more complex

relations.

Another issue with using dependency paths as patterns is the po-

tential for parser error. In (Percha and Altman, 2015) we identified

several cases where the parser’s construction of the dependency

graph led to dependency paths that bypassed words relevant to the

meaning of the relation. Avoiding this problem will likely mean

incorporating additional features in addition to the dependency

path, such as other dependencies in the sentence.

Fig. 4. (c) Gene-disease theme evaluations. See caption in (a) Fig. 4. (d) Gene–gene theme evaluations. See caption in (a)

Table 4. Information in a single record from Part II of the final net-

work dataset

Example Description

15161679 PubMed ID

0 Sentence number (0 ¼ title)

zosuquidar_trihydrochloride First entity name, formatted

54, 81 First entity name, location

P-glycoprotein Second entity name, formatted

28, 42 Second entity name, location

zosuquidar trihydrochloride First entity name, raw string

P-glycoprotein Second entity name, raw string

MESH: C095179 First entity, database id(s)

5243 Second entity, database id(s)

Chemical First entity, type

Gene Second entity, type

trialjapposjSTART_ENTITY

trialjnmodjinhibitor

inhibitorjamodjEND_ENTITY

Dependency path

A Phase I trial of a potent

P-glycoprotein inhibitor,

zosuquidar_trihydrochloride –

LRB- LY335979 –RRB-,

administered intravenously in

combination with doxorubicin

in patients with advanced

malignancy.

Sentence, tokenized

Note: The database IDs are from PubTator and correspond to the entity-

type-specific databases described in Wei (2013).

2622 B.Percha and R.B.Altman



An issue particular to gene–gene relationships, or any type of

symmetric relationship, is that our method treats each direction

separately. We were interested to see whether the dendrogram in

Figure 3d would fragment into two halves, each containing relation-

ships of a particular directionality, but this did not occur. Many of

the gene–gene relationships in Table 2 are symmetric (binding, for

example), but at this time we are unable to distinguish directionality

in, for example, activation relationships. We will investigate this

issue, and all dependency path issues, further as we develop the next

version of our network.

We initially intended to include chemical-chemical and disease-

disease relations in our network in addition to the other four types.

However, we observed that the majority of single-sentence co-

occurrences for these types did not represent true relationships, and

instead consisted of chemical pairs present in lists, for example, in

addition to errors where, for example, a protein was tagged as a

chemical. We may solve this problem in future versions of the network

by applying a system like DeepDive (Mallory, 2015) as a first step to

weed out sentences that are unlikely to contain true relations.

Finally, the named entity recognition provided by PubTator,

while state-of-the-art, is not perfect. While the multi-word entity

recognition provided by PubTator is a huge improvement over the

simple lexicon matching NER used in (Percha and Altman, 2015),

we have also observed several situations where only parts of entity

names are captured, or where entities are assigned to the wrong type

(proteins labeled as chemicals, etc.). However, we expect that NCBI

will continue to refine its NER algorithms in the coming years.

5.5 Applications of the network and future directions
Our hope is that efficient schema creation and relationship extrac-

tion from the literature will enable faster search and organization of

scientific findings by curators and researchers across a variety of dis-

ciplines. We particularly hope that domain experts can use our net-

work to quickly and easily build up literature-based knowledge

bases for new domains and to identify the specific sentences in the

literature where relationships are described. For this reason, we are

releasing the raw dependency paths and tokenized sentences from

PubTator along with our thematically-labeled edges.

Structured networks like ours also enable new research directions.

Each edge in this network represents one discovery, made by some sci-

entist in a particular time and place. By combining them in a unified,

structured format, we can start to look for network motifs (Milo, 2002)

representing mechanisms for drug-drug interactions, characteristic pat-

terns of pharmacokinetic interactions in drug metabolism pathways and

genetic and chemical patterns underlying complex phenotypes.
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