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Objective: Aging is a complex biological process and a major risk factor for

cancer development. This study was conducted to develop a novel aging-

based molecular classification and score system in clear cell renal cell

carcinoma (ccRCC).

Methods: Integrative analysis of aging-associated genes was performed

among ccRCC patients in the TCGA and E-MTAB-1980 cohorts. In

accordance with the transcriptional expression matrix of 173 prognostic

aging-associated genes, aging phenotypes were clustered with the

consensus clustering approach. The agingScore was generated to quantify

aging phenotypes with principal component analysis. Tumor-infiltrating

immune cells and the cancer immunity cycle were quantified with the

ssGSEA approach. Immunotherapy response was estimated through the TIDE

algorithm, and a series of tumor immunogenicity indicators were computed.

Drug sensitivity analysis was separately conducted based on the GDSC, CTRP,

and PRISM analyses.

Results: Three aging phenotypes were established for ccRCC, with diverse

prognosis, clinical features, immune cell infiltration, tumor immunogenicity,

immunotherapeutic response, and sensitivity to targeted drugs. The

agingScore was developed, which enabled to reliably and independently

predict ccRCC prognosis. Low agingScore patients presented more

undesirable survival outcomes. Several small molecular compounds and

three therapeutic targets, namely, CYP11A1, SAA1, and GRIK4, were

determined for the low agingScore patients. Additionally, the high

agingScore patients were more likely to respond to immunotherapy.
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Conclusion: Overall, our findings introduced an aging-based molecular

classification and agingScore system into the risk stratification and treatment

decision-making in ccRCC.
KEYWORDS

clear cell renal cell carcinoma, aging phenotypes, prognosis, tumor immunogenicity,
treatment sensitivity
Introduction

Renal cell carcinoma (RCC) affects more than 400,000

people in the world annually (1). The age of diagnosis is

around 60, and men are diagnosed twice as often as women

(2). RCC has a few histological subtypes, with around 70% of

individuals diagnosed with clear cell renal cell carcinoma

(ccRCC) (1). Although ccRCC can be detected early and

successfully treated with surgery or ablation regimens, over

one-third of cases develop or progress to metastatic disease

that is almost uniformly lethal (3). ccRCC is highly immune

infiltrated, but there is extensive immune heterogeneity within

and between patients (4). Immune checkpoint blockade (ICB)

and combined strategies have favorably prolonged the survival

of ccRCC patients (5–7). Tumor-infiltrating cells enable to

influence the balance of antitumor immune response and

immune escape in ccRCC, and T-cell exhaustion within the

tumor microenvironment (TME) is responsible for the low
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response rate of ICB (4). Patients who respond to ICB present

remarkable enrichment of tissue-resident T-cell populations,

with enrichment of tumor-associated macrophages in resistant

patients (4). Nevertheless, predicting which patients will respond

to ICB remains a fundamental issue. Additionally, the drivers

and resistors of ICB responses are still not fully elucidated.

Cancer is regarded as an aging-related degenerative

malignancy, and aging is an independent risk factor of cancer

(8). The mechanisms by which aging results in cancer

progression remain being explored. Many aging-related

cellular events (genomic instability, inflammatory response,

immunity, etc.) are hallmarks of cancer (9). Despite the

widespread study of the aging microenvironment in cancers,

few studies focused on the overall characteristics of the

transcriptional landscape of aging-associated genes in ccRCC.

Previously, several aging-associated genes have been determined

to be linked to unfavorable survival outcomes of RCC (9).

Additionally, experimental evidence demonstrates that aging-

associated genes participate in RCC progression. The molecular

characteristics that reflect ccRCC ontogeny and development are

being increasingly defined. Herein, on the basis of molecular and

clinical information of ccRCC patients, we comprehensively

evaluated aging phenotypes and their interactions with the

tumor immune landscape. Three different aging phenotypes

were characterized, which presented different prognosis and

immunologic mechanisms, demonstrating the critical role of

the aging process in remodeling tumor immune landscape in

ccRCC individuals. Thereafter, aging phenotypes were

individually quantified via generating the agingScore.

Altogether, our findings might assist risk stratification and

guide treatment decision-making for ccRCC.
Materials and methods

Publicly available datasets and
processing

For the discovery cohort, RNA sequencing (RNA-seq) data

of The Cancer Genome Atlas-kidney renal clear cell carcinoma

(TCGA-KIRC) cohort (n = 529) were obtained via the UCSC
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Xena project (https://xenabrowser.net/datapages/). For the

verification cohorts, RNA-seq profiles of the TCGA-kidney

renal papillary cell carcinoma (TCGA-KIRP) (n = 286) were

also obtained from the UCSC Xena Portal, while the microarray

data of the E-MTAB-1980 cohort (n = 240) were downloaded

from the ArrayExpress database (https://www.ebi.ac.uk/

arrayexpress/) (10). RNA-seq data were further transformed to

log2 (TPM+1), which had higher similarity with microarray

profiling and higher comparability between samples. The

corresponding clinical information was collected from the

UCSC and ArrayExpress databases (Supplementary Table 1).

The microarray data were adjusted for background and

normalized by quantile utilizing the robust multiarray average

(RMA) approach from the affy package (11). For the TCGA-

KIRC project, the somatic mutational data as well as the copy

number alteration (CNA) data were acquired from the TCGA

portal (https://portal.gdc.cancer.gov/). Figure 1 depicts the work

procedure of this study. We collected 307 aging-associated genes
Frontiers in Immunology 03
from the Human Ageing Genomic Resources (HAGR; https://

genomics.senescence.info/), which is a collection of online

resources for exploring the biology of human aging (12).
Establishment of aging phenotypes

The optimum number of clusters was determined in the

TCGA-KIRC cohort via the ConsensusClusterPlus package

based on the expression profiling of prognostic aging-

associated genes generated from the univariate Cox regression

models (13). Eighty percent of the samples were subsampled in

each iteration, and each subsample was divided into at most k

(maximum k value = 9) groups via the k-means algorithm

through the Euclidean distance. This analysis was repeated

1,000 times. Thereafter, the perfect clustering result was

determined by considering consistent cumulative distribution

function (CDF) graphs. Afterward, the results were illustrated as
FIGURE 1

The workflow of our study.
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consensus matrix heatmaps generated by the heatmap package.

The reproducibility of the clusters was evaluated in the E-

MTAB-1980 cohort.
Functional and pathway enrichment
analysis

The single-sample gene set enrichment analysis (ssGSEA)

algorithm from the gene set variation analysis (GSVA) software

(14) was implemented to ascertain the hallmark pathways and

evaluate the differences in biological significance among aging

phenotypes. The hallmark gene set was collected from the

Molecular Signatures Database (MSigDB) to run the GSVA.

Through the clusterProfiler package (15), functional annotation

of aging phenotype-associated genes was carried out. P <0.05

was regarded as significant enrichment in Gene Ontology and

Kyoto Encyclopedia of Genes and Genomes (KEGG). The

known pathways were acquired, consisting of epithelial–

mesenchymal transition (EMT1, 2, 3), immune checkpoint,

antigen processing machinery, CD8+ T effector signature,

angiogenesis signature, and pan-fibroblast TGFb response

signature (pan-FTBRS) (16–18). The activities of the above

biological processes were computed via the ssGSEA approach.
Generation of tumor-infiltrating
immune cells

Through the ssGSEA, the infiltrations of 28 immune cell

types were quantified in accordance with the 782 metagenes

utilizing the GSVA package (14). Tumor purity as well as

stromal and immune scores was computed via the ESTIMATE

package with default parameters (19).
Cancer immunity cycle

The cancer immunity cycle can reflect the anti-tumor

immune response and comprises seven steps, as previously

described (20). The activities of the above steps were

quantified via the ssGSEA approach.
Immunotherapy response

Through the tumor immune dysfunction and exclusion

(TIDE) algorithm, the response to immunotherapy was

predicted in accordance with the tumor immune escape

mechanisms: inducing T-cell dysfunction within tumors

with enhanced infiltrations of cytotoxic T lymphocytes

(CTLs) as well as preventing the infiltrations of T cells

within tumors with reduced CTLs [21]. The expression
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similarity between phenotypes and the patients who

differently responded to immunotherapy was evaluated with

the Subclass Mapping (SubMap) approach that employed

the GSEA algorithm to infer the commonality between

groups (21). P <0.05 suggested a significant similarity

between groups.
Drug sensitivity analysis

Through the pRRophetic package (22), a ridge regression

analysis was conducted in accordance with the Genomics of

Drug Sensitivity in Cancer (GDSC) cell line expression data (23).

The half maximal inhibitory concentration (IC50) value was

estimated to reflect the sensitivity to agents. The expression

profiling and somatic mutational data of human cancer cell lines

(CCLs) were retrieved from the Cancer Cell Line Encyclopedia

(CCLE) database (https://portals.broadinstitute.org/ccle/) (24).

CERES scores can be utilized for measuring the dependency of

target genes in certain CCLs. A negative score represents that the

cell line grows slower when the specific gene is knocked out, and

a positive score represents that the cell line grows faster when the

specific gene is knocked out. The CERES scores of CRISPR-

knockdown screening of over 18,000 genes across over 700 cell

lines were acquired from the dependency map (DepMap)

database (https://depmap.org/portal/). Drug sensitivity data of

CCLs were required from the Cancer Therapeutics Response

Portal (CTRP; https://portals.broadinstitute.org/ctrp)

containing 481 agents over 835 CCLs as well as from the

PRISM project (https://depmap.org/portal/prism/) containing

1,448 agents over 482 CCLs. The two datasets offer the area

under the dose–response curve (AUC) measures of drug

sensitivity. A lower AUC value indicates a higher sensitivity to

an agent. Since the CCLs in the two projects were required from

the CCLE project, expression profiling in CCLE was utilized for

further CTRP and PRISM analysis.
Analysis of single-nucleotide
polymorphisms and CNAs

The maftools package was applied for analyzing somatic

variants, and overall mutation status was illustrated across three

phenotypes (25). Through the GISTIC (version 2.0) software, the

amplified and deleted CNAs in the tumor were quantified with

the input of ‘‘SNP6” files (26).
Evaluation of tumor immunogenicity
indicators

Immune checkpoints with therapeutic potential were

collected from the study of Auslander et al. (27). Single
frontiersin.org
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nucleotide variation (SNV) neoantigens were calculated via

NetMHCpan (version 3.0) (28) in accordance with human

leukocyte antigen (HLA) types required from RNA-seq

utilizing OptiType (version 1.2) (29). Tumor mutation

burden (TMB) was quantified following the total count of

n on - s y n onymou s mu t a t i o n s ( 3 0 ) . Homo l o g o u s

recombination defects score was computed through three

DNA-based genomic instability: large (>15 Mb) non-arm-

level regions with loss of heterozygosity, telomeric allelic

instability, and large-scale state conversion with breaks

between adjacent segments >10 Mb (31). Intratumor

heterogeneity and cancer/testis antigens (CTAs) were

also involved.
Analysis of aging phenotype-associated
genes

The limma package was applied for determining the

differentially expressed genes (DEGs) between phenotypes

(32). The threshold was set as adjusted P <0.05 as well as at

least 1.5-fold changes in expression. The Venn plot directly

depicted the number of DEGs among phenotypes.
Generation of the aging gene signature

For quantifying the aging phenotypes of individual

patients, a scoring system was generated for assessing all

individuals, named as agingScore. Univariate Cox regression

analysis was conducted to determine the prognostic

implication of DEGs. The DEGs with P <0.05 were utilized

to compute the agingScore via the PCA algorithm. The

principal components (PCs) PC1 and PC2 acted as the

scoring system (33, 34). The formula of the agingScore was

as follows: aging Score =oj
iPCi + PCj where i and j indicate

the ranking and the total number of the prognostic DEGs,

respectively. The advantage of this approach is to focus the

score on the set with the largest well-related (or anti-

correlated) genes in the set while reducing the contribution

of genes that are not tracked with other set members.
Analysis of post-transcriptional features
correlated to agingScore

In the TCGA-KIRC cohort, differentially expressed miRNAs

or mRNAs were screened between high and low agingScore

groups in accordance with FDR <0.05 and at least 1.5-fold

changes. The targeted mRNAs were then predicted through

the miRbase database (http://www.mirbase.org/) (35). Analysis

of KEGG pathways enriched by the miRNA-targeted mRNAs

was carried out.
Frontiers in Immunology 05
Statistical analysis

The dissimilarity of the clusters was verified through

principal component analysis (PCA). Student’s t-test or the

Wilcoxon rank sum test was applied to evaluate the difference

between two groups, while one-way analysis of variance or the

Kruskal–Wallis test was implemented to estimate the

difference between three groups. The Benjamini–Hochberg

approach was implemented to correct multiple tests. Kaplan–

Meier analysis was implemented to compare the overall

survival (OS), disease-free survival (DFS), disease-specific

survival (DSS), and progression-free survival (PFS) between

groups utilizing survival and survminer packages. The

difference in OS was computed with the log-rank test. The

receiver operating characteristic (ROC) curves of OS, DFS,

DSS, and PFS were conducted and the AUC values were

calculated with the survivalROC package. Univariate Cox

regression analysis was implemented to identify the

significant associations of agingScore and clinical features

with OS, DFS, DSS, and PFS. Hazard ratio (HR), 95%

confidence interval (CI), and the P-value of each variable

were separately computed. Multivariable Cox regression

analysis was utilized to assess whether agingScore was

independent of other clinical features. In accordance with

the multivariate Cox regression results, a nomogram was

generated to provide a visualized risk prediction after each

factor was assigned a score via the rms package. The time-

dependent concordance index (C-index) was computed with

the pec package. A calibration diagram was drawn to estimate

the calibration capacity of the nomogram. Correlation analysis

was implemented with Pearson’s or Spearman’s correlation

test. All statistical P-values were two-sided, with P <0.05 as

statistically significant. All analyses were conducted with the R

software (version 4.0.2).
Results

The landscape of prognosis and clinical
features of the three aging phenotypes
in ccRCC

Among 307 aging-associated genes, univariate Cox

regression determined 173 genes significantly linked to

clinical outcomes among 529 ccRCC patients in the TCGA-

KIRC cohort (Supplementary Table 2), which were included

for consensus clustering analysis. Through applying the

ConsensusClusterPlus approach, three aging phenotypes

were achieved, termed as C1, C2, and C3 in accordance

with the selection of k = 3 as the optimal k value

(Figures 2A–D). Thereafter, PCA affirmed the remarkable

difference among the three phenotypes (Figure 2E). Patients
frontiersin.org
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with the C3 phenotype presented the best OS outcomes,

followed by C1 and C2 (Figure 2F). Figure 2G illustrates the

distribution of clinical features among the three phenotypes.

Because the E-MTAB-1980 cohort possessed relatively

complete prognostic information as well as a large sample

size, it was employed for validating the repeatability of this

classification. Similarly, consensus clustering analysis was

implemented on the cohort, and the three different

aging phenotypes were clearly clustered (Supplementary

Figures 1A–E). The remarkable difference in OS outcomes

was noted among the phenotypes (Supplementary Figure 1F),

affirming the reliability of this classification for ccRCC.
Frontiers in Immunology 06
The immune landscape of the three
aging phenotypes

To uncover the molecular mechanisms underlying the aging

phenotypes, we focused on the TCGA-KIRC dataset that had

relatively complete omics data and clinical characteristics. The

activity status of the hallmark pathways was firstly computed

across the three aging phenotypes. In Figure 3A, oxidative

phosphorylation, peroxisome, reactive oxygen species pathway,

and DNA repair presented relatively high activities in the C1

phenotype; the C2 phenotype had relatively high activities of

immune pathways (IL2–STAT5 signaling, inflammatory
B C

D E F

G

A

FIGURE 2

The landscape of prognosis and clinical features of the three aging phenotypes in The Cancer Genome Atlas-kidney renal clear cell carcinoma
(TCGA-KIRC) cohort. (A) The cumulative distribution functions (CDFs) of the consensus matrix for k = 2~9 marked by colors. (B) Relative
alterations in area under the CDFs for k = 2~9. (C) Tracking plot for the classification of the TCGA-KIRC dataset into diverse subtypes for
k = 2~9. (D) Classification of the TCGA-KIRC cohort into three clusters when k = 3. (E) PCA of the RNA expression profiling of prognostic aging-
associated genes. (F) Kaplan–Meier analysis for overall analysis (OS) among the three phenotypes. (G) Pie plots of the distribution of clinical
features across the three phenotypes.
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B C

D E F

G H I

J K L

A

FIGURE 3

Immune landscape and antitumor immune responses of the three aging phenotypes in the TCGA-KIRC cohort. (A) Heatmap depicting the
activities of hallmark pathways across the three aging phenotypes. Activated and inhibited hallmark pathways are colored by red and cyan,
respectively. (B) Heatmap of the relative abundance of tumor-infiltrating immune cell populations across the three aging phenotypes. The high
and low enrichment levels are colored red and cyan, respectively. (C) Heatmap of the RNA expression of immune checkpoint molecules across
the three aging phenotypes. The high and low expression levels of immune checkpoints are marked by red and cyan, respectively. (D–F) Box
plots of the differences in (D) immune and (E) stromal scores as well as (F) tumor purity across the three aging phenotypes. (G) Heatmap of the
activation states of the seven steps within the cancer immunity cycle across the three aging phenotypes. Activated and inhibited steps are
colored red and cyan, respectively. (H) Heatmap of the activities of known biological processes across the three aging phenotypes. Activated or
inactivated processes are colored red or cyan. (I) Prediction of the response to anti-PD-1 and anti-CTLAL4 among the three aging phenotypes.
R, response; noR, non-response. (J) Distribution of the three aging phenotypes across known immune subtypes. (K) Kaplan–Meier analysis for
OS of the TCGA-KIRC cohort stratified by immune subtypes. (L) Kaplan–Meier analysis for OS of the TCGA-KIRC cohort stratified by immune
subtypes and aging phenotypes. Ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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response, complement, etc.) as well as stromal pathways (WNT

beta-catenin signaling, angiogenesis, etc.); and the C3 phenotype

presented features of activation of metabolism pathways (fatty

acid metabolism, bile acid metabolism, etc.). Extrinsic immune

evasion mechanisms were evaluated in accordance with the

absence of leukocytes as wel l as the presence of

immunosuppressive cell populations. As illustrated in Figure 3B,

the C1 phenotype presented deficient immune cell infiltrations

and immune-mediated elimination, which can be characterized as

the immune-deserted type; the C2 phenotype was recognized as

the immune-excluded type which had relatively high stromal

score and infiltrations of immunosuppressive cells [type 1

helper cells, type 2 helper cells, regulatory T cells, myeloid-

derived suppressor cells (MDSCs), T follicular helper cells, etc.];

and the C3 phenotype was recognized as immune-inflamed

characterized by the immune-active cells (CD4+ T cells, CD8+ T

cells, etc.). Therefore, we speculated that the C1 and C3

phenotypes probably reflected the deficiency of recruitment or

activation of innate immune cell populations, thereby triggering

the failure of adaptive antitumor immune responses. Moreover,

the C2 phenotype had a higher expression of co-stimulatory and

co-inhibitory immune checkpoint molecules in comparison to the

other phenotypes (Figure 3C), indicating that the C2 phenotype

might upregulate the immune checkpoint molecules to escape the

immune elimination following immune activation. Through the

ESTIMATE approach, we estimated the overall levels of immune

and stromal cells as well as tumor purity. Not surprisingly, the C2

phenotype presented higher immune and stromal scores as well as

lower tumor purity compared with the other phenotypes

(Figures 3D–F).
Antitumor immune responses of the
three aging phenotypes

The activities of the cancer immunity cycle were computed to

reflect antitumor immune responses. In Figure 3G, most steps

within the cancer immunity cycle showed higher activity status in

the C2 phenotype in comparison to the other phenotypes. It was

also noted that the C2 phenotype was characterized by stromal

activation (EMT, pan-F-TBRS, etc.) as well as cell cycle

progression (cell cycle, DNA replication, etc.), as illustrated in

Figure 3H. It was predicted that the C2 phenotype responded to

anti-CTAL4 therapy (Figure 3I). A previous study has defined six

major immune subtypes (ISs) across pan-cancer in TCGA: IS1

(wound healing), IS2 (IFN-g dominant), IS3 (inflammatory), IS4

(lymphocyte depleted), IS5 (immunologically quiet), and IS6

(TGF-b dominant) (36). We sought to comprehend the

interaction of aging phenotypes with immune subtypes. Overall,

the IS1, IS2, and IS6 subtypes tended to have more C1 and C2

aging phenotypes, with more C3 aging phenotype in the IS3 and

IS4 subtypes (Figure 3J). Among five immune subtypes, ccRCC

patients in the IS3 subtype presented the best OS outcomes, with
Frontiers in Immunology 08
the worst outcomes for those in the IS1 subtype (Figure 3K).

Interestingly, the C3 patients were significantly enriched in the IS3

subtype (16.84% in C1, 17.37% in C2, 65.79% in C3). Although

both C3 and IS3 showed a favorable prognosis, nearly 34% of IS3

patients had C1 and C2 phenotypes, which resulted in a poor

prognosis. Thus, we explored whether aging-related clusters could

further categorize patients into distinct survival groups. By

performing a log-rank test, IS3 belonging to the C3 phenotype

showed a more favorable prognosis compared to the other

phenotypes (Figure 3L). These results indicated that aging-

related genes could provide an additional characterization from

a preexisting molecular classification of ccRCC.
Sensitivity to known targeted drugs of
the three aging phenotypes

Considering that targeted treatment remains the preferred

therapeutic regimen against advanced RCC, the sensitivity to

axitinib, pazopanib, sorafenib, and sunitinib across the three

aging phenotypes was assessed on the basis of the GDSC cell line

expression data. The C2 phenotype presented higher sensitivity

to axitinib (Figure 4A) and pazopanib (Figure 4B), the C3

phenotype was more sensitive to sorafenib (Figure 4C), and

the C1 phenotype had higher sensitivity to sunitinib (Figure 4D).
Genomic alterations of the three
aging phenotypes

The somatic mutation landscape was determined in the

TCGA-KIRC cohort. Among the three aging phenotypes, VHL

(48%) and PBRM1 (41%) were the most frequent mutated genes

(Figure 4E). Additionally, the mutated genes were evenly

distributed across the three aging phenotypes. Further analysis

was conducted to delineate the significant focal copy number

alterations via GISTIC 2.0. Figure 4F illustrates the distinct focal

amplifications and deletions of CNVs in each phenotype. In

comparison to the C1 phenotype, a higher TMB score was

investigated in the C2 phenotype (Figure 4G). The diverse

genomic alteration preferences across the three phenotypes

might result in distinct ccRCC progression.
Intrinsic immune evasion mechanisms of
the three aging phenotypes

The intrinsic immune evasion mechanisms underlying the

three aging phenotypes were evaluated in accordance with a

series of indicators associated with tumor immunogenicity. The

C3 phenotype had a higher intratumor heterogeneity compared

with the C1 and C2 phenotypes (Figure 4H). Genomic instability

was evaluated according to homologous recombination defects.
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The C2 phenotype presented higher homologous recombination

defects in comparison to the other phenotypes (Figure 4I). In

contrast to the C1 phenotype, increased SNV neoantigens were

investigated in the C2 and C3 phenotypes (Figure 4J). Moreover,

the C3 phenotype had a lower overall expression of CTAs in

comparison to the C1 and C2 phenotypes (Figure 4K). Overall,

the above elements associated with tumor immunogenicity had

remarkable differences in the three aging phenotypes.
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Identification of aging phenotype-
associated genes and generation of an
agingScore system for ccRCC

In total, 450 aging phenotype-associated genes were

identified by comparing the differential expression between

aging phenotypes (Figure 5A; Supplementary Table 3). Further

analysis demonstrated their roles in vessel morphogenesis and
B C D

E F
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A

FIGURE 4

Sensitivity to known targeted drugs, genomic alterations, and intrinsic immune evasion mechanisms of the three aging phenotypes in the
TCGA-KIRC cohort. (A–D) Box plots of the differences in sensitivity to (A) axitinib, (B) pazopanib, (C) sorafenib, and (D) sunitinib across the three
aging phenotypes. (E) Waterfall plot of tumor somatic mutation across the three aging phenotypes. The top bar plot shows TMB. Each column
represents an individual patient. Numbers and bar graphs depict the mutational frequencies as well as the proportions of mutation types.
(F) Somatic copy number alterations across the three aging phenotypes. The y-axis indicates the chromosome positions, while the x-axis
depicts the focal deletion or amplification identified by a horizontal blue or red bar. The green line indicates the significance threshold of FDR
<0.25. (G–K) Box plots of the differences in (G) TMB score, (H) intratumor heterogeneity, (I) homologous recombination defects, (J) SNV
neoantigens, and (K) CTA score across the three aging phenotypes. Ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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development, extracellular components, and signaling receptor

binding (Figures 5B–D). Additionally, these aging phenotype-

associated genes were involved in mediating tumorigenic

pathways (ECM–receptor interaction, PI3K–Akt signaling

pathway, proteoglycans in cancer, Rap1 signaling pathway,

etc.; Figure 5E). As illustrated in Figure 5F, there was

widespread heterogeneity in the aging phenotype-associated

genes among the three aging phenotypes. Univariate Cox

regression determined 261 prognostic aging phenotype-

associated genes in the TCGA-KIRC cohort (Supplementary

Table 4). With the PCA approach, we computed an agingScore

system for ccRCC. The C3 phenotype presented a higher

agingScore in comparison to the C1 and C2 phenotypes

(Figure 5G). In accordance with the median value of

agingScore, we stratified the TCGA-KIRC, E-MTAB-1980, or
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TCGA-KIRP cohort into high and low agingScore populations.

A high agingScore presented more favorable OS outcomes in

comparison to a low agingScore in the TCGA-KIRC cohort

(Figure 6A), E-MTAB-1980 cohort (Figure 6B), and TCGA-

KIRP cohort (Figure 6C). Additionally, in the TCGA-KIRC

cohort, a high agingScore was linked to better DFS

(Figure 6D), DSS (Figure 6E), and PFS (Figure 6F), affirming

the prognostic implication of the agingScore in ccRCC.
Validation of the predictive performance
of the agingScore in ccRCC prognosis

The ROC diagram was drawn to verify the efficacy of this

agingScore in predicting ccRCC prognosis. The AUC values of
B C
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A

FIGURE 5

Identification of the aging phenotype-associated genes and generation of an agingScore system for ccRCC. (A) Venn diagram for the aging
phenotype-associated genes via comparing the aging phenotypes. (B–D) The major (B) biological processes, (C) cellular components, or (D)
molecular components enriched by aging phenotype-associated genes. (E) The major KEGG pathways enriched by aging phenotype-associated
genes. (F) Distribution of the expression patterns of the aging phenotype-associated genes and clinical features across the three aging
phenotypes. (G) Box plots of the distribution of agingScore among the three aging phenotypes. Ns, no significance; ****P < 0.0001.
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the 1-, 3-, and 5-year OS were 0.77, 0.61, and 0.61 in the TCGA-

KIRC cohort and 0.70, 0.76, and 0.73 in the E-MTAB-1980

cohort (Figures 7A, B). Moreover, in the TCGA-KIRC cohort,

the AUC values of the 1-, 3-, and 5-year DFS were 0.65, 0.68, and

0.69, respectively (Figure 7C); the AUC values of the 1-, 3-, and

5-year DSS were 0.75, 0.75, and 0.76, respectively (Figure 7D);

and the AUC values of the 1-, 3-, and 5-year PFS were 0.69, 0.71,

and 0.73, respectively (Figure 7E). Overall, the agingScore was a

reliable prognostic indicator of ccRCC. In both the TCGA-KIRC

and E-MTAB-1980 cohorts, the agingScore was an independent

protective factor of ccRCC patients’ OS (Figures 7F, G).

Additionally, the agingScore was independently predictive of

ccRCC patients’ DFS, DSS, and PFS (Figures 7H–J).
Construction of an agingScore-based
nomogram for ccRCC prognosis

To facilitate the clinical application of the agingScore, we

conducted a personalized nomogram model. This nomogram for

OS prediction was conducted by incorporating the following

independent prognostic factors: age, stage, grade, and

agingScore. In Figure 7K, the 1-, 3-, and 5-year OS for ccRCC
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individuals from the TCGA-KIRC cohort can be evaluated by this

personalized nomogram model (C-index = 0.782). As illustrated

in the calibration diagram, a favorable overlap was found between

the nomogram-predicted and the observed 1-, 3-, and 5-year OS

of ccRCC patients (Figure 7L). Overall, the nomogram had a good

prediction performance in ccRCC prognosis.
Identification of agingScore-related
candidate compounds and drug targets

On the basis of the GDSC cell line data, we computed the

associations of the AUCs of the GDSC-derived compounds with

agingScore. Figure 8A illustrates the agingScore-related GDSC-

derived compounds. The above compounds were involved in the

tumorigenic pathways (apoptosis regulation, DNA replication, cell

cycle, EGFR signaling, etc.; Figure 8B). The AUCs of six CTRP-

derived compounds (leptomycin B, CR-1-31B, SR-II-138A,

paclitaxel, ouabain, and methotrexate) were positively correlated

to agingScore (Figure 8C). The low agingScore group presented

lower AUCs of the above compounds in comparison to the high

agingScore group, demonstrating that patients with low

agingScore were more likely to be sensitive to the above
B C

D E F

A

FIGURE 6

Analysis of the prognostic implication of the agingScore. (A–C) Kaplan–Meier analysis for OS between the high and low agingScore groups in
the (A) TCGA-KIRC cohort, (B) E-MTAB-1980 cohort, and (C) TCGA-KIRP cohort. (D–F) Kaplan–Meier analysis for (D) DFS, (E) DSS, and (F) PFS
between the high and low agingScore groups in the TCGA-KIRC cohort.
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compounds. Additionally, we determined the positive associations

of the AUCs of e ight PRISM-der ived compounds

(combretastatin-A-4, cabazitaxel, vincristine, PHA-793887,

romidepsin, gemcitabine, dolastatin-10, and YM-155) with

agingScore (Figure 8D). Lower AUCs were found in the low

agingScore group, indicating higher sensitivity to the above

compounds. Through Spearman’s correlation analysis between

the CERES score of drug targets and agingScore, 261 targets were

screened (P < 0.05, and correlation coefficient > 0.82; Figure 8E).

Additionally, Spearman’s correlation analysis of druggable protein
Frontiers in Immunology 12
expression with agingScore was carried out. As a result, 242

protein targets were determined based on P <0.05 and

correlation coefficient ≤0.1 (Figure 8F). Three genes, namely,

CYP11A1, SAA1, and GRIK4, were determined as potential

therapeutic targets through the above analysis, indicating that

suppressing the functions of the above genes in low agingScore

individuals could present desirable therapeutic effects. Moreover,

CYP11A1 and GRIK4 expression was validated in normal and

kidney tissues by immunohistochemistry from the Human

Protein Atlas (Figure 8G).
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FIGURE 7

Validation of the predictive performance of the agingScore and generation of an agingScore-based nomogram for ccRCC prognosis. (A, B) ROC
diagram of the 1-, 3-, and 6-year OS in the TCGA-KIRC cohort and the E-MTAB-1980 cohort. (C–E) ROC curves of the 1-, 3-, and 5-year DFS, DSS,
and PFS in the TCGA-KIRC cohort. (F, G) Univariate and multivariate Cox regression models of agingScore as well as clinical features with OS in the
TCGA-KIRC and E-MTAB-1980 cohorts. (H–J) Univariate and multivariate Cox regression analyses of agingScore and clinical features with DFS, DSS,
and PFS in the TCGA-KIRC cohort. (K) Generation of an agingScore-based nomogram comprised of independent predictive indicators in the TCGA-
KIRC cohort. (L) Calibration diagram for the nomogram-estimated and actual 1-, 3-, and 5-year OS in the TCGA-KIRC cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.877076
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2022.877076
B

C

D

E

F

G

A

FIGURE 8

Identification of agingScore-related candidate compounds and drug targets. (A) Spearman’s correlation analysis of GDSC-derived compounds
and agingScore. (B) Mechanisms involving GDSC-derived compounds. (C) Spearman’s correlation analysis of six CTRP-derived compounds and
agingScore as well as differential analysis of drug responses between the high and low agingScore groups. (D) Spearman’s correlation analysis of
eight PRISM-derived compounds and agingScore as well as differential analysis of drug responses between groups. A lower AUC value implies
higher drug sensitivity. ***P < 0.001. (E) Volcano plot of Spearman’s correlation between agingScore and CERES score of drug targets. The red
dot represents the significantly positive correlation (P < 0.05, and Spearman’s correlation coefficient>0.82). (F) Volcano plot of Spearman’s
correlation between agingScore and protein expression of drug targets. The blue dot indicates a significant negative correlation (P < 0.05, and
Spearman’s correlation coefficient ≤ 0.1). (G) Immunohistochemistry of the expression of CYP11A1 and GRIK4 in normal and kidney cancer
tissues. Bar, 200 mm.
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Association between agingScore and
antitumor immune responses

As illustrated in Figure 9A, the low agingScore group

presented relatively high infiltrations of immunosuppressive

cells (MDSCs, type 1 helper cells, type 2 helper cells, T

follicular helper cells, etc.) as well as immune active cells

(CD4+ T cells, CD8+ T cells, etc.) in comparison to the high

agingScore group, indicating that tumors with high

agingScore lacked recruitment or activation of innate

immune cell populations. Moreover, the high agingScore

group showed a higher expression of most co-stimulatory

and co-inhibitory immune checkpoint molecules than the low

agingScore group (Figure 9B), indicating that high agingScore

might upregulate the immune checkpoint molecules to escape

the immune elimination after immune activation. In

Figure 9C, agingScore was positively linked with cancer

antigen presentation, CD8+ T cell recruiting, NK cell

recruiting, infiltration of immune cells into tumors, and

killing of cancer cells. Additionally, agingScore was

positively linked with stromal activation (EMT, FGFR3-

related genes, angiogenesis, and WNT target) and antigen-

processing machinery and was negatively linked with cell

cycle progression. With the TIDE algorithm, patients who

responded to immunotherapy had relatively higher

agingScore both in the TCGA-KIRC cohort (Figure 9D) and

the E-MTAB-1980 cohort (Figure 9E). Therefore, individuals

with high agingScore had a higher probability to respond

to immunotherapy.
Post-transcriptional features correlated
to agingScore

In the TCGA-KIRC cohort, we identified 5 upregulated

miRNAs and 55 downregulated miRNAs in the high

agingScore group in comparison to the low agingScore group

in accordance with FDR <0.05 and at least 1.5-fold changes

(Figure 10A). Additionally, 2,921 mRNAs were upregulated and

476 mRNAs were downregulated in the high agingScore group

compared with the low agingScore group according to FDR

<0.05 and at least 1.5-fold changes (Figure 10B). Thereafter, the

targeted differentially expressed mRNAs of the above miRNAs

were predicted (Supplementary Table 5), and enrichment

analysis of the signaling pathways of their target genes was

conducted. The tumorigenic pathways especially were enriched

by the miRNA-targeted mRNAs in the high agingScore group,

containing pathways in cancer; miRNAs in cancer; FoxO, PI3K-

Akt, ErbB, and Notch signaling pathways; focal adhesion; and

Th1 and Th2 cell differentiation (Figure 10C). These results

indicated that agingScore was related to post-transcriptional

mechanisms and tumorigenic pathways.
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Discussion

Over the past decade, high-throughput analysis has greatly

advanced our understanding of ccRCC biology, allowing us to

recapitulate critical events in ccRCC initiation and progression

(2). The increase in understanding of the molecular profiles as well

as genetic alterations has translated into novel targets or

biomarkers, which affect ccRCC decision-making, thereby

shedding a novel insight into prolonging patients’ clinical

outcomes (1). Considering the unique molecular and clinical

features of ccRCC, tailoring specialized management is of

importance (36). Our study categorized ccRCC into three

clinically and therapeutically relevant subtypes in accordance

with the expression profiles of prognostic aging-associated genes

(12). Additionally, agingScore was generated and presented a

favorable performance in prognostication as well as

immunotherapeutic responses. Our findings proposed a precise

prognostic prediction approach for ccRCC patients with similar

biological patterns with more precise prognostication.

ccRCC is a highly heterogeneous tumor among individual

patients, encompassing different malignancies with different

pathologic characteristics and molecular pathways, which makes

it nearly impossible to determine a therapy that fits all ccRCC

cases (4). Intratumor heterogeneity, a common feature of ccRCC,

is linked to patterns of metastatic spread and prognosis after

surgery, complicating the assessment of prognostic indicators

(37). Hence, finding tailored therapeutic regimens for

subpopulations is significant for maximizing therapeutic

efficiency. In accordance with the expression profiling of 173

prognostic aging-associated genes, 529 ccRCC patients in the

TCGA-KIRC cohort were classified into three aging phenotypes,

which was affirmed in the E-MTAB-1980 cohort. The successful

development of new immunotherapy and immunotherapy-based

combination therapy requires an in-depth understanding of

ccRCC immunobiology. Many chromosomal alterations are

linked to the response or resistance to ICB in advanced ccRCC,

and the crosstalk of somatic alterations with immune infiltrations

impacts the response to ICB (38). It has been demonstrated that

previous genomic correlations of ICB responses in solid tumors

(TMB and PD-L1 status, etc.) cannot predict ccRCC, suggesting

the important role of the immune microenvironment in

modulating clinical benefits (39–41). Most ccRCC presents a

moderate TMB, but high infiltration of intratumoral CD8+ T

cells is linked to an unfavorable prognosis. Three aging

phenotypes were characterized by diverse prognosis, clinical

features, immune cell infiltration, tumor immunogenicity,

immunotherapeutic response, and sensitivity to targeted drugs

(axitinib, pazopanib, sorafenib, and sunitinib), indicating the

roles of the aging process in ccRCC progression. Additionally,

the interactions of the aging phenotypes with the TME reflected

that aging processes seem to mediate immune cell subpopulations

in ccRCC tumors.
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We generated the agingScore system, which enabled us to

reliably and independently predict ccRCC prognosis. Patients

with low agingScore presented undesirable prognosis in

contrast to those with high agingScore. Recently, Chen et al.

defined cellular senescence score for delineating the cellular
Frontiers in Immunology 15
senescence landscape across pan-cancer, which correlated to

genomic and immune features, immunotherapeutic responses,

and clinical outcomes (42). The nomogram is a useful and

easy-to-use tool used by doctors to predict outcomes, plan

personalized therapy, and determine follow-up or imaging
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FIGURE 9

Association between agingScore and antitumor immune responses. (A) Landscape of immune cell infiltrations in the high as well as low
agingScore groups in the TCGA-KIRC dataset. (B) Distribution of the expression of immune checkpoint molecules in the high and low
agingScore groups in the TCGA-KIRC cohort. (C) Association of agingScore with activities of cancer immunity cycle and known biological
processes in the TCGA-KIRC dataset. Solid lines represent positive correlations, while dashed lines represent negative correlations.
(D) Prediction of response to immunotherapy in the TCGA-KIRC dataset. (E) Validation of the response to immunotherapy in the high and low
agingScore groups in the E-MTAB-1980 cohort. *P < 0.05; ****P < 0.0001.
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intervals (43). Previous research has conducted several

nomogram models for ccRCC (44, 45). Regrettably, few

nomograms have been applied in clinical practice. Herein,

we developed the nomogram to estimate the personalized OS

probability of ccRCC subjects, comprising age, stage, grade,

and agingScore. Calibration plots confirmed the favorable

overlap between this model-estimated and investigated OS

probabilities of ccRCC. Hence, the agingScore-based

nomogram may provide individualized prognosis estimates

for ccRCC subjects. The agingScore was remarkably linked to

tumorigenic pathways, immune cell infiltration, and tumor

immunogenicity. Additionally, high agingScore patients were

responsive to immunotherapy. Several small molecular

compounds were determined for the low agingScore patients.

Proteins showing an enhanced negative association with

agingScore could possess therapeutic potential for patients
Frontiers in Immunology 16
with low agingScore (46). Nevertheless, most human proteins

are undruggable because they are short of distinct active sites

where small molecule agents can bind to as well as reside in

cells that are inaccessible to biological agents. Hence, it is of

importance to speculate on the potential druggable therapeutic

targets for low agingScore patients with undesirable survival

outcomes. Through Spearman’s correlation analysis of

agingScore with the CERES score of drug targets and the

expression level of druggable proteins, we determined the

three genes, namely, CYP11A1, SAA1, and GRIK4, as

promising therapeutic targets for low agingScore patients.

Collectively, our findings offered a novel insight into

personalized prognostication methods as well as threw light on

combining tailored risk stratification with precision treatment.

Nevertheless, our analysis still possessed several limitations. At

first, the number of datasets with available RNA-seq or
B
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FIGURE 10

Analysis of post-transcriptional features correlated to agingScore in the TCGA-KIRC cohort. (A) Volcano diagram of differentially expressed
miRNAs between the high and low agingScore groups. (B) Volcano diagram of differentially expressed RNAs between the high and low
agingScore groups. Red represents upregulation, while green represents downregulation. (C) Differences in miRNA-targeted signaling pathways
between the high and low agingScore groups. The red dot indicates the high expression of targeted mRNAs in the high agingScore group, while
the blue dot indicates the high expression of miRNAs in the low agingScore group.
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microarray profiles remained limited. The three aging subtypes

and agingScore needed to be verified with a larger sample size.

Secondly, the relationships between drug targets and small

molecular compounds lacked verification, thereby reducing the

persuasiveness of our conclusion. Thirdly, our results were

obtained from in-silico analysis, and more experimental and

clinical verification was required to facilitate the clinical

application of our findings.
Conclusion

Our findings revealed the interactions between aging-

associated genes in ccRCC and remodeling of the TME,

providing a novel insight into the molecular drivers underlying

ccRCC initiation and development. Collectively, our study

offered opportunities for ccRCC prevention, early detection,

and prognostication as well as therapy.
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Validation of three aging phenotypes across ccRCC in the E-MTAB-1980

dataset. (A) The CDFs of consensus matrix for k=2~9 identified by colors.
(B) Relative alteration in area under CDFs for k=2~9. (C) Tracking plot for

classification of TCGA-KIRC dataset into diverse subtypes for k=2~9. (D)
Classification of the E-MTAB-1980 cohort into three clusters when k=3.
(E) PCA of the RNA expression profiling of prognostic aging-associated

genes. (F) Kaplan-Meier analysis for OS among three phenotypes.
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24. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald
ER3rd, et al. Next-generation characterization of the cancer cell line encyclopedia.
Nature (2019) 569(7757):503–8. doi: 10.1038/s41586-019-1186-3

25. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient
and comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28
(11):1747–56. doi: 10.1101/gr.239244.118
Frontiers in Immunology 18
26. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G.
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal
somatic copy-number alteration in human cancers. Genome Biol (2011) 12(4):R41.
doi: 10.1186/gb-2011-12-4-r41

27. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. Robust
prediction of response to immune checkpoint blockade therapy in metastatic
melanoma. Nat Med (2018) 24(10):1545–9. doi: 10.1038/s41591-018-0157-9

28. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding
to MHC class I molecules integrating information from multiple receptor and
peptide length datasets. Genome Med (2016) 8(1):33. doi: 10.1186/s13073-016-
0288-x

29. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O.
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics (2014) 30(23):3310–6. doi: 10.1093/bioinformatics/btu548

30. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al.
Analysis of 100,000 human cancer genomes reveals the landscape of tumor
mutational burden. Genome Med (2017) 9(1):34. doi: 10.1186/s13073-017-0424-2

31. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-HO, et al.
The immune landscape of cancer. Immunity (2018) 48(4):812–30.e14. doi: 10.1016/
j.immuni.2018.03.023

32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

33. Gao Y, Wang H, Li H, Ye X, Xia Y, Yuan S, et al. Integrated analyses of m(1)
A regulator-mediated modification patterns in tumor microenvironment-
infiltrating immune cells in colon cancer. Oncoimmunology (2021) 10
(1):1936758. doi: 10.1080/2162402x.2021.1936758

34. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m(6)A regulator-
mediated methylation modification patterns and tumor microenvironment
infiltration characterization in gastric cancer. Mol Cancer (2020) 19(1):53.
doi: 10.1186/s12943-020-01170-0

35. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA
sequences to function. Nucleic Acids Res (2019) 47(D1):D155–d62. doi: 10.1093/
nar/gky1141

36. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic
correlates of response to immune checkpoint therapies in clear cell renal cell
carcinoma. Science (2018) 359(6377):801–6. doi: 10.1126/science.aan5951

37. Au L, Hatipoglu E, Robert de Massy M, Litchfield K, Beattie G, Rowan A,
et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell
carcinoma. Cancer Cell (2021) 39(11):1497–518.e11. doi: 10.1016/
j.ccell.2021.10.001

38. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant' Angelo M, Forman J, et al.
Interplay of somatic alterations and immune infiltration modulates response to
PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med (2020) 26
(6):909–18. doi: 10.1038/s41591-020-0839-y

39. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A,
et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J
Med (2014) 371(23):2189–99. doi: 10.1056/NEJMoa1406498

40. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor
and microenvironment evolution during immunotherapy with nivolumab. Cell
(2017) 171(4):934–49.e16. doi: 10.1016/j.cell.2017.09.028

41. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nat Rev Cancer (2019) 19(3):133–50.
doi: 10.1038/s41568-019-0116-x

42. Wang X, Ma L, Pei X, Wang H, Tang X, Pei JF, et al. Comprehensive
assessment of cellular senescence in the tumor microenvironment. Brief Bioinform
(2022) 23(3):bbac118. doi: 10.1093/bib/bbac118

43. Gittleman H, Lim D, Kattan MW, Chakravarti A, Gilbert MR, Lassman AB,
et al. An independently validated nomogram for individualized estimation of
survival among patients with newly diagnosed glioblastoma: NRG oncology RTOG
0525 and 0825. Neuro Oncol (2017) 19(5):669–77. doi: 10.1093/neuonc/now208

44. Qi-Dong X, Yang X, Lu JL, Liu CQ, Sun JX, Li C, et al. Development and
validation of a nine-Redox-Related long noncoding RNA signature in renal clear
cell carcinoma. Oxid Med Cell Longev (2020) 2020:6634247. doi: 10.1155/2020/
6634247

45. Yin X, Wang Z, Wang J, Xu Y, Kong W, Zhang J. Development of a novel
gene signature to predict prognosis and response to PD-1 blockade in clear cell
renal cell carcinoma. Oncoimmunology (2021) 10(1):1933332. doi: 10.1080/
2162402x.2021.1933332

46. Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized
treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico
strategy towards precision oncology. Brief Bioinform (2021) 22(3):bbaa164.
doi: 10.1093/bib/bbaa164
frontiersin.org

https://doi.org/10.1038/s41581-020-00359-2
https://doi.org/10.1016/j.ccell.2021.03.007
https://doi.org/10.1038/s41467-021-24112-w
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1038/s41591-020-1044-8
https://doi.org/10.14336/ad.2017.0103
https://doi.org/10.3390/cancers13123045
https://doi.org/10.1038/ng.2699
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/nar/gki017
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1016/s0140-6736(16)00561-4
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1371/journal.pone.0001195
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1186/s13073-016-0288-x
https://doi.org/10.1186/s13073-016-0288-x
https://doi.org/10.1093/bioinformatics/btu548
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1080/2162402x.2021.1936758
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1126/science.aan5951
https://doi.org/10.1016/j.ccell.2021.10.001
https://doi.org/10.1016/j.ccell.2021.10.001
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1016/j.cell.2017.09.028
https://doi.org/10.1038/s41568-019-0116-x
https://doi.org/10.1093/bib/bbac118
https://doi.org/10.1093/neuonc/now208
https://doi.org/10.1155/2020/6634247
https://doi.org/10.1155/2020/6634247
https://doi.org/10.1080/2162402x.2021.1933332
https://doi.org/10.1080/2162402x.2021.1933332
https://doi.org/10.1093/bib/bbaa164
https://doi.org/10.3389/fimmu.2022.877076
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Aging-based molecular classification and score system in ccRCC uncovers distinct prognosis, tumor immunogenicity, and treatment sensitivity
	Introduction
	Materials and methods
	Publicly available datasets and processing
	Establishment of aging phenotypes
	Functional and pathway enrichment analysis
	Generation of tumor-infiltrating immune cells
	Cancer immunity cycle
	Immunotherapy response
	Drug sensitivity analysis
	Analysis of single-nucleotide polymorphisms and CNAs
	Evaluation of tumor immunogenicity indicators
	Analysis of aging phenotype-associated genes
	Generation of the aging gene signature
	Analysis of post-transcriptional features correlated to agingScore
	Statistical analysis

	Results
	The landscape of prognosis and clinical features of the three aging phenotypes in ccRCC
	The immune landscape of the three aging phenotypes
	Antitumor immune responses of the three aging phenotypes
	Sensitivity to known targeted drugs of the three aging phenotypes
	Genomic alterations of the three aging phenotypes
	Intrinsic immune evasion mechanisms of the three aging phenotypes
	Identification of aging phenotype-associated genes and generation of an agingScore system for ccRCC
	Validation of the predictive performance of the agingScore in ccRCC prognosis
	Construction of an agingScore-based nomogram for ccRCC prognosis
	Identification of agingScore-related candidate compounds and drug targets
	Association between agingScore and antitumor immune responses
	Post-transcriptional features correlated to agingScore

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


