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Abstract: Unmanned aerial vehicles (UAVs) require data-link system to link ground data terminals
to the real-time controls of each UAV. Consequently, the ability to predict the health status of a UAV
data-link system is vital for safe and efficient operations. The performance of a UAV data-link system
is affected by the health status of both the hardware and UAV data-links. This paper proposes a
method for predicting the health state of a UAV data-link system based on a Bayesian network fusion
of information about potential hardware device failures and link failures. Our model employs the
Bayesian network to describe the information and uncertainty associated with a complex multi-level
system. To predict the health status of the UAV data-link, we use the health status information about
the root node equipment with various life characteristics along with the health status of the links as
affected by the bit error rate. In order to test the validity of the model, we tested its prediction of the
health of a multi-level solar-powered unmanned aerial vehicle data-link system and the result shows
that the method can quantitatively predict the health status of the solar-powered UAV data-link
system. The results can provide guidance for improving the reliability of UAV data-link system and
lay a foundation for predicting the health status of a UAV data-link system accurately.

Keywords: UAV data-link system; Bayesian networks; health status prediction; networking mode;
bit error rate

1. Introduction

Unmanned aerial vehicles (UAVs) are used widely in military and civilian applications because
of their low initial cost, high cost-effectiveness over time and ability to operate without casualties [1].
UAVs serve in diverse areas such as exploration, investigation, weather forecasting, pipe network
inspection, aerial photography and express delivery services. However, unlike manned aircraft, UAVs
require data-link system to link ground terminals to the real-time control of each vehicle. The condition
of a UAV data-link system determines whether the UAV can perform its tasks successfully. Therefore,
it is particularly important to develop a model for predicting the health status of UAV data-link system.

Because of the complexity and diversity of the tasks carried out by UAVs and the harsh
environments in which they may operate, the networking modes of UAV data-links are complex
and diverse in order to provide effective control. The failure of a UAV data-link that results in the
degradation or failure of performance may also involve accidental failure of hardware and even failure
of the link itself. Complex and volatile environments often have an impact on the health of UAV
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data-link systems. For example, an increase in the bit error rate will reduce the quality of information
transmission and affect the health of a UAV data-link. So, we have not found any research on the
health status prediction of the UAV data-link system.

Many scholars [2–7] have conducted extensive research on health status prediction. For example,
Nguyen et al. studied the selection of different degradation models using a large number of health
monitoring data [8]. Most of the systems for health status prediction have been modeled based on
one of several approaches: the gamma process [9–11], Wiener process [12,13], Markov process [14],
general generation function [15], Monte Carlo Simulation [16–18]. However, these methods can only
describe the physical health status caused by performance degradation or accidental failure but the
health status of the data-link system is affected by the health status of the hardware, as well as the link
health status.

Schumann et al. designed a real-time, on-board system health management (SHM) to the health
status of UAV and adopted Bayesian network methods for fault diagnosis [19]. Chonlagarn et al.
developed a method to predict the online health status of the UAV system based on hybrid dynamic
Bayesian network [20]. Khan et al. proposed a method for predicting the state of health of systems
based on artificial intelligence [21] but there is not enough data to build the model. Bayesian networks
(BN) as proposed by Pearl [22] provide a reasoning model based on Bayesian theory and graph theory.
Graph theory is used to describe a complex system clearly and qualitatively and the probabilistic
method is used for quantitative analysis. BNs have obvious advantages for modeling complex systems
in areas such as financial risk analysis, wireless sensor networks, system reliability analysis [23] and
system health management [24]. Through the use of qualitative network topologies and quantitative
conditional probability descriptions, Bayesian networks can clearly represent the inter-component
correlation and can integrate information from different sources, including experimental data, historical
data and expert experience. In addition, BNs have obvious advantages for describing the multi-level
systems [25] used widely in communication quality prediction [26] and the systems involving
information interaction [27–29]. Many scholars have adopted the Bayesian network to do a lot
of research on the system health management of UAV systems. Therefore, we adopted a BN in this
research to evaluate and predict the health status of the UAV data-link system.

This paper proposes a UAV data-link health status prediction method based on a BN. This approach
combines information about the health status of hardware devices that have different lifetime
characteristics with data about links health status as affected by the environment. The degraded
health status of the UAV data-link system due to hardware device performance degradation and
link failure can be described by this model and provides a unified framework for the health status
prediction of the UAV data-link system.

The remainder of this paper is organized as follows: Section 2 provides an overview of BNs,
including a summary of the concept, construction and inference algorithms used in Bayesian network
models. Section 3 proposes a Bayesian network modeling method for UAV data-links that considers
the networking mode and the bit error rate. In Section 4, we present a case study in which we apply our
research to a type of solar-powered UAV. Finally, Section 5 provides our conclusions and future work.

2. Overview of Bayesian Networks

Bayesian Network is a graphical network model of probabilistic reasoning based on Bayesian
theory. It consists of a directed acyclic graph (DAG) and a conditional probability table (CPT).
The former determines the qualitative network structure between variables and the latter determines
the quantitative relationship between variables.

Figure 1a is a 5-node DAG. The attributes of the node variables are arbitrary and can be an
abstraction of any problem. The directed edges between nodes represent the interdependencies
between nodes and the directed edges are always directed by the parent node to the child nodes.
While the variable with no parent node is the root node and the variable with no child node is the leaf
node and the rest are the intermediate nodes. The CPT for constructing node C according to the logical
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relationship is as shown in Figure 1b. As shown in Equation (1), BN probabilistic reasoning is based
on the conditional independence assumption that the probability of a child node depends only on the
probability of the parent node and is independent of other nodes.

p(Xi/Xpi, Xpai) = p(Xi/Xpi), (1)

where Xpi is the parent node of Xi and Xpai is parent node Xpi other children node except Xi. Applying
conditional independence to chain rules enables computation of the joint probability, as follows:

p(X1, X2, · · ·Xn) =
n

∏
1

p(Xi/Xpi). (2)

Building a BN requires the following steps:

1. Define node variables;
2. Connect the node variables through the directed edges;
3. Establish a CPT for the non-root node.
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Figure 1. 5-node directed acyclic graph and conditional probability table. (a) 5-node directed acyclic
graph; (b) Conditional probability table.

After the BN model is constructed, the appropriate inference algorithm is selected for probabilistic
reasoning. The Junction Tree (JT) [30] algorithm has been widely used in precision inference algorithms
because of its high search efficiency and simple application. The procedure of solution is shown in
Figure 2. The first step is to construct the moral map corresponding to the Bayesian network structure,
the second step is to triangulate the moral map to obtain the triangulated graph, the third step is to
construct the junction tree and the fourth step is to assign parameters to the clusters in the junction
tree. The final step is the belief update, which updates the belief in the junction tree using the message
propagation algorithm after the evidence added [1].
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3. Model for Predicting the Health of an Unmanned Aerial Vehicle Data-Link System

In this section, we present our model for predicting the health of a UAV data-link system based
on a Bayesian network. The data-link system for a UAV consists of a part that is airborne and a
part that is on the ground. The airborne portion includes the airborne data terminal and antenna.
The on-ground portion comprises the ground data terminal and antenna. Both the airborne data
terminal and the ground data terminal include a radio frequency receiver, radio frequency transmitter
and modem. When the distance between them is relatively close, the UAV and the ground data terminal
establish line-of-sight (LOS) wireless communication via the airborne and ground communication
units. When the wireless communication line-of-sight link cannot be established because the signal is
weakened by long distances or ground obstructions such as buildings, repeater satellites are utilized to
establish non-line-of-sight (NLOS) wireless communication. The UAV data-link communication mode
is shown in Figure 3.
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The link is divided into an uplink and a downlink according to the transmission direction of the
information in the link. The ground data terminal transmits a telecontrol command to the UAV through
the uplink; the UAV transmits telemetry data, such as the position and attitude of the UAV and other
data such as pictures, to the ground data terminal. Both the telecontrol link and the telemetry link must
work properly to ensure the UAV data-link system works properly. Therefore, to predict the health
status of the UAV data-link system, it is necessary to consider the health status of the telecontrol link
and the telemetry link comprehensively. To improve the reliability of UAV data-links, the networking
modes of the data-links often adopt a redundant design. UAV data-link networking modes may vary
and the information transmission paths may also be different. Because it is often the case that UAVs
are used to perform repetitive or dangerous tasks, degradation of the hardware will affect the health
status and performance of the UAV data-link. The complex external environment can have a severe
impact as well.

3.1. Constructing a Bayesian Network Root Node Prediction Model

By analyzing the path of information transmission in the UAV data-link system and the connection
relationship between devices, we can use the radio frequency receiver, radio frequency transmitter
and modem as the root nodes of the Bayesian network. For ground data terminals and for the UAV
and repeater satellites, the radio frequency receiver, radio frequency transmitter and modem can be
described with tandem logic as terminals that perform communication functions. Considering that the
radio frequency receiver, radio frequency transmitter and modem have no influence on the quality
of information transmission, this paper combines these three nodes into communication terminal
module nodes for modeling. Under this approach, the sensors are set in each communication terminal
module to collect corresponding data and a prediction model of the BN root node is established.
Considering that the most important characteristic of the link terminal equipment is the transmission
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power, the radio frequency device is the key component after the failure mode and mechanism analysis.
The power-MOSFET has been adopted for all the airborne terminal equipment in this paper [31].
To establish a predictive model, we combined the degradation model for power-law [32] (considering
time), Arrhenius model [33] (considering temperature) and Eyring model [34] (considering electrical
stress) with Wiener’s stochastic degradation process [35]. Taking the equipment whose performance
degrades from the Wiener process as an example, we introduce the prediction model. Assuming
the performance parameter P is a key indicator of product health status and is sensitive to stress S,
the parameter then follows the Wiener degradation process as follows [36]:

P(t) = d(s) · t + σ · B(t) + P0, (3)

where P(t) is the product performance at time t and d(s) is the drifting reflecting the performance
degradation rate, which is a function of stress and time. In an accelerated model d(s) =

exp[β0 + βφ(s)], where φ(s) is a function of stress S; Constant σ is the diffusion coefficient that
is irrelevant with respect to environment and time, B(t) ∼ N(0, t) is the standard Brownian motion
and P0 is the initial value of the parameter.

The degradation amount within the time ∆t from the properties of the Wiener process is
∆p ∼ N(d(s)∆t, σ2∆t). L is defined as the failure threshold of performance p and then the time
t that performance parameter value first passed through L satisfies the inverse Gaussian distribution.
The distribution function is the unhealth state function of the product and the corresponding probability
density function is given by:

f (t; P0, L) =
L− P0√
2πσ2t3

exp

{
− [(L− P0)− d(s)t]2

2σ2t

}
. (4)

The corresponding health state function is the prediction model of equipment, as follows:

R(t) = Φ
(L− P0)− d(s)t

σ
√

t
− exp

{
2d(s)L

2σ2

}
Φ
(L− P0) + d(s)t

σ
√

t
, (5)

where Φ(∗) is the cumulative distribution function of the standard normal distribution.

3.2. A Bayesian Network Model of an Unmanned Aerial Vehicle Data-Link System Considering the
Networking Mode

After constructing the BN root node prediction model, we can create the UAV repeater
satellite communication (UAV-RS communication) and the ground data terminal repeater satellite
communication (G-RS communication) according to the information transfer path and the logical link
relationship between the components. Next, we provide a line-of-sight wireless communication
link and a non-line-of-sight communication link for the UAV data-link. Both the line-of-sight
communication and the non-line-of-sight communication have an impact on the telemetry link and the
telecontrol link. Therefore, now we can construct the telecontrol link node and the telemetry link node
with the parent node as the line-of-sight communication and the non-line-of-sight communication
links. Finally, the leaf node is constructed. The DAG for the UAV data-link system is shown in Figure 4.

In the BN probability prediction model of the UAV-data-link system, Rxi(t) RMj(t) and RL(t)
are used to represent the health state of root node Xi = (i = 1, 2 · · · p), the intermediate node
Mj(j = 1, 2 · · · q) and the leaf node L at time t respectively.
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For the p root nodes, the probability of health status is solved by the prediction model of each
corresponding device and discretized according to the unsupervised equal-width interval method
with a time sequence to achieve the state prediction in the future T time; that is, the p× n order health
state probability prediction matrix [36]:

Hp×n =

 H1,1 · · · H1,n
...

. . .
...

Hp,1 · · · Hp,n

. (6)

With a certain time sequence T = (t + ς, t + 2ς · · · t + nς). The elements Hi,τ(i = 1, 2, · · · p, τ =

1, 2 · · · n) represent root node Xi to be in the heath state at the τth predicted point. Assigning the prior
probability of the root node according to the probability prediction matrix. The probability of the root
node Xi at time t is P(RXi(t)) = H(Ri(t)), i = 1, 2, · · · , p. For the solution of the state probability of
intermediate nodes, it is assumed that the parent-node set F = {R1, R2, · · · Ri} exists for the node Mj,
According to the assumption of independent conditions, the probability prediction of the intermediate
nodes at time t can be solved based on:

P
(

Mj(t)
)
= ∑

F
P
(

RMj(t), Rx(t)
)

. (7)

Based on the probability of the root node and intermediate node, the predicted probability of the
leaf node in health state can be further solved according to:

RL(t) = ∑ P(Rx1(t), Rx2(t), · · · , Rxp(t), RM1(t), RM2(t) · · · RMq(t), RL(t))

= ∑
Pa(L)

P(RL(t)|RPa(L)(t)) · ∑
Pa(Mj)

P(RM1(t)|RPa(M1)(t)) · · ·

∑
Pa(Mq)

P(RMq(t)|RPa(Mq)(t)) · · · P(Rx1(t)) · · · P(Rxp(t))

where, Pa(∗) is the parent node of the node “(∗)”.
According to the above formula, the JT estimation algorithm traverses the DAG and the

state of the system node L can be predicted. By the probability prediction matrix Rp×n =

(R(t), R(t + ς), R(t + 2ς) · · · R(t + nς)) of the root node, the corresponding prediction sequence of
probability at system level will be obtained to achieve continuous prediction of health state.
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3.3. A Bayesian Network Model of an Unmanned Aerial Vehicle Data-Link System Considering the Bit
Error Rate

In addition to the possible degradation of hardware equipment performance and accidental
failure, the health status of the UAV data-link system can be affected by the health status of UAV
data-links. Such as the bit error rate (BER), packet loss rate, path loss, UAV speed and weather and
channel capacity will affect the health status of UAV data-links. It can be expressed as follows:

h = f (x1, x2, x3 · · · xn), (8)

where h indicates the health status of UAV data-links, xi is a factor that affects the health status of
UAV data-links, such as x1 is UAV speed, x2 is the weather x3 is bit error rate (BER) and so forth.
We introduce the bit error rate as a factor affecting the health status of the UAV data-inks in the
following paper. In communications, the bit error rate is an important indicator that measures the
accuracy of data transmission within a specified time. Often, bit errors are caused by a combination of
factors, such as the decay of the signal transmission or pulse interference caused by noise, alternating
current, lightning and equipment failure. Since the bit error rate is the number of bit errors divided by
the total number of transferred bits during a studied time interval, a probability value can reflect the
error (i.e., unhealthy state) of information transmission and therefore it can be used in a BN prediction
model as a representation between the nodes that are associated with each of the error transmissions.

In this way, we can modify the BN model to predict the UAV data-link health state not only
considering the networking mode and we can add the bit error rate node to represent the data-link
affected by the external environment. The BER value of the newly added root node can be simulated
and generated. Each link generates a random bit stream for information transmission by means of the
BPSK spread spectrum. The signal is processed by the method of generating the sixteenth order Walsh
code and the simulation can be performed. As shown in Figure 5, interfering with the modulated bit
stream generates random errors and statistics on the bit error rate, generating a bit error rate value
BERn for each link, thereby obtaining a probability that the link information transmission is normal:
PError_n = 1 − BERn.
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The method for predicting the health status of the UAV data-link system proposed in this paper
can be summarized as follows:

1. Determining nodes of the UAV data-link system;
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2. Construct a DAG of the UAV data-link system and establish the CPT of the non-root nodes;
3. Consider the impact of bit error rate, add the bit error rate nodes and establish the CPT;
4. The JT estimation algorithm is used to solve the joint probability of relevant nodes, to update the

conditional probability values of each node and to achieve the deduction of state probability of
UAV data-link system nodes.

4. Case Study

To test and verify our model, we applied our model to a type of solar-powered UAV data-link
system. The solar-powered UAV data-link system consists of two non-line-of-sight links and three
line-of-sight links. The B-line-of-sight link (HF band) cannot transmit the task load information of
large data such as pictures and images due to the bandwidth and cannot transmit the telemetry
information. Therefore, only the telecontrol information can be uploaded in the simplex mode.
A-Line-of-sight link (UHF band) and C-line-of-sight link (UHF band) are mutually redundant
and the bandwidth of A-line-of-sight link (UHF band) and C-line-of-sight link (UHF band) is
sufficient for simultaneous telecontrol and telemetry. Outside the line-of-sight range, the control
command is received by the non-line-of-sight links and the long-distance data back-transmission is
completed. α-non-line-of-sight link (Ku band) and β-non-line-of-sight link (Ka band) form redundancy.
The non-line-of-sight links are relayed by two satellites respectively but the airborne communication
terminal can only point to one of them at a certain time and the two non-line-of-sight links share the
airborne communication terminal. The normal operation of the UAV is inseparable from the real-time
control of the data-link system. The data-link, a subsystem of the unmanned aircraft system that
provides for information transmission, has high sensitivity. The airborne communication terminal,
repeater satellite’s communication terminal and ground data communication terminal of the unmanned
aircraft system are in motion relative to each other at all times. The radio frequency transmitter, radio
frequency output power, external interference and the type and gain of the transmitting/receiving
antenna determine the maximum acceptable distance for the UAV data-link to establish wireless
communication. Data transmission through the UAV data-link will experience channel fading as a
result of an increase in the communication distance that goes beyond the range limit, which will have
a negative impact on the continuity and stability of signal transmission. This unreliable condition is
reflected in the communication quality as the error rate. Based on these considerations, we took the
bit error rate and communication distance together as parameters affecting the quality of information
transmission to establish the health state prediction model of the UAV data-link system. The factors
influencing the quality of each channel of the link were composed of two parts: channel fading caused
by increases in the communication distance and the bit error rate caused by random fluctuations.

In our model, the communication interruption rate affected by the communication distance can
be described by the Barnett-Vignant formula:

FM = 30lgd + 10lg(6A · B · f )− 10lg(1− P)− 70. (9)

The probability that the information will not be interrupted is:

P = 1− 103lgd+lg(6A·B· f )−7−FM/10, (10)

where FM is the fading margin (dB); d is transmission distance (k); A is a factor of roughness; B is a
factor of climate and environment; and f is the carrier frequency of the channel (GHz).

Figure 6 shows the mode of the solar-powered UAV data -link system with three line-of-sight
links and two non-line-of-sight links. The root node prediction model is shown in Table 1.
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Table 1. Root node of solar-powered UAV data-link prediction model.

Node Description of the
Prediction Model Prediction Model and Parameter

α-chain
airborne data

terminal

degradation model for
power MOSFET

Y = e(a1+a2(
1
T−

1
298 )) ·

(
ta3+a4∗ T

298 − 1
)
+ Yo

Ea = 0.616, A = 7.79× 105, Y0 = 5, L = 8, σ = 0.08
(a1 = −8.0363, a2 = −5529.6, a3 = −0.019, a4 = −0.8395)

α-chain
repeater satellite

Wiener process,
Arrhenius model Ea = 0.616, A = 7.79× 105, Y0 = 5, L = 8, σ = 0.08

α-chain
ground data

terminal
exponential distribution R3(t) = exp

[
−
( t

2600
)]

A-chain
airborne data

terminal

degradation model for
power MOSFET model a1 = −7.1342, a2 = −5391.4, a3 = −0.022, a4 = −0.8411

A-chain
ground data

terminal
exponential distribution R5(t) = exp

[
−
( t

3500
)]

B-chain airborne
data terminal

Combined
acceleration model a1 = −7.8220, a2 = −5419.2, a3 = −0.023, a4 = −0.8317

B-chain ground
data terminal exponential distribution R7(t) = exp

[
−
( t

4500
)]

β-chain
repeater satellite

Wiener process,
Arrhenius model Ea = 0.64, A = 2.115× 106, Y0 = 33, L = 36.5, σ = 0.178

β-chain ground
data terminal exponential distribution Rs(t) = exp

[
−
( t

4500
)]

C-chain airborne
data terminal

degradation model for
power MOSFET a1 = −8.2334, a2 = −5219.5, a3 = −0.014, a4 = −0.7991

C-chain
ground data

terminal
exponential distribution R9 = exp

[
−
( t

4000
)]

We built a BN according to the networking mode of the solar-powered UAV data-link system and
then we modified the BN by considering the impact of the communication interruption rate and bit
error rate. We added 13 root nodes to indicate the factors affecting the health of each channel because
of the communication distance and bit error rate. PError_1 ∼ PError_13 are the BERs of the α-chain
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non-line-of-sight uplink, α-chain non-line-of-sight downlink, A-chain of the line-of-sight uplink,
A-chain of the line-of-sight downlink, C-chain of the line-of-sight uplink, C-chain of the line-of-sight
downlink and B-chain of the line-of-sight uplink, respectively. Accordingly, we constructed the BN as
show in Figure 7, the leaf node X50 respect the health state of solar-powered UAV data-link.Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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Considering the change of communication distance (The solar-powered UAV climbed to an
altitude of 8500 m at sunrise and descended to an altitude of 1200 m at night.). Given this diurnal
variation of the flying altitudes of the UAV, the communication distances of the line-of-sight chains A,
B, C and the non-line-of-sight chain α and β UAV-repeater satellite links are affected by the vertical
height and the horizontal distance. The simulation of the communication distance is shown in Figure 8.

According to the communication distance and fading margin (6~10 dB) requirements of
each channel, we combined the communication interruption rate simulation curves using the
Barnett-Vignant formula and bit error rate to get the health status of each channel. Figure 9 shows the
curve PError_n (except PError_1, PError_2, PError_7, PError_8) as a function of time.

For PError_1 (α-chain ground-satellite uplink), PError_2 (α-chain ground-satellite downlink) and
PError_7 (β-chain ground-satellite uplink), PError_8 (β-chain ground-satellite downlink), the distance
from the repeater satellite to the ground data terminal can be considered a fixed value because the
distance between the repeater satellite and the ground data terminal was much larger than the relative
motion distance between the repeater satellite and the ground data terminal. Therefore, the information
interruption rate affected by the communication distance was considered a fixed value. We combined
the information interruption rate and bit error rate to obtain the curve of PError_1, PError_2 and PError_7

and PError_8 as shown in Figure 10. The communication distance of the channel is considered to be
a fixed value but the health of the channel still produces random fluctuations over time. The health
status of the uplink is slightly better than the health status of the downlink.
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Figure 11 shows that in the UAV line-of-sight communication link, the health status of the child
nodes are worse than that of the parent nodes. The health status of the uplink and downlink is basically
the same. α-chain G-RS uplink and downlink medium life are approximately 450 h. α-chain UAV-RS
uplink and downlink medium life are approximately 550 h. α-NLOS uplink and downlink medium
life are 350 h. Figure 12 shows that the health of the line-of-sight links are better than the health of
non-line-of-sight links. Because of the redundancy of links, the telemetry link and telecontrol link did
not reach the median life at 860 h. The telemetry link is redundant by 3 links and the telecontrol link is
redundant by 2 links, so the health status of the telemetry link is slightly better than the health status
of the remote link. Figure 13 shows that the health status of the UAV data-link system is worse than
the health status of the telemetry link and the remote link. After 250 h, there is a significant difference.
The UAV data-link system reaches the median life about 840 h.
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Figure 13 shows that although changes in the position of the solar-powered UAV during the
mission changed the communication distance of each channel periodically, the health status of the
entire solar-powered UAV data-link system tended to be stable. It can be seen from the data-link
system health state prediction curve that both node 46 (telemetry link) and node 49 (telecontrol link)
have an impact on the health status of the data-link system node 50 in the next 840 h but the latter
is the main reason for the decline of system health status. The weak link is analyzed layer by layer
using the prediction curve of the intermediate node: telecontrol→ non-line-of-sight link→ β-chain
non-line-of-sight link→ UAV-RS uplink→ repeater satellite b. At the same time, it can be seen from
the DAG diagram of the solar-powered UAV data-link system that the repeater satellite b node in the
β non-line-of-sight link is the parent node of the total of four nodes β-chain non-line-of-sight uplinks
and downlinks. So, the repeater satellite b health status has a critical and direct impact on the health of
the solar-powered UAV data-link.

5. Conclusions and Future Work

In this paper, we proposed a method for predicting the health status of UAV data-link system
based on a Bayesian network. This model employs the Bayesian network to describe the information
and uncertainty associated with a complex multi-level system. In addition, we proposed an approach
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considers both hardware equipment degradation and the health status of UAV data-links. This method
combines the health status of hardware with different life characteristics and health status of UAV
data-links affected by the external environment to predict the health status of the UAV data-link system.
We provide a framework to predict the health status of the UAV data-link system, other factors that
affect the health status of the UAV data-link system can also be incorporated into this method. In this
paper, we describe the hardware health status of different life/performance characteristics and link’s
BER value to predict the health status of UAV data-link system with a unified state probability index.
Through this approach, we can describe the health status of a UAV data-link system quantitatively
and comprehensively.

The case study of a multi-level solar-powered UAV data-link system shows that the model can
quantitatively describe the health status of a solar-powered UAV data-link system with hardware
degradation failure and link failure affected by communication distance and BER value.

Based on the predicted results, we can understand the health status of the UAV data-link in real
time. Based on the predicted results, we can improve the networking mode of the UAV data-link
system and provide guidance for the maintenance decision of the UAV data-link system. At the same
time, the study laid the foundation for accurately predicting the health of the UAV data-link system.

However, factors such as weather (rain, cloudy), UAV speed, electromagnetic interference and
so forth. that have an important impact on the communication quality of the UAV data-link system
are not quantified in this paper. In our future work, we will do experiments to get data to verify the
indicators of these influencing factors, then more factors can be incorporated into this model, we can
accurately predict the health status of the UAV data-link system. At the same time, this method has a
high dependence on the prediction model, the more accurate lifetime prediction for UAV data-link
system is based on accurate device-level prediction information which imposes higher requirements
on information acquisition, processing and analysis from multiple sensors.
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