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Cancer cells characteristically have a high proliferation rate. Because tumor growth
depends on energy-consuming anabolic processes, including biosynthesis of protein,
lipid, and nucleotides, many tumor-associated conditions, including intermittent oxygen
deficiency due to insufficient vascularization, oxidative stress, and nutrient deprivation,
results from fast growth. To cope with these environmental stressors, cancer cells,
including cancer stem cells, must adapt their metabolism to maintain cellular
homeostasis. It is well- known that cancer stem cells (CSC) reprogram their metabolism
to adapt to live in hypoxic niches. They usually change from oxidative phosphorylation to
increased aerobic glycolysis even in the presence of oxygen. However, as opposed to
most differentiated cancer cells relying on glycolysis, CSCs can be highly glycolytic or
oxidative phosphorylation-dependent, displaying high metabolic plasticity. Although the
influence of the metabolic and nutrient-sensing pathways on the maintenance of
stemness has been recognized, the molecular mechanisms that link these pathways to
stemness are not well known. Here in this review, we describe the most relevant signaling
pathways involved in nutrient sensing and cancer cell survival. Among them, Adenosine
monophosphate (AMP)-activated protein kinase (AMPK) pathway, mTOR pathway, and
Hexosamine Biosynthetic Pathway (HBP) are critical sensors of cellular energy and
nutrient status in cancer cells and interact in complex and dynamic ways.

Keywords: nutrient sensing, cancer stem cells, mammalian target of rapamycin (mTOR) signaling, adenosine
monophosphate-activated protein kinase (AMPK) signaling, hexosamine biosynthesis pathway (HBP) pathway
INTRODUCTION

Tumors are not uniform but rather heterogeneous in function. The involvement of stem cell cancer
(CSC) subpopulations has been demonstrated in almost all human cancers. These cells have the
capacity to replicate the entire tumor and are often denoted as tumor-initiating cells (TICs). They
also drive tumor formation, metastatic spread, and relapse, making them a daunting yet promising
goal to eliminate cancer (1).

Cancer cells reprogram their metabolic procedures to meet their needs, such as their high
proliferation rate: they induce rapid ATP generation to maintain energy status, increase the
biosynthesis of macromolecules and induce strict regulation of the cellular redox status.
n.org March 2021 | Volume 12 | Article 6277451
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Non-malignant cells obtain ATP, an energy source necessary for
survival, from both glycolysis and mitochondrial oxidative
phosphorylation (OXPHOS). In contrast, cancer cells mainly
get ATP from glycolysis rather than OXPHOS, even in the
presence of adequate oxygen concentration (Warburg effect)
(2). In a nutshell, most cancer cells depend on glycolysis to
generate ATP, even when oxygen is available.

In comparison to glycolysis-based differentiated bulk tumor
cells, CSCs exhibit high plasticity showing a distinct metabolic
phenotype that can adjust their metabolism to micro-
environmental changes depending on the type of cancer by
conveniently transferring energy output from one pathway to
another or obtaining intermediate metabolic phenotypes (2–4).
In either case, the mitochondria’s function is important and
focuses on CSC functionality (2). In addition to being a
significant source of ATP for cells, mitochondria are involved
in the regulation of many signaling pathways in CSCs, such as
mitochondrial fatty acid oxidation (FAO) for the generation of
ATP and NADPH (2).

Regardless of the primary metabolic phenotype in individual
cells, mitochondria often tend to control stemness properties (5–7).
Increased mitochondrial biogenesis and mass recognize cells with
enhanced self-renewal ability and chemoresistance (7–9),
irrespective of the type of cancer. Stem cell mitochondria are
smaller in number and display reduced activity relative to
differentiated cells (10, 11). All these characteristics result in
decreased ROS levels in stem cells (3). The apparent dependency
of CSCs, irrespective of their primary metabolic phenotype on
mitochondrial function, is a previously unrecognized Achilles’
heel modifiable for therapeutic purposes (2).

The proliferation of cancer cells largely depends on their
nutritional surroundings, especially the availability of glucose. It
is well-known that CSCs obtain a substantial amount of their
energy via aerobic glycolysis, which is faster than OXPHOS and
far less efficient to generate ATP per unit of glucose consumed,
provoking an abnormally high rate of glucose uptake (2). In
CSCs, glutamine is also actively absorbed (12). Although the
contribution of the metabolic and nutrient-sensing pathways to
stemness preservation has been demonstrated, the molecular
mechanisms connecting stemness with the nutrient-sensing
routes are not well understood (13). However, among these
pathways, mTOR and AMPK pathways’ contribution, together
with the hexosamine biosynthesis pathway (HBP), is maybe the
most significant.

The metabolic phenotype of CSCs has been the focus of
extensive study in recent years (2). It is important to emphasize
that tumors show cellular heterogeneity. While CSCs prefer
glycolysis and have fewer mitochondria, they have high
metabolic adaptability that allows them to thrive in conditions
of nutrient and stress micro-environmental fluctuations. Using
nutrient-sensing pathways such as HBP and those regulated by
mTOR and AMPK, stem cells sustain energy output by
inhibiting essential processes such as OXPHOS and enhancing
others such as glycolysis. In subsequent sections, we will explain
how HBP is regulated by the intake of nutrients such as fats,
amino acids, and nucleic acids, converting it into a crucial
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nutrient-sensor for these molecules’ variations. More so, we
will describe how the mammalian target of rapamycin (mTOR)
and AMP-activated protein kinase (AMPK) pathways participate
in nutrient-sensing as a way of regulating cell activity. We will
also describe how the interaction among these pathways adjusts
the cellular response to nutrients and is essential to stemness
maintenance (3).
HEXOSAMINE BIOSYNTHETIC PATHWAY

Cancer cells obtain a significant amount of energy from aerobic
glycolysis, which is faster than OXPHOS but less effective in
terms of ATP produced per unit of glucose consumed, resulting
in an abnormally high glucose rate uptake. In these conditions,
once glucose reaches the cell and is phosphorylated by
hexokinase, it can be redirected from the primary glycolytic
pathway to secondary pathways. Figure 1 shows that the flux
through the hexosamine biosynthetic pathway (HBP) then
increases, resulting in a cellular addiction to glutamine, and
glucose is also metabolized through other alternative pathways
such as the pentose phosphate pathway (PPP) (2).

Experimental evidence has shown the essential role of HBP in
cancer metabolic reprogram and the strong association between
cancer progression and enhanced HBP flux (14). Elevated HBP
enzyme expression has been reported in many human cancers.
HBP is a nutrient-responsive metabolic pathway because by
incorporating intracellular glucose, glutamine, acetyl-CoA, and
UTP into the synthesis of UDP-GlcNAc, this pathway allows
information on the availability of nutrients (13–15). Remarkably,
HBP produces the high-energy-donor UDP-GlcNAc, which is
the sugar donor utilized for macromolecule glycosylation and the
synthesis of other nucleotide sugars. It is also used by O-GlcNAc
transferase (OGT) to modify target proteins (13, 14). On the
other hand, OGT is also regulated by the input of amino acids,
fats, and nucleic acids, making O-GlcNAc a key nutrient-sensor
for variations in these macromolecules. Figure 1 presents the
synthesis of UDP-GlcNAc from glucose through HBP.
Glutamine/fructose aminotransferase (GFAT) commits glucose
to this pathway and represents the gate to HBP. As a result of
OGT activity, post-translationally protein modification by O-
GlcNAc occurs in the serine or the threonine residues of the
target protein.

Accumulating experimental evidence has shown that micro-
environmental stress signals in tumors induce phenotypic
plasticity and invasion and decide the therapeutic outcome.
Since stem cells play a crucial role in the integration of those
signals with their self-renewal and maintenance, and with the
tissue homeostasis, stem cell behavior is likely regulated directly
or indirectly by stress signals to coordinate metabolic stress with
an appropriate, tissue-specific response.

The fundamental function of O-GlcNAcylation seems to be
the modulation of cellular processes in response to nutrients and
cellular stress (16–20). Consistent with this, it has been
documented that the inhibition of OGT in colon cancer cells
or the incubation of cells under acute nutritional stress that
March 2021 | Volume 12 | Article 627745
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mimics the lack of OGT induces the emergence of an aggressive
CD133/CD44 double-positive CSC subpopulation (17).

Although metabolic reprogramming is a characteristic of self-
renewing cancer stem cells, very little is known about how their
metabolism is regulated to control CSC phenotype. In this regard,
it has been demonstrated that the inhibition of the HBP-Hypoxia
inducible factor-1 (HIF-1a) axis abrogates glycolysis enhancement
and reduces the CSC-like subpopulation (14). Hypoxia-inducible
factors (HIFs) are master transcription factors controlling the
adaptation of cancer cells to hypoxic conditions often generated in
tumors as a consequence of rapid growth. Importantly, it has been
demonstrated that HIFs regulate multiple phases of tumorigenesis
and are commonly associated in cancer cells with changes in
metabolic reprogramming (21). Remarkably, it has been shown
that O-GlcNAcylation regulates cancer metabolism and survival
stress signaling by regulating HIF-1a signaling pathway (22). In
this regard, we have established that O-GlcNAc and the activity of
OGT are intimately linked with the cell’s nutritional status, as
previously reported in several cell systems. Notably, we also found
that increased O-GlcNAc levels seem to be part of an endogenous
stress response associated with cancer cell survival (17). In line
with this, our findings have verified that starvation enhances the
expression of stem cell markers. Still, importantly, it validates the
perception that the OGT activity and HBP pathway are closely
integrated with the nutritional status of the cells and contributes to
the regulation of stemness maintenance (17).
THE MAMMALIAN TARGET OF
RAPAMYCIN PATHWAY

The mTOR pathway combines extrinsic and intracellular signals
to control cellular processes such as proliferation, cell survival,
metabolism, cytoskeleton organization, and autophagy (Figure 2).
It functions as a nutrient and growth factor sensor as well as a
Frontiers in Endocrinology | www.frontiersin.org 3
stress sensor in normal and cancer cells. Additionally, this pathway’s
fine-tuning regulation contributes to the precise equilibrium
between self-renewal and differentiation of stem cells (Figure 3)
(23, 24).

The activation of the Phosphatidyl-inositol-3 kinase (PI3K)/
Akt) or the Ras/ERK signaling pathways by growth factors
results in mTOR activation, as shown in Figure 2. The
dysregulation of these pathways is very common in many
cancer types: Receptor Tyrosine Kinases (RTKs) amplification
and mutations, PIK3CA or Ras mutations, and loss-of-function
mutations in negative regulators such as PTEN, collaborate to
constitutively activate either PI3K/Akt or Ras/ERK signaling
coupled to mTOR signaling.

Structure and Regulation of Mammalian
Target of Rapamycin
The mTOR protein is a serine/threonine kinase that operates
through two distinct multiprotein complexes, mTOR complex 1
(mTORC1) and mTOR complex 2 (mTOR complex 2). These
complexes share components such as the positive-regulator
mammalian lethal with SEC13 protein 8 (mLST8), the negative-
regulator DEP domain-containing protein 6 (DEPTOR), and Tti1/
Tel2 complex involved in mTOR complex stability and assembly
(25). Other components, such as the regulatory-associated protein
of mTOR (Raptor) and negative-regulator proline-rich Akt
substrate 40 kDa (PRAS40), are just part of the mTORC1
complex. Raptor recruits mTORC1 substrates, such as ribosomal
S6 kinase (S6K) and eukaryotic translation initiation factor 4E-
binding protein 1 (4E-BP1) to promote protein translation and
general anabolic metabolism (26). The mTORC2 complex
includes the unique rapamycin-insensitive mTOR (Rictor)
companion proteins, the mammalian stress-activated MAPK
interacting protein 1 (mSin1) regulatory subunit, where Rictor
and Sin1 recruit independent substrates to mTORC2-activated,
including SGK1, Akt, and PKC (27, 28).
FIGURE 1 | Hexosamine biosynthetic pathway. A fraction (3–5%) of glucose incoming the cell is shunted through the hexosamine biosynthesis pathway. In this
pathway, fructose-6-phosphate is converted to glucosamine-6-phosphate by the glutamine/fructose-6-phosphate amidotransferase (GFAT), the gate-keeper enzyme
of the route. The main product of the pathway is UDP-GlcNAc, which is the substrate for O-GlcNAc transferase.
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FIGURE 2 | mTOR is activated by growth factors via PI3K-Akt and RAS/MAPK pathways. The phosphorylation of phosphatidylinositol 4,5 biphosphate (PIP2) is
catalyzed by PI3K producing PIP3. Once PIP3 is formed, it induces the recruitment of proteins with PH domain such as PDK1, Akt, and mTORC2 complex,
facilitating Akt-Thr308 and Akt-Ser473 phosphorylation by PDK1 and mTORC2, respectively. Activated Akt inhibits the TSC complex and promotes mTORC1
activation by Rheb-binding. The Ras/AMPK pathway can regulate both mTOR complexes via the Ras-Raf-MEK-ERK signaling cascade. Activated ERK inhibits the
TSC complex by direct phosphorylation, and Ras-GTP can bind to mTORC2, increasing its kinase activity. mTORC1 activation in response to amino acids can be
dependent or independent on Rag GTPases. Also, mTORC1 can control its own activation and mTORC2 activity. mTORC2 is negatively regulated by mTORC1-
S6K1 that phosphorylates mSN1 and Rictor. The arrows indicate: !, activation signals; ┴, inhibition signals; ! pathway activators.
A B

FIGURE 3 | mTOR in cancer stem cells (CSCs). (A) The mTORC1 can modulate cell metabolism, cell survival, proliferation, and stem cell maintenance mostly through
protein synthesis activation of transcription factors that induce the expression of genes coding proteins involved in these functions. Also, mTORC1 can promote Gli1
(downstream effector of the Hedgehog pathway), nuclear localization through its effector S6K1 that induces Gli1 releasing from its endogenous inhibitor, SuFu, and inhibits
GSK3-mediated its degradation. Besides, mTORC1 under mitogenic signals and amino acid availability controls GSK3 nuclear import and, in turn, its nuclear functions as
mediating c-Myc degradation. (B) The role of the mTORC2 complex in CSCs is mainly mediated by its effector Akt. This protein can phosphorylate many substrates,
including OCT4 and SOX2, transcription factors that regulate stem cell self-renewal and promote pluripotency. Akt directly phosphorylates these transcription factors
increasing its stability and triggering its nuclear import. Also, Akt inhibits GSK3, leading to GSK3 substrates stabilization such as b-catenin and Snail implicated in epithelial-
mesenchymal transition (EMT) and Gli2 that increases SOX2, OCT4, and Nanog expression in CSCs. FoxO3 inhibition by mTORC2 signaling through Akt activation and
HDACs inhibition avoid FoxO3 nuclear localization and FoxO3 deacetylation, respectively. It might release FoxO3-induced c-Myc repression, promoting upregulation of
glycolytic metabolism. 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; FoxO3, forkhead box O3; GSK3, Glycogen synthase kinase; Gli1/2, Glioma-
associated oncogene; HIF1 a, hypoxia-inducible factor 1 subunit alpha; S6K1, ribosomal protein S6 kinase; OCT4, octamer-binding transcription factor 4; SOX2, RY-box
transcription factor 2. SuFu, SUFU negative regulator of hedgehog signaling. The arrows indicate: !, activation signals; ┴, inhibition signals.
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MTOR complexes have various roles within cells in response to
extra and intracellular signals, such as oxygen levels, energy stress,
nutrients, and increased availability of growth factors. In the
presence of nutrients and energy, mTORC1 acts as a master
regulator of cell growth and metabolism by fostering anabolic
processes. mTORC1 translocates to the lysosome membrane in
response to a stimulus, where the binding of Rheb activates mTOR
(29, 30). The Rheb-GTP induces a conformational change that
accelerates its kinase activity. mTORC1 activation is modulated
upstream by the tuberous sclerosis complex (TSC1/TSC2), which
has GAP activity that accelerates the transition from Rheb-GTP to
inactive Rheb-GDP. Regulation of Rheb-mTORC1 binding
integrates mTORC1 activation/inhibition to multiple upstream
signals (23, 24). For instance, as shown in Figure 5, the PI3K-Akt
pathway and MAPK/Ras inhibit TSC in response to growth factors
and insulin, increasing mTORC1 activity. AMPK can suppress
mTORC1 activation through TSC2 phosphorylation increasing its
GAP activity or through Raptor phosphorylation and dissociation
from mTOR, resulting in the biosynthesis process deactivation in
response to energy deficit (31, 32).

Like mTORC1, mTORC2 activation can be through
dependent/independent growth factors that could be closely
linked to its subcellular localization (33). As it can be seen in
Figure 5, growth factor-PI3K signaling seems to activate
mTORC2 independently on the TSC1/2-Rheb axis. One of
the mechanisms suggested is that PI3K-generated PIP3 binds to
thePHdomainwithin themSin1 subunit, consequently varying the
mTOR conformation and exposing its catalytic domain. Then,
mTORC2-bound to the plasma membrane can phosphorylate
Akt to maximally stimulate its catalytic activity (34). Also,
partially activated Akt by PKD1 can phosphorylate mSin1 and
then enhance mTORC2 activation. Activated-mTORC2
phosphorylates Akt at Ser473 to fully activate it in response to
growth factors stimulation (35). mTORC2 can also phosphorylate
Akt on Thr450 and PKCa on Thr638, regardless of growth factor
stimulation. Although there is a less nutrient-sensing mechanism
associated with mTORC2 activation, its crosstalk regulation with
mTORC1 may be a way to induce mTORC2 activation under
nutrient starvation and energy stress. mTORC1-S6K modulates
mTORC2 activation through phosphorylation ofmSN1 and Rictor
subunits (36, 37). However, Kazyken et al. (38) showed that AMPK
directly phosphorylates mTORC2 and increases its catalytic
activity independently of mTORC1-mediated negative feedback
as a mechanism to enhance cell survival under acute energetic
stress conditions (Figure 5).

Ras/MAPK signaling pathway positively regulates mTORC1
signaling via extracellular signal-regulated kinase (ERK)- and
p90 ribosomal S6 kinase (RSK), inactivating by phosphorylation
TSC2, or by phosphorylating Raptor (39) (Figure 5). Likewise,
Raptor can regulate the Ras/MAPK pathway through
competitive binding with Ras for SHOC2 leucine-rich repeat
scaffold protein (SHOC2), resulting in Ras/MAPK inhibition.
But also SHOC2 inhibits Raptor-mTOR interaction, mTORC1
activity, and turning out to trigger autophagy (40). This negative
crosstalk allows precise control between proliferation and
survival signals. As it can be observed in Figure 5, the
Frontiers in Endocrinology | www.frontiersin.org 5
mTORC2 complex is also susceptible to regulation by
oncogenic Ras. In this respect, Kovalsky et al. (41) identified
the physical interaction between Ras and mTORC2 complex at
the plasma membrane to increase mTOR kinase activity. Thus,
disruption of mTORC2-Ras association impairs Ras-driven
tumor growth, migration, and invasiveness (41, 42).

Cancer cells are commonly exposed to hypoxia and nutrient
depletion. These conditions, along with other stressful conditions
such as hyperactive metabolism, mitochondrial dysfunction, and
chronic oncogenic mTOR activation, force them to adapt to
survive. Besides, they often correlate with other cellular stresses
such as endoplasmic reticulum (ER) stress and oxidative stress.
Because cancer cell growth is dependent on ATP-demanding
anabolic processes, such as lipid, protein, and nucleotide
biosynthesis, they are likely to benefit from mTORC1 activation,
which promotes building block biosynthesis and thus contributes
to abnormal proliferation. It should be considered, however, that
mTORC1 inhibits oncogene Akt through negative feedback loops.
Thus, persistent mTORC1 activation results in Akt inhibition and
thus induces apoptosis. As a result, cancer cells need to balance
mTORC1 activity to keep biosynthetic processes and Akt active
simultaneously (43). On the other hand, activation of mTORC1 by
nutrients and growth factors also leads to autophagy inhibition
through the phosphorylation of multiple autophagy-related
proteins involved in autophagy initiation and autophagosome
nucleation (23, 30). Since mTORC1 is a potent autophagy
inhibitor, it seems paradoxical that cancer cells’ survival also
requires simultaneous mTORC1 and autophagy activation. This
fact again indicates that cancer cells need to maintain a delicate
balance between mTORC1 activity and survival mechanisms such
as autophagy to benefit from both. Consistent with this, cancer
cells have evolved protective tools to avoid the induction of cell
death by chronic stresses. Examples of such mechanisms are
metabolic reprogramming (the Warburg effect), increased
glucose uptake, antioxidant protein synthesis, autophagy and
angiogenesis induction, and stress granule formation. There are
also activating and inhibiting inputs on the mTORC2 network
during different stresses. Examples of them are the activation of
mTORC2 by hypoxia (43), and the inhibition of mTORC2 by ER
stress (44), and by oxidative stress (45, 46).

Mammalian Target of Rapamycin
Regulation in Cancer Stem Cells
The mTORC1 complex can modulate cell metabolism, cell survival,
self-renewal, and stem cell maintenance mostly through protein
synthesis activation of transcription factors that induce the
expression of genes coding proteins involved in these functions,
as it is depicted in Figure 3. Under mitogenic signals and amino
acid availability, mTORC1 controls GSK3 nuclear import and, in
turn, its nuclear functions, such as mediation of c-Myc degradation
(47). Besides, mTORC1 can promote Gli1 (downstream effector of
the Hedgehog pathway) nuclear localization through its effector
S6K1 that induces Gli1 releasing from its endogenous inhibitor,
SuFu, and inhibits its GSK3-mediated degradation (47).

The accumulating experimental evidence has shown that
cellular metabolism differences between CSCs may depend on
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the microenvironment and dysregulation of intracellular
pathways that control metabolism. The mTOR nutrient-
pathway sensor has a critical role in CSCs metabolic plasticity.
It must be considered that the impact of mTOR inhibition in
stemness can be explained partly by mTOR signaling-mediated
regulation function over the pluripotent transcriptional factors,
but also by its crosstalk with pathways involved in self-renewal
such as Notch, Hedgehog, and Wnt signaling.

ThemTORC2role inCSCs ismainlymediatedby its effectorAkt
(Figure 3). This protein can phosphorylate many substrates,
including OCT4 and SOX2 transcription factors involved in stem
cell self-renewal and multipotency promotion. Akt directly
phosphorylates these transcription factors increasing its stability
and triggering its nuclear import. Also, Akt inhibits GSK3, leading
to GSK3 substrates stabilization such as b-catenin and Snail
implicated in epithelial-mesenchymal transition (EMT), and Gli2
that increases SOX2,OCT4, andNanog expression inCSCs. On the
other hand, FoxO3 inhibition by mTORC2 signaling through Akt
activation andHDACs inhibition avoid FoxO3nuclear localization
and FoxO3 deacetylation, respectively. It might release FoxO3-
induced c-Myc repression, promoting upregulation of glycolytic
metabolism (48). However, FoxO3 plays a relevant role in restrain
mTORC1 overactivation, enhance survival, and promote stem cell
quiescence (49, 50).

As explained before, mTOR hyperactivation is common in
tumor bulks. However, this hyperactivation also occurs in the
subpopulation of CSCs. PI3K/mTOR activation plays a
significant role in maintaining cancer stem-like cells for in
vitro colony formation ability, spheres formation capacity, and
in vivo tumorigenicity (51–53). In comparison, mTOR signaling
inhibition appears to be necessary to maintain quiescent
leukemia stem cells’ reservoir population. At the same time, its
activation is needed in the cycling of leukemia progenitors and
the stem population’s activation during leukemogenesis (54).
Boral et al. (55) identified mTORC2 as crucial signaling in the
long-term dormancy maintenance and survival of circulating
tumoral cells and bone marrow resident breast cancer cells.

The pluripotency factors SOX2 and OCT4 can modulate PI3K/
Akt signaling through transcriptional regulation. While SOX2
supports PI3KCA gene expression, OCT4 represses Akt1
transcription (56, 57). In turn, Akt can phosphorylate both
pluripotency transcription factors, increasing their protein
stability and subcellular localization (57–59). Akt-mediated
OCT4-T235 phosphorylation prevents the repression of Akt1
promoter and favors its transcription, and beyond leads SOX2-
OCT4 binding and transcription of stemness genes containing
SOX2-OCT4 binding motifs in embryonal carcinoma cells (60).
PI3K/Akt/mTOR inhibition reduces SOX2 and OCT4 protein
levels and thereby self-renewal and tumor-initiating capacity in
some cancers (61–63). Dual PI3K and mTOR inhibitors decrease
the sphere-forming ability (64), EMT proteins, and CSC markers
expression.Theyalso increase the radiosensitivity inprostate cancer
cells (65), and inhibit the self-renewal capacity, tumor growth and
promote the differentiation of glioblastoma CSCs (65, 66) and
Colorectal CSCs (67). However, both mTOR complexes
inhibition, rather than mTORC1 and PI3K inhibition, depletes
Frontiers in Endocrinology | www.frontiersin.org 6
SOX2 andOCT4protein levels in glioblastoma cells and suppresses
the ability to form tumor-spheres as well (68). Altogether this
evidencepoints outmTORC,particularlymTORC2,with a relevant
role in stemness maintenance likely through Akt phosphorylation.

It has been reported that mTOR plays an essential role in
radiotherapy and chemotherapy resistance through induction
EMT phenotype, an increase of stem cell marker expression, and
spheres-formation efficiency. Consistent with this, PI3K/mTOR
inhibition reverses this phenotype (64, 69, 70). Besides, it has also
been reported that mTOR plays a role in the development of
drug resistance through a dependent or independent metabolism
adaptation in cancer stem cells in response to chemotherapy or
other stressors. Although PI3K/mTOR dual inhibitors have been
used to reduce CSCs maintenance and function as mentioned
above, cells treated with this class of drugs also have shown
resistance in part for induction of compensatory activation of
other signaling cascades.
ADENOSINE MONOPHOSPHATE-
ACTIVATED PROTEIN KINASE PATHWAY

A vital sensor of cellular energy and nutritional status in
eukaryotic cells is adenosine monophosphate (AMP)-activated
protein kinase (AMPK). In addition to these canonical roles, to
facilitate cell survival, AMPK plays a significant role in
controlling mitochondrial respiration, nutrient transport,
autophagy, differentiation, longevity, and cell polarity (71).

AMPK becomes activated in response to energy stress
resulting from reduced production of ATP (e.g., low glucose,
starvation, oxidative stress, hypoxia) or excessive intake of ATP
(e.g., cell proliferation, muscle contraction, anabolism) (72). By
competitively binding both species, AMPK detects changes in the
AMP/ATP ratio, resulting in its phosphorylation by upstream
kinases and differential regulation of several downstream targets
that govern anabolic and catabolic pathways (Figure 4) (73).
Dysregulation of energy homeostasis is considered a significant
driver of changes in many human diseases such as obesity, type 2
diabetes, and cancer (74).

Adenosine Monophosphate-Activated
Protein Kinase Structure
AMPK is a heterotrimeric complex consisting of catalytic a
subunits and regulatory b and g subunits. The genomes of
virtually all eukaryotes contain genes that encode at least one of
these subunits. Mammalian cells have genes encoding a1/a2
isoforms (PRKAA1/PRKAA2), encoding b1/b2 isoforms
(PRKAB1/PRKAB2, and encoding g1, g2, g3 isoforms (PRKAG1/
PRKAG2/PRKAG3), which can form 12 distinct heterotrimeric
combinations (71). Individual AMPK subunits in humans and mice
exhibit significant differences in tissue-specific expression,
subcellular localization, and subunit association. While it is
understood that isoforms are commonly expressed in most cells,
there is a favored isoform combination in given tissue response to a
variation in cell physiology (75).
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AMPK complex formation, activity, and substrate
phosphorylation are affected by cancer (76). The N-terminal a
subunit includes a protein kinase domain (KD) linked to a C-
terminal, which is required for binding b and g subunits. The a
domain is a typical serine/threonine kinase, which can be
phosphorylated by an upstream kinase and enhance its activity
more than 100-fold (76). The a-KD is immediately followed by an
auto-inhibitory domain (a-AID) that maintains the a-KD in an
inactive conformation in the absence of AMP. The a-AID is linked
to the globular C-terminal domain (a-CTD) by a flexible regulatory
segment (a-linker), which plays a crucial role in the allosteric
activation of AMPK by AMP (76).

The b subunit is N-terminally myristoylated at Gly2 (77). A
carbohydrate-binding module (CBM), sometimes called the
glycogen binding domain (GDB), is located in the central b
subunit, which senses the cellular energy in the form of glycogen.
The C-terminal region of the b subunit acts as a scaffold to enable
the binding of the a and g subunits (77).

Four cystathionine-b-synthase (CBS 1-4) domains make up
the g subunit involved in the nucleotide-binding (AMP, ADP, or
ATP). However, only three sites contribute to nucleotide
regulation depending on the cellular energy status (77, 78).
Although CBS2 is empty because it is not competent to bind
any of the adenine nucleotides, CBS4 retains high-affinity AMP
binding and is identified as a “non-exchangeable” site (75).
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Adenosine Monophosphate-Activated
Protein Kinase Regulation
AMPK becomes activated in response to energy stress by increasing
ADP and AMP cellular levels due to ATP consumption. The
enzyme’s allosteric activation is provided by the AMP and other
small-molecule activators that bind to the D subunit (79, 80). AMPK
is also activated by a great variety of natural and synthetic small
molecules (75), and these stimuli have different effects on AMPK
depending on the isoform combination of the complex (74). The
conformational change in the catalytic a subunits of the AMPK
enables the phosphorylation of a conserved threonine 172
by upstream kinase Liver Kinase B1 (LKB1) to increase
the AMPK activity by >100-fold. As a result, AMP inhibits the
dephosphorylation of Thr-172 in AMPK, which switches to
catabolic pathways that produce ATP (such as glycolysis and
autophagy) and inhibits the use of ATP (anabolic processes such
as protein and fatty acid biosynthesis) (81).

Furthermore, as shown in Figure 4, AMPK can be activated in
mammals by calcium/calmodulin-dependent protein kinase- kinase
b (CaMKK) during intracellular Ca2+ release when no changes in
nucleotides are detected (82). The transforming growth factor-b-
activated kinase (TAK-1), usually considered to act upstream in
MAPK (mitogen-activated protein kinase) pathways, can also
activate AMPK by its phosphorylation at Thr172. The
physiological role of this, however, remains uncertain (82).
FIGURE 4 | The AMPK pathway activation and energy homeostasis. Under energy stress, AMPK is phosphorylated at Thr 172 by LKB1 in response to variations in
AMP: ADP/ATP ratios. Other upstream kinases such as calmodulin-dependent protein kinase kinase 2 (CAMKK2) activated by intracellular calcium and transforming
growth factor-b-activated kinase (TAK1) represent alternative AMPK activation forms. In this context, AMPK-activated can repress anabolic processes and increase
catabolism to restore energy balance. AMPK suppresses the ATP-consuming anabolic pathways by direct phosphorylation and inhibition of several proteins:
mTORC1, acetyl-CoA carboxylase (ACC1), SREBP (sterol response coactivator), HMGCoA reductase (HMGCR), which play critical roles in protein, fatty acid, sterol,
and cholesterol synthesis, respectively. AMPK prevents glycogen storage by inhibitory phosphorylation of the glycogen synthases (GYS1 and GYS2). In addition,
AMPK also stimulates the catabolic pathways to produce ATP by several mechanisms. First, increasing glucose utilization by phosphorylation and inactivation of
domain family member 1 (TBC1D1) and thioredoxin-interacting protein (TXNIP), which control the translocation of glucose transporters GLUT4 and GLUT1 to the
plasmatic membrane, respectively. Second, AMPK increases glucose flux along the glycolytic pathway by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3) phosphorylation, which affects the PFK1 activity, a rate-limiting enzyme in glycolysis. AMPK indirectly stimulates fatty acids transport into the
mitochondria by ACC2 inhibition, in turn promoting fatty oxidation. On the other hand, AMPK induces autophagy directly by ULK1 phosphorylation, a kinase essential
for autophagy, and indirectly by mTORC1 inactivation. The arrows indicate: !, activation signals; ┴, inhibition signals.
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In addition to Thr172, crucial roles are played by other sites in
AMPK activity: a1 at Ser173 and a1Ser485 residues participate in
the negative regulation of AMPK by PKA (cAMP-dependent
protein kinase). Moreover, phosphorylation of AMPKa at Ser485/
491 due to cells’ stimulation with insulin causes decreased AMPK
activity (81).

Adenosine Monophosphate-Activated
Protein Kinase and Cancer Stem Cells
Activation of AMPK is a crucial mechanism that supports tumor
cell survival because cancer cells are metabolically adapted to
survive, particularly under nutrient or energy stress conditions.
AMPK activation promotes cell survival and cell growth within
tumors that undergo depletion of catabolic substrates by
facilitating the transition from anabolic to catabolic metabolism
by inhibiting anabolic programs and mTORC1 signaling (83, 84).
Consistent with this, many genetic approaches have demonstrated
that AMPK promotes cancer cell survival, proliferation, and
migration by redox homeostasis in malignant cells cooperating
with oncogenes such as c-Myc. This cooperation results in
increased cell transformation, metabolic reprogramming,
regulation of microtubule dynamics, and provide protection
against chemotherapy and radiation (76).

The roles played by AMPK in stem cells, what are the metabolic
conditions under it is most important, andwhich are the substrates
that mediate its activity in stem cells remain to be determined to a
great extent (85). Cancer stem cells tend to bemainly dependent on
glycolysis for ATP production. While AMPK’s role in controlling
cellmetabolism and energy status is significant, one would expect it
tohave implications for themaintenanceof stemcells.Although the
value of AMPK has not yet been extensively studied in stem cells
(85), since AMPK is active when the cell energy conditions are low,
and given the high-energy demands of cell division, it seems
counterintuitive that it promotes stem cell self-renewal. AMPK
activity may ensure the completion of mitosis under low energy
conditions since cell cycle arrest at this level could have catastrophic
implications for a cell’s genomic stability.

It has recently been reported that in response to glucose
restriction stress, activated AMPK can translocate into the nucleus
with pyruvate kinase M2 (PKM2) isoform through Ran protein.
Nuclear PKM2 binding to Oct4 can upregulate cancer stemness-
related genes (CD133, CD44, LDHA, NANOG), thus promoting
the CSCs population’s enrichment from several human cancer
types (86).

In response to energy stress, AMPK inhibits cellular protein
biosynthetic pathways and enhances autophagy, a catabolic
mechanism that recycles intracellular nutrients to sustain cell
survival under nutrient-deprived conditions (87). Under energy
stress conditions, AMPK activates autophagy phosphorylating
the autophagy regulator ULK1, while inhibits mTORC1
phosphorylating Raptor and the TSC1-TSC2 complex (88).
AMPK-mediated autophagy activation allows CSCs to survive
in the tumor microenvironment under low levels of both oxygen
and nutrient levels. Autophagy also promotes the expression of
stem cell markers such as CD44 and spheroid formation (89).
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Several pathways that regulate metabolism and autophagy
had been used as targets in cancer therapy. Metformin, a drug
commonly used to treat type-2 diabetes, is considered a potential
anticancer therapeutic agent of CSCs because it inhibits ATP
production by inhibiting the mitochondrial electron transport
chain. Interestingly, recent data demonstrate that metformin is
an AMPK activator and mTOR inhibitor that suppresses CSCs in
some cancers (90). Besides, Kim et al. (91) recently reported that
glutamine metabolism also plays an essential role in regulating
the sensitivity of colorectal CSCs to metformin and that this
occurs by an AMPK/mTOR pathway-dependent mechanism.

It has been suggested that AMPK possesses tumor
suppressor-like activity because, in response to energy stress, it
is activated by the upstream kinase LKB1, a tumor suppressor
whose function is often lost in human cancers (92). But unlike
LKB1, a, b, and g subunits of AMPK are rarely mutated in
human cancers and are actually amplified (93).
INTERPLAY BETWEEN HEXOSAMINE
BIOSYNTHESIS PATHWAY, MAMMALIAN
TARGET OF RAPAMYCIN, AND
ADENOSINE MONOPHOSPHATE-
ACTIVATED PROTEIN KINASE PATHWAYS

The Hexosamine Biosynthetic Pathway is a nutrient-responsive
metabolic pathway that generates the OGT substrate, UDP-
GlcNAc. Approximately 3-5% of cellular glucose deviates to this
pathway aswell as glutamine, acetyl-coenzymeA (CoA), and uridine
(Figure 1) (94). O-linked b-N-acetylglucosaminylation (O-
GlcNAcylation) is a very dynamic post-translational protein
modification. The modification occurs on serine (Ser) or threonine
(Thr) residues of multiple nuclear, cytoplasmic, and mitochondrial
proteins. Two enzymes participate in themodification process: while
OGT (O-GlcNAc transferase) transfers the N-acetylglucosamine
(GlcNAc) residue from UDPGlcNAc to the target proteins, OGA
(O-GlcNAcase) removes it from proteins. OGT and OGA-mediated
O-GlcNAc cycling disturbances constitute a significant force for
aberrant cell signaling in cancer. Indeed, several studies have shown
that cancer-related glucosemetabolism dysregulation correlates with
a rise in OGT expression and global levels of OGlcNAcylation in
malignant cells (17).

However, HBP is not the only nutrient-responsive pathway
inside a cell: as shown in Figure 5, many complex interactions
between the routes of HBP, AMPK, and mTOR combine
nutritional signals to react to environmental changes. As a
means of regulating cell function, the mammalian target of
rapamycin (mTOR) and AMP-activated protein kinase
(AMPK) pathways also engage in nutrient sensing and are
significant factors in many pathologies. Crosstalk precisely
adjusts the cellular response to nutrients between these
pathways (15). Notably, the interaction between these nutrient-
sensing pathways also significantly impacts stemness
maintenance, as shown in Figure 6.
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As mentioned before, AMPK functions as an energy sensor
and is activated by a rise in the ratio of AMP-to-adenosine-5’-
triphosphate (ATP). This molecular signal indicates that more
energy is consumed in the cell than it is produced. Strong
experimental evidence shows that AMPK negatively regulates
the mTOR pathway, but O-GlcNAcylation of AMPK lowers its
enzymatic activity resulting in growth promotion (95). Similar to
how the AMP-to-ATP ratio represents cellular energy load, the
UDP-GlcNAc abundance indicates the cell’s nutritional status
because its synthesis involves glucose and metabolites derived
from several major metabolic pathways. Zibrova et al. (96)
provided a point of connection between AMPK and O-GlcNAc
signaling; they demonstrated that the rate-limiting enzyme of the
HBP signaling, glutamine/fructose-6-phosphate amidotransferase-
1 (GFAT1), is a physiological substrate of AMPK. These authors
also showed that the AMPK-mediated phosphorylation of GFAT1
at its residue Ser243 is inhibitory and occurs in response to
physiological or small-molecule activators, thus leading to a
reduction in the levels of cellular protein O-GlcNAcylation.
Further work showed that AMPK-dependent phosphorylation of
GFAT1 induces angiogenesis in endothelial cells (96).

The HBP pathway significantly participates in promoting stem
cell marker expression. AMPK, on the other hand, can
phosphorylate OGT, resulting in changes in the role of OGT. It
has been shown that AMPK andOGTare substrates for each other
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and control each other’s activity in both non-malignant and
malignant cells (Figure 5). For example, in HEK293T kidney
cells, total cellular levels of O-GlcNAc regulate the activity of
AMPK, with high levels of O-GlcNAc decreasing activation
while increasing activation at low levels. These results are
consistent with previous data indicating that the kinase
mechanism is inhibited by AMPK O-GlcNAcylation (15, 97). In
general, sustainedO-GlcNAcylation is related toAMPK activation
suppression, which could increase the activity of mTORC1 and
increase the proliferation rate of cells. In colon cancer cells,
Ishimura et al. (98) demonstrated that AMPK is OGlcNAcylated
and that the increase in this protein modification diminishes
AMPK phosphorylation resulting in mTOR pathway activation.

Concerning mTOR-HBP pathway interaction, Very et al. (99)
showed that O-GlcNAcylation levels are controlled by mTOR in
both normal and colon cancer cells. These authors also reported
that down-regulation of O-GlcNAcylation by GFAT inhibition, or
its up-regulation by OGA knockdown, decreases and increases,
respectively, mTOR signaling activation. Moreover, Moloughney
et al. (100) demonstrated that mTORC2 modulates the
hexosamine biosynthetic pathway by promoting the expression
ofGFAT1, thekeygate-keeper enzymeof theHBP.Therefore,HBP
is likely to be closely regulated by nutrient levels and signaling
molecules that regulate metabolism through GFAT1. These
authors also identified Ser-243 in GFAT1as the site controlled by
FIGURE 5 | The interplay between HBP, mTOR, and AMPK signaling pathways. The HBP pathway senses glucose, glutamine, and nucleotide levels to produce
UDP-GlcNAc, the primary metabolite for protein O-GlcNAcylation, via the enzyme OGT. GAFT1 and OGT suppress the AMPK activity, which is a master energy
stress sensing enzyme. AMPK activated by phosphorylation favors the processes that produce ATP over the biosynthesis of molecules. Therefore, AMPK functions
as a negative regulator of mTORC1, which induces translation and promotes cell growth when there are high levels of nutrients. Furthermore, AMPK activates TSC1/
2, which ensures complete suppression of mTORC1 activity. Also, AMPK and mTORC1 pathways feedback take over the ULK1 activation, a protein necessary for
the induction of autophagy. On the other hand, growth factors activate the AKT and MAPK kinase pathways, which convergence in the same way in the inactivation
of the TSC1/2 complex, the negative regulators of mTORC1. On the other hand, the mTORC2 complex activity is controlled by glucose and acetate levels through
acetyl-CoA, an intermediary metabolite in glycolysis, fatty acid catabolism, and the HBP pathways. mTORC2 also converges with the HBP pathway in the stimulation
of GFAT1. In consequence, the interplay between these signaling pathways is involved in nutrient sensing as a means of regulating cell activity and growth and, more
importantly, in reacting to changes in the microenvironment of the tumor. The arrows indicate: !, activation signals; ┴, inhibition signals.
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mTORC2. They found that in response to intracellular nutrient
levels, mTORC2 regulates both the amplitude and duration of
phosphorylation of GFAT1 at Ser-243 (100).

Figures 5 and 6 show that the nutritional sensing pathways,
such as AMPK, mTORC1, and O-GlcNAc, are full of feedback
loops (15, 79, 83, 97, 99, 100) that enable a fine degree of control
to be self-regulated and achieved. Several inputs interact in
dynamic and complex ways. While decreased energy levels
cause mTORC1 inhibition and AMPK activation, these
conditions can also generate energy conservation through
increased global O-GlcNAcylation.

CONCLUDING REMARKS

Using nutrient-sensing pathways such as those regulated by
HBP, mTOR, and AMPK, stem cells respond to nutritional
cues, and the crosstalk between them is key to maintaining
stemness (Figure 6).

There is still no agreement on cancer stem cells’ metabolic
properties. Some studies show that they are predominantly
glycolytic, and others indicate mitochondrial metabolism
instead as their key energy source. But it is clear that CSCs are
distinguished by a high plastic metabolism that enables them to
withstand stressful conditions in the field.

Maintaining a continuous balance between nutrient
availability and energy demand is necessary for all normal or
malignant cells. Accumulating experimental evidence has shown
that cancer-related glucose metabolism dysregulations interact
with increased glucose flux via HBP, leading to high OGT
expression and global levels of OGlcNAcylation. A key
signaling molecule that regulates the metabolism of cells is
Frontiers in Endocrinology | www.frontiersin.org 10
mTOR. It operates through two distinct protein complexes,
mTORC1 and mTORC2. Numerous studies have shown how,
in response to nutrients supply, mTORC1promotes anabolic
metabolism. By modulating the expression of GFAT1, the rate-
limiting step in the HBP signaling route, mTORC2 controls the
HBP. On the other hand, the mTOR pathway is negatively
regulated by AMPK, an essential regulator of cellular and
whole-body energy metabolism. This enzyme synchronizes
metabolic processes to sense and balance nutrient availability
with energy consumption. But cellular levels of O-GlcNAcylation
control the activity of AMPK, with high levels of O-GlcNAc
decreasing its activation, while low levels increase activation.
Therefore, the interplay between HBP, mTOR, and AMPK
pathways is involved in nutrient sensing to regulate cell activity
and growth and, more importantly, in reacting to changes in the
microenvironment of the tumor.
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FIGURE 6 | HBP, mTOR, and AMPK signaling pathways interaction is crucial to stemness maintenance. Using nutrient-sensing pathways such as HBP, mTOR, and
AMPK, stem cells respond to nutritional cues, and the crosstalk between them is key to maintaining stemness. Thus, to regulate the maintenance of stem cells in the
tumor microenvironment, conditions such as the availability of nutrients, growth factors, and oxygen can modulate energy maintenance through the activation and
inhibition of master proteins of these pathways. The self-renewal of stem cells has been shown by an increase in the expression of stem cell markers like CD44 or
CD133 and an increase in the ability to resist chemotherapeutic drugs, which maintains the survival of these cells within the tumor. In the blue circle, the main
proteins that allow the interaction between these pathways are highlighted.
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