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The germinal center (GC) plays a central role in the generation of antigen-specific B cells
and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumor-
igenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesvi-
ruses such as Epstein–Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68)
utilize numerous armaments to drive infected naïve B cells, independent of antigen,
through GC reactions to expand the latently infected B cell population and establish a sta-
ble latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA)
mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to pro-
mote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized
for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell
responses has not been previously reported. Here, we demonstrate that 1) B cell–specific
deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immu-
noglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted
expansion of MHV68 latently infected GC B cells, and 3) B cell–specific deletion of
EWSR1 during a normal immune response to nonviral antigen resulted in significantly
elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies.
Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but
instead resulted in the generation of increased numbers of precursor GC B cells. Cumula-
tively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.
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The germinal center (GC) is a specific histological structure that forms within periph-
eral lymphoid organs in response to antigen stimulation. Upon antigen-specific activa-
tion, naïve follicular B cells enter the GC, where B cells with appropriate high affinity
for antigen are positively selected for expansion and further differentiation into
antibody-secreting plasma cells and/or memory B cells. This process is governed by a
tightly regulated network of signaling pathways and transcription factors, including
BCL6, NF-κB, and IRF4 (reviewed in refs. 1–4). Thus, the GC represents the central
avenue through which humoral immune responses are generated. Notably though, the
crucial genetic processes that are fundamental to GC B cell biology, immunoglobulin
somatic hypermutation and class-switch recombination, provide a fertile ground for
secondary mutations that can drive the malignant transformation of B cells (1, 2, 5, 6).
Not surprisingly then, a large majority of B cell malignancies, including gammaherpesvirus-
associated lymphomas, are derived from GC B cells (1–4). Similarly, the genesis of many
autoimmune disorders lies in the dysregulation of GC B cell responses (7). Therefore,
biological mechanisms that tightly regulate B cell differentiation and selection are critical
for maintaining normal GC homeostasis and preventing GC B cell–based diseases.
The human gammaherpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma–

associated herpesvirus (KSHV) are ubiquitous pathogens that directly contribute to the
development of numerous types of malignances, including numerous B cell lymphomas
that originate in the GC (8–10). A hallmark of these viruses is their ability to establish
latent infection in circulating B cells, a step which is requisite for both lifelong infection
and lymphomagenesis (11, 12). However, the precise underlying mechanisms by which
they establish latency in the B cell compartment and induce B cell lymphoma in vivo
remain poorly understood due to their strict species restriction (11, 12). Murine gamma-
herpesvirus 68 (MHV68, MuHV-4, γHV68) is a natural pathogen of murid rodents that
is genetically and pathogenically related to EBV and KSHV (11–13). Like the human
gammaherpesviruses, MHV68 establishes chronic latent infection in the B cell compart-
ment (11, 12) and is directly associated with the development of B cell lymphoproliferative
diseases and lymphomas (14, 15), and thus offers a highly tractable system for defining
in vivo mechanisms by which gammaherpesviruses establish infection and cause disease.
The GC plays a central role in gammaherpesvirus biology. For example, EBV is thought

to initially infect naïve B cells and then, independent of antigen, drive these infected cells
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into the GC, where they undergo proliferative expansion before
differentiating into long-lived, resting memory B cells (8, 16, 17).
Consistent with this concept, MHV68 is preferentially maintained
in GC B cells during the expansion phase of latency (18–20).
Thus, it is not surprising that these viruses employ multiple molec-
ular mechanisms to manipulate GC B cell biology. Among the
array of armaments utilized by these viruses to manipulate host cells
are microRNAs (miRNAs), short noncoding regulatory RNA mole-
cules that posttranscriptionally regulate gene expression through
binding to complementary cognate sequences within messenger
RNA (mRNA) target transcripts, resulting in silencing of mRNA
targets (21, 22). We have previously demonstrated that the
MHV68 precursor miRNA (pre-miR) pre-miR-7 of the TMER5
gene is required for efficient establishment of latency in GC B cells
in vivo (23). Through a cutting-edge miRNA target identification
approach, we identified EWSR1 (EWSR1/EWS; Ewing sarcoma
breakpoint region 1) as the most prominent host mRNA target for
MHV68 mghv-M1-miR-7-5p in infected cells. Importantly, expres-
sion of anti-EWSR1 short hairpin RNAs (shRNAs) in place of pre-
miR-7 fully rescued the attenuation of pre-miR-7–deficient virus
in vivo, demonstrating a critical role for EWSR1 repression during
MHV68 infection of B cells in vivo (23).
Thus, these findings were notable because they implied a key

role for EWSR1 in regulation of GC B cells, at least in the
context of gammaherpesvirus infection. EWSR1, along with
FUS/TLS and TAF15, are members of the FET family of pro-
teins (24). EWSR1 is widely recognized in cancer biology for the
contribution of its transcription-activating domain to the onco-
genic fusion protein EWS/FLI-1, which drives transformation in
Ewing’s sarcoma (25, 26). In its native form, EWSR1 is com-
posed of a 50 intrinsically disordered transactivation domain and
a 30 RNA/DNA–binding region (25). Native EWSR1 has been
reported to carry out a very wide range of context-dependent
actions, including transcriptional activation, transcriptional repres-
sion, and RNA binding, to influence splicing and mRNA trans-
port (27, 28). For example, in stress responses, EWSR1 regulates
both gene expression and alternative splicing of DNA damage
response–associated genes (29–31).
To date, EWSR1 has no known function in mature B cell

biology. In the work described here, we utilize EWSR1 condi-
tional knockout (CKO) mice to further examine the role of
EWSR1 in GC B cells during chronic MHV68 infection, and
to define whether EWSR1 plays a regulatory role in nonviral
antigen-mediated immune responses. Through systemic in vivo
investigations, we demonstrate that 1) reduction or loss of EWSR1
expression in mice significantly expands the infected GC B cell
population during MHV68 latency, and 2) EWSR1 deficiency in
B cells results in significantly elevated antigen-specific GC B cell
and class-switched antibody responses during a T cell–dependent
immune response. EWSR1 deficiency did not affect the develop-
ment of mature B cells, or the proliferation and survival of GC
B cells, but instead significantly enhanced the generation of pre-
cursor GC (Pre-GC) B cells. Taken together, these findings
demonstrate that EWSR1 functions as a molecular brake to
constrain both gammaherpesvirus-driven and nonviral antigen-
mediated GC B cell responses.

Results

Gammaherpesvirus-Mediated Repression of EWSR1 Promotes
Expansion of the Infected GC B Cell Compartment. As described
above, we have previously demonstrated that MHV68 represses
EWSR1 to significantly enhance GC B cell infection in vivo (23).
To determine whether this enhanced infection was apparent

throughout the proliferative expansion phase of the GC reaction,
we first generated MHV68 recombinant viruses expressing 1) anti-
EWSR1 shRNAs (MHV68.YFP.EWshR) or control scrambled
sequence shRNAs (MHV68.YFP.SCshR) in place of pre-miR-7
and pre-miR-12 stem loops (Fig. 1A), and 2) enhanced yellow fluo-
rescent protein (eYFP) under the control of the H2b promoter.
The eYFP-expressing genome is phenotypically wild-type (WT)
but eYFP expression can be used to facilitate identification of
infected cells from in vivo samples (18).

To verify that MHV68-expressing anti-EWSR1 shRNAs could
specifically repress EWSR1 transcript expression in latently
infected GC B cells in vivo, we infected WT C57BL/6J (B6)
mice intranasally (i.n.) and quantified EWSR1 expression in GC
B cells during latency establishment. At 16 d post infection
(dpi), splenocytes were harvested, and B cells were isolated by
immunomagnetic negative selection and then stained for GC B
cell-surface markers CD19, GL7, and CD95. Subsequently,
infected GC B cells were flow cytometrically sorted based on
CD19+ GL7+ CD95+ YFP+ gating (Fig. 1B). Following extrac-
tion of RNA from sorted GC B cells, EWSR1 mRNA expression
level was quantified by qRT-PCR (Fig. 1C). Consistent with our
previous demonstration that TMER5-derived miR-7-5p sup-
presses EWSR1 (23), GC B cells infected with recombinant virus
carrying scrambled shRNAs in place of TMER5 pre-miRNA
stem loops (SC.shR) displayed significantly increased levels of
EWSR1 transcript in comparison with GC B cells infected with
WT MHV68. In contrast, EWSR1 expression in GC B cells
infected with recombinant virus carrying anti-EWSR1 shRNAs
in place of TMER5 pre-miRNA stem loops (EW.shR) was
restored to a level at or below that of WT virus, demonstrating
that virus-encoded anti-EWSR1 shRNAs effectively suppress
EWSR1 transcript levels in vivo.

To test whether selective repression of EWSR1 promoted
increased numbers of infected GC B cells during latency, we
infected mice with MHV68.YFP.WT, MHV68.YFP.SCshR, or
MHV68.YFP.EWshR viruses for 16 d, and then quantified the
absolute number of YFP+ GC B cells present in the spleen
using flow cytometry (Fig. 1D). In accordance with our previ-
ous findings (23), the number of GC B cells (CD19+ GL7+

CD95+ YFP+) infected with the pre-miR-7–deficient virus
expressing scrambled shRNAs was reduced more than 27-fold
(WT, 38,470; SC.shR, 1,420). In contrast, incorporation of
anti-EWSR1 shRNAs into the pre-miR-7–deficient virus
resulted in nearly complete restoration of GC B cell infection to
levels equivalent to that of WT virus (WT, 38,470; EW.shR,
25,250). Thus, these findings confirmed that shRNA-mediated
selective repression of EWSR1 in vivo promotes MHV68 infec-
tion of GC B cells during latency establishment.

We next determined whether the increased numbers of
infected GC B cells observed in the context of EWSR1 repres-
sion vs. derepression were apparent throughout the proliferative
expansion phase of the GC reaction. B6 mice were inoculated
with MHV68.YFP.WT, MHV68.YFP.SCshR, or MHV68.YFP.
EWshR virus, and then the numbers of infected GC B cells were
quantified by flow cytometry at 13, 16, and 19 dpi (Fig. 1E).
Notably, while the number of GC B cells infected with either
WT virus or pre-miR-7–deficient virus expressing anti-EWSR1
shRNAs expanded significantly from 13 to 19 dpi, the number
of GC B cells infected with pre-miR-7–deficient virus expressing
scrambled shRNAs remained stable over time (EW.shR, 36-fold
change; SC.shR, 2-fold change). Thus, collectively these findings
strongly suggested that viral miRNA-mediated repression of
EWSR1 promotes expansion of the latently infected GC B cell
population.
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MHV68 infects multiple cell types, including B cells, macro-
phages, dendritic cells, and epithelial cells (11, 12). To deter-
mine whether the requirement for EWSR1 repression was
intrinsic to B cell infection or instead due to effects on other
cell types, we generated mice with B cell–specific deletion of
EWSR1. Mice homozygous for loxP-flanked (floxed) EWSR1
exon 4 (EWSR1flox/flox CD19+/+; designated EWSR1 WT
mice) (32, 33) were crossed with CD19-Cre mice (34) to gen-
erate CKO mice in which EWSR1 is specifically deleted in B
cells (EWSR1flox/flox CD19Cre/+; designated EWSR1 CKO
mice) (Fig. 2A). Through genomic PCR for the floxed region
using DNA extracted from purified B cells, we validated that
EWSR1 exon 4 flanked by two loxP sites was efficiently excised

in the EWSR1 CKO mice (Fig. 2B). We further confirmed
that deletion of EWSR1 exon 4 resulted in a complete loss of
EWSR1 protein expression in purified B cells from EWSR1
CKO mice (Fig. 2C).

We next infected EWSR1 WT and CKO mice with YFP-
expressing WT or pre-miR-7–deficient viruses for 16 d, and
then quantified the GC B cell infection using flow cytometry
(Fig. 2D). Consistent with our previous findings (23), infection
of EWSR1 WT mice with the pre-miR-7–deficient virus
resulted in a 12-fold decrease in the number of latent GC B
cells (B220+ GL7+ CD95+ YFP+) as compared with WT virus
(Fig. 2E). In contrast, the pre-miR-7–deficient virus displayed
only a 2-fold decrease in the number of latent GC B cells in
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Fig. 1. shRNA-mediated selective repression of EWSR1 in vivo promotes MHV68 infection of GC B cells. (A) Schematic diagram of MHV68 recombinant
viruses carrying WT TMER5 (MHV68.YFP.WT) or TMER5 carrying anti-EWSR1 shRNAs (MHV68.YFP.EWshR) or scrambled shRNAs (MHV68.YFP.SCshR) in place of
pre-miR-7 and pre-miR-12 stem loops. Diagram depicts TMER5 gene location relative to terminal repeats (TR) and surrounding genes TMER4 and M1. (B) Gat-
ing strategy used for flow sorting virus-positive GC B cells using representative flow plots. C57BL/6J mice were infected i.n. with 104 PFUs of WT parental
virus MHV68.YFP.WT, MHV68.YFP.SCshR, or MHV68.YFP.EWshR. At 16 dpi, the splenocytes were harvested, and B cells were then isolated and subjected to
flow cytometric sorting for virus-positive GC B cells (CD19+ GL7+ CD95+ YFP+). (C) Relative expression of endogenous EWSR1 mRNA in infected GC B cells
sorted from in vivo samples. The EWSR1 mRNA expression level in infected GC B cells from each group was determined by qRT-PCR. The values represent
the means ± the SEM of two independent experiments. Significance was determined by a two-tailed, unpaired t test (***P < 0.001, ****P < 0.0001). (D) The
number of virus-positive GC B cells during the peak of latency. The mice were infected as described in B, and the latent infection of GC B cells was quantified
by using flow cytometry at 16 dpi. Each symbol represents an individual mouse. The values represent the means ± the SEM of three independent experi-
ments. Significance was determined by a two-tailed, unpaired t test (*P < 0.05). (E) The number of virus-positive GC B cells during the expansion phase of
latency. The mice were infected as described in B, then at 13, 16, and 19 dpi, splenocytes were harvested and subjected to flow cytometric quantification for
virus-positive GC B cells. The values represent the means ± the SEM of two or three independent experiments. Significance was determined by a two-tailed,
unpaired t test (*P < 0.05, **P < 0.01).
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EWSR1 CKO mice (Fig. 2E), indicating that B cell–specific
deletion of EWSR1 complemented the absence of pre-miR-7 in
MHV68-infected cells. Cumulatively, these findings demonstrate
that viral repression of EWSR1 promotes gammaherpesvirus-
driven GC B cell infection.

EWSR1 Is Not Required for Normal Peripheral B Cell Development
and Basal Serum Immunoglobulin Production. The function of
EWSR1 in mature B cells is unknown. However, the above find-
ings suggested that MHV68 may exploit a previously unrecog-
nized role for EWSR1 in regulation of B cell responses to foreign
antigens. To address this possibility, we used EWSR1 CKO
mice to define parameters of B cell development and B cell
responses to a nonviral antigen in the absence of EWSR1. To
first determine whether EWSR1 is important for peripheral B
cell development, we quantified the number of total B cells and
B cell subsets in the spleen of naïve EWSR1 WT and CKO
mice by flow cytometry (Fig. 3 A–D). The number of total B
cells (B220+ CD3�) in the spleen of naïve CKO mice was
nearly identical to that of naïve WT mice (Fig. 3 A and B), as
was the case for the total T cell (B220� CD3+) population (Fig.
3 A and B). Further, no significant differences were observed in
levels of peripheral B cell subsets of CKO mice (Fig. 3 C and
D), including transitional B cells (B220+ CD93+), follicular
(FO) B cells (B220+ CD93� CD23+), and marginal zone (MZ)
B cells (B220+ CD93� CD23low/� CD21+). Additionally, naïve
CKO mice exhibited no significant difference in the number of
spontaneously activated GC B cells (B220+ GL7+ CD95+) (Fig.
3 E and F). Finally, to determine whether EWSR1 deficiency in
B cells affects basal serum immunoglobulin production, we per-
formed an enzyme-linked immunosorbent assay (ELISA) to
quantify serum immunoglobulin levels in naïve EWSR1 WT or
CKO mice (Fig. 3G). However, levels of immunoglobulin M
(IgM), total IgG, IgG1, IgG2b, IgG2c, and IgG3 in naïve WT
and CKO mice were nearly equivalent (Fig. 3G), demonstrating
that B cell–specific deletion of EWSR1 does not alter basal levels
of serum immunoglobulin. Thus, together, these data demonstrate

that EWSR1 is dispensable for normal development of mature
peripheral B cells.

EWSR1 Restricts T Cell–Dependent Antigen-Mediated GC B
Cell Responses to Limit Excessive Humoral Immunity. We next
queried whether EWSR1 regulates nonviral antigen-specific
GC B cell responses. To first test this possibility, EWSR1 WT
and CKO mice were mock-treated, or immunized intraperito-
neally (i.p.) with the T cell–dependent antigen 4-hydroxy-3-
nitrophenylacetyl–keyhole limpet hemocyanin (NP-KLH). Two
weeks later, splenocytes were harvested, stained for specific GC
B cell-surface markers B220, GL7, and CD95, and then ana-
lyzed by flow cytometry (Fig. 4A). In agreement with experi-
ments in naïve mice (Fig. 3 E and F), the number of GC B cells
(B220+ GL7+ CD95+) detected in mock-treated mice carrying
B cell–specific deletion of EWSR1 was equivalent to that of
mock-treated WT mice (Fig. 4 B and C), providing further evi-
dence that EWSR1 has no effect on spontaneous activation of
GC B cells. Notably though, following NP-KLH immunization,
the number of GC B cells present in EWSR1 CKO mice was
significantly increased as compared with that of EWSR1 WT
control mice (Fig. 4 B and C). Consistent with this, in situ
hybridization for the GC B cell marker BCL6 indicated normal
GC architecture but vastly expanded GC B cell zones (Fig. 4D).
To determine whether these enhanced GC B cell responses
resulted in increased numbers of antigen-specific B cells, we
quantified NP-specific GC B cells using fluorescently labeled NP
antigen in conjunction with GC B cell-surface markers (Fig. 4
E–G). Indeed, in parallel with the overall increase in total GC B
cell numbers, NP-specific GC B cells were significantly increased
in EWSR1 CKO mice (Fig. 4 F and G). Together, these find-
ings demonstrate that EWSR1 constrains antigen-specific GC B
cell responses even in the context of an immune response to a
nonviral antigen.

To determine whether the enhanced GC B cell responses
observed in mice with B cell–specific ablation of EWSR1 were
due to increased proliferation and/or survival of GC B cells, we
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Fig. 2. B cell–specific deletion of EWSR1 in vivo promotes latent infection of GC B cells with MHV68. (A) Schematic diagram of a two-step breeding strategy
used for generating the mice with CKO of EWSR1 in B cells. The EWSR1flox/flox mice were first crossed to CD19-Cre mice to generate the F1 offspring: the het-
erozygous EWSR1flox/+ CD19Cre/+ mice (designated EWSR1 HET mice). In the F2 generation, the EWSR1flox/flox CD19Cre/+ mice (designated EWSR1 CKO mice)
were obtained by mating the EWSR1 HET mice back to the EWSR1flox/flox mice. Littermate EWSR1flox/flox CD19+/+ mice (designated EWSR1 WT mice) were
used as controls in all experiments. Mice genotypes were identified by PCR with the primers P1 located upstream of the first loxP site and P2 located down-
stream of the second loxP site. (B) Genotyping EWSR1 CKO mice by PCR. DNA was extracted from B cells isolated from naïve mice by immunomagnetic nega-
tive selection, and PCR was then performed with the P1 and P2 primers. Length of amplicons: one band of 983 bp in EWSR1 WT mice, two bands of 713 and
303 bp in EWSR1 HET mice, and one band of 303 bp in EWSR1 CKO mice. (C) Validation of the EWSR1 CKO mouse genotype by Western blots. The EWSR1
protein expression level in purified B cells was determined by Western blots. β-actin was included as a loading control. (D and E) The EWSR1 WT or CKO
mice were infected i.n. with 104 PFUs of WT parental virus MHV68.YFP.WT or the pre-miR-7–deficient virus MHV68.YFP.ΔmiR7. At 16 dpi, the splenocytes
were harvested and subjected to flow cytometric quantification for virus-positive GC B cells (B220+ GL7+ CD95+ YFP+). (D) Representative flow plots for
showing the gating of YFP+ cells from B220+ GL7+ CD95+ GC B cells. (E) Fold changes of the number of YFP+ GC B cells infected with MHV68.YFP.WT virus to
that of YFP+ GC B cells infected with MHV68.YFP.ΔmiR7 virus in EWSR1 WT or CKO mice are shown. The values represent the means ± the SEM of three
independent experiments. Significance was determined by a two-tailed, unpaired t test (***P < 0.001).
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quantified 5-ethynyl-20-deoxyuridine (EdU) incorporation and
the presence of active caspase 3 (aCasp3) in GC B cells at 14 d
post NP-KLH immunization (Fig. 4 H–K). However, EWSR1-
deficient GC B cells displayed no significant difference in either
proliferation (Fig. 4 H and I) or apoptosis (Fig. 4 J and K) as
compared with WT GC B cells. Following initial antigen acti-
vation, naïve follicular B cells enter into a Pre-GC state, charac-
terized by up-regulated GL7 and CD38 (35–37), and undergo
an initial proliferative burst prior to further differentiation (38,
39). We therefore hypothesized that EWSR1 deficiency may
restrict the generation of Pre-GC B cells. To test this possibil-
ity, we analyzed Pre-GC (B220+ GL7+ CD38+) and mature
GC (B220+ GL7+ CD38�) B cells at 14 d following NP-KLH
immunization by flow cytometry (Fig. 5A). Intriguingly, the
frequencies and numbers of both Pre-GC B cells and mature
GC B cells present in EWSR1 CKO mice were significantly
elevated as compared with those of EWSR1 WT control mice
(Fig. 5 B–E). Together, these findings indicate that the
enhanced GC B cell responses observed in mice with B cell–
specific EWSR1 deficiency were due to increased numbers of
Pre-GC B cells, demonstrating that EWSR1 constrains GC
responses through regulation of Pre-GC B cells, rather than
restriction of GC B cell proliferation or survival.
To determine whether the enhanced GC B cell reactions to

nonviral antigen observed in EWSR1 CKO mice resulted in
increased antigen-specific antibody responses, we immunized
EWSR1 WT and CKO mice with NP-KLH and then deter-
mined the levels of NP-specific antibodies present in sera after
2 wk (Fig. 6). Notably, while NP-specific IgM levels were similar
in both strains (Fig. 6A), the levels of class-switched NP-specific
IgG in EWSR1 CKO mice were significantly higher than those
in WT control mice (Fig. 6B). Consistent with the enhanced GC

reaction observed in EWSR1 CKO mice, antigen-specific class-
switched antibodies including NP-specific IgG1, IgG2b, and
IgG2c (but not IgG3) were strikingly elevated in immunized
EWSR1 CKO mice as compared with immunized EWSR1 WT
mice (Fig. 6 C–F). Accordingly, the number of NP-specific IgG-,
IgG1-, IgG2b-, and IgG2c-secreting plasma cells was significantly
increased in immunized EWSR1 CKO mice (Fig. 6 B–E), while
the number of NP-specific IgM- and IgG3-secreting cells remained
unchanged (Fig. 6 A and F). Thus, these data demonstrate that
EWSR1 deficiency in B cells results in elevated antigen-specific
plasma cells and antibodies. Collectively, these findings clearly
demonstrate that EWSR1 constrains antigen-mediated GC B cell
responses, and suggest that EWSR1 may serve as a molecular brake
to limit excessive humoral immunity during T cell–dependent
immune responses.

Discussion

Throughout the history of virology, in-depth studies of the
mechanisms by which viruses manipulate infected cells have led
to the discovery of novel host factors that regulate normal cellu-
lar processes. Similarly, in the work described here, our studies
defining mechanisms by which gammaherpesvirus miRNAs
manipulate infected B cells have revealed a regulatory role for
the host protein EWSR1 in restricting GC B cell responses to
nonviral antigens. We extend our previous studies defining
EWSR1 as a critical target for a gammaherpesvirus miRNA (23)
by demonstrating that inhibition or ablation of EWSR1 in B
cells significantly increased the number of gammaherpesvirus-
infected GC B cells throughout the proliferative expansion
phase of latency in vivo. By broadening the scope of these stud-
ies to examine GC B cell responses to a nonviral antigen
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outside of the context of infection, we demonstrate that
EWSR1 plays a central role in the regulation of mature B cell
responses: EWSR1 deficiency in B cells resulted in a striking
increase in the number of antigen-specific GC B cells and a

concomitant rise in the levels of antigen-specific class-switched
antibodies. B cell–specific ablation of EWSR1 did not alter pro-
liferation or survival of GC B cells but instead resulted in the
generation of increased numbers of Pre-GC B cells. Cumulatively,
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these findings strongly suggest that EWSR1 acts as a molecular
brake at a critical checkpoint in the Pre-GC stage to constrain
GC B cell reactions and thereby prevent excessive humoral
immunity.
A function for EWSR1 in circulating mature B cells has not

been previously reported. EWSR1 is expressed in both develop-
ing B cells in the bone marrow and mature B cells in the
spleen. Although EWSR1-deficient mice typically do not sur-
vive, it has been reported that those that survive do display a
subtle defect in pre–B cell development (40). However, our
work suggests that this defect does not extend to the mature B
cell compartment: B cell–specific deficiency of EWSR1 had no
effect on 1) numbers of total mature B cells, 2) numbers of
specific mature B cell subsets, or 3) basal levels of serum immu-
noglobulin (Fig. 3). Therefore, the signals that drive the exacer-
bated GC B cell responses observed here in EWSR1 CKO mice
in the context of both gammaherpesvirus infection and antigen-
specific B cell responses appear to be intrinsic to the activated
mature B cells. These findings strongly suggest that EWSR1
functions as a negative regulator of GC B cell responses. Such a
function is consistent with that of other negative regulators of B
cell responses, including the protein-tyrosine phosphatase SHP1
(41), ELL (eleven-nineteen lysine-rich leukemia)-associated factor
2 (EAF2) (42), and ubiquitin-modifying enzyme A20 (43),
which are essential for constraining robust B cell responses to
maintain immune homeostasis and prevent autoimmune disorders.
It is notable that the enhanced GC B cell responses observed

in mice with B cell–specific EWSR1 deletion were not due to
enhanced proliferation or survival of GC B cells but instead cor-
related with an increase in generation of Pre-GC B cells. This
finding is consistent with the concept that EWSR1 may govern
the early proliferative burst that occurs following the initial acti-
vation of antigen-specific B cells and prior to GC entry (38, 39).
Alternatively, it is plausible that EWSR1 may elevate the thresh-
old of B cell receptor (BCR) and/or coreceptor signals required

for initial activation. This is an important distinction that will
need to be clarified in future studies. Thus, it is important to
note that although experiments here focused on GC B cell
responses to a T cell–dependent antigen, our findings do not
rule out the possibility that EWSR1 may restrict all types of
mature B cell responses, or directly impact the requirement for T
cell help during initial activation to the Pre-GC stage. Neverthe-
less, the results presented here clearly demonstrate that, at a min-
imum, EWSR1 restricts GC responses to a T cell–dependent
antigen. These findings add EWSR1 to the growing list of host
factors such as Bhlhe40 and TBK1, which, respectively, act as
negative and positive regulators of Pre-GC B cell responses with
no direct effect on GC B cell function (37, 44).

At present, the molecular mechanism by which EWSR1 reg-
ulates B cells is unknown. The mature B cell differentiation
process, from activation of naïve follicular B cells to prolifera-
tion of Pre-GC cells to transit through the GC reaction to ter-
minal differentiation, is highly orchestrated, requiring stepwise
ratcheting of key transcription factors, antigen signaling through
the BCR, and environmental cues provided by other immune
cells within the milieu of the lymphoid follicle (1–4). EWSR1 is
a multifunctional protein that carries out a wide range of regula-
tory activities including modulating transcription, RNA pro-
cessing, and alternative splicing (29–31). Although EWSR1 is
primarily found in the nucleus, it shuttles to the cytoplasm
depending upon context. Thus, it is perhaps most plausible that
EWSR1 functions to directly alter stoichiometry or isoform
usage of transcription factors central to GC B cell biology, or
that it directly alters B cell signaling events. For example, another
negative regulator of GC B cells, A20, restricts activation of the
critical transcription factor NF-κB, with A20 deficiency resulting
in enhanced B cell survival and elevated numbers of GC B cells,
plasma cells, and autoantibodies (43, 45). Notably, inactivation
mutations in the gene encoding A20, TNFAIP3, are frequently
associated with B cell lymphoma (46, 47). On the other hand,
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Fig. 6. B cell–specific EWSR1 deficiency enhances humoral immunity following immunization with a T cell–dependent antigen. EWSR1 WT and CKO mice
were immunized i.p. with NP-KLH for 14 d; then, NP-specific antibodies in the sera were determined by ELISA, and plasma cells (PCs) secreting NP-specific
antibodies in the spleens were determined by ELISpot. (A) The level of NP-specific IgM and the number of PCs secreting NP-specific IgM. (B) The level of
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the negative regulator SHP1 is a cytoplasmic tyrosine phospha-
tase that associates with the BCR and dephosphorylates sub-
strates to attenuate BCR-associated signaling events, ultimately
repressing GC B cell responses (48). Interestingly, though, in
contrast to EWSR1, expression of SHP1 is required for mainte-
nance of MHV68 latency, suggesting an alternative role for this
protein during gammaherpesvirus infection (49). Due to the
multifunctional nature of EWSR1, much work remains to define
the specific mechanisms by which this interesting protein regu-
lates GC B cell biology.
The findings presented here demonstrate a negative regula-

tory role for EWSR1 in constraining GC B cell responses, with
EWSR1 expression restricting total numbers of Pre-GC and
GC B cells, resulting in decreased plasma cell accumulation
and circulating antibody levels. These results also highlight the
intimate relationship of gammaherpesviruses with their B cell
hosts, with these viruses evolving unique mechanisms to exploit
host cell vulnerabilities. In this case, in-depth study of the abil-
ity of a viral miRNA to repress a host transcript with unknown
function in B cells has revealed the importance of the host fac-
tor in regulating a central player in immune homeostasis. Thus,
these findings have important potential implications for the
pathogenesis of disease, as regulation of GC B cell responses is
central to not only gammaherpesvirus biology but also the gen-
esis of numerous types of B cell lymphomas and autoimmune
diseases.

Materials and Methods

Cell Culture. NIH 3T12 murine fibroblasts (ATCC, CCL-164) were grown and
maintained in Dulbecco’s modified Eagle’s medium (DMEM; Corning, 10-013-CM)
supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals, S12450) and
1× penicillin-streptomycin solution (Corning, 30-002-CI) at 37 °C with 5% CO2.

Generation of Recombinant Viruses. MHV68.H2bYFP, a recombinant marker
virus that expresses eYFP under the control of the H2b promoter (18), is a
phenotypically WT virus and used as the parental virus here (designated
MHV68.YFP.WT). Two MHV68 TMER5-deficient viruses, MHV68.YFP.EWshR and
MHV68.YFP.SCshR (Fig. 1A), in which TMER5-derived pre-miR-7 and pre-miR-12
stem loops were replaced by anti-EWSR1 shRNAs (EW.shR #1 and EW.shR #2) or
control shRNAs with scrambled sequences (SC.shR #1 and SC.shR #2), respec-
tively, were generated on the MHV68.YFP.WT virus backbone by en passant
mutagenesis, as previously described (23, 50). The anti-EWSR1 or scrambled
shRNAs have been previously described and their sequences are as follows:
EW.shR #1 (50-GACTCTGACAACAGTGCAATTTCAAGAGAATTGCACTGTTGTCAGAGTC-30),
EW.shR #2 (50-GGAATGGTTTGATGGGAAAGATCAAGAGTCTTTCCCATCAAACCATTCC-30),
SC.shR #1 (50-GTCAGGCTAGTAACACCTTAATCAAGAGTTAAGGTGTTACTAGCCTGAC-30),
and SC.shR #2 (50-GAGGGTAATATGATGAGGAGTTCAAGAGACTCCTCATCATATTACCCTC-
30) (23).

Mouse Infections. Seven- to 8-wk-old C57BL/6J mice were purchased from
The Jackson Laboratory, and housed at the University of Florida (Gainesville, FL)
in accordance with all federal and university guidelines. All animal protocols
were approved by the Institutional Animal Care and Use Committee at the
University of Florida. Mice were inoculated i.n. with 104 plaque-forming units
(PFUs) of the indicated virus in 30 μL serum-free DMEM under isoflurane
anesthesia.

Flow Cytometry. For flow cytometry–based sorting of infected GC B cells
expressing YFP, mice were infected i.n. with 104 PFUs of MHV68.YFP.WT,
MHV68.YFP.SCshR, or MHV68.YFP.EWshR. At 16 dpi, spleens were harvested
and single-cell suspensions were prepared as previously described (23). B cells
were then isolated by immunomagnetic negative selection using an EasySep
Mouse B Cell Isolation Kit (Stemcell Technologies, 19854). The cells were
blocked in phosphate-buffered saline (PBS) containing 2% FBS, 0.1% sodium
azide, and purified rat anti-mouse CD16/CD32 at 1:50 (BD Biosciences,
553141). The cells were then stained with specific GC B cell-surface markers

V450 rat anti-mouse CD19 at 1:200 (BD Biosciences, 560375), Alexa Fluor 647
rat anti-mouse T and B cell activation antigen GL7 at 1:200 (BD Biosciences,
561529), and PE hamster anti-mouse CD95 (BD Biosciences, 554258). Infected
GC B cells (CD19+ GL7+ CD95+ YFP+) were sorted using a FACSAria II cell sorter
(BD Biosciences). Sorted cells were immediately subjected to RNA extraction
using an RNAqueous-Micro Kit (Ambion, AM1931) for the quantification of
EWSR1mRNA expression level.

For flow cytometry–based quantification of total B and T cells, mature B cell
subsets, GC B cells, and Pre-GC and mature GC B cells in vivo, isolated spleno-
cytes were blocked as described above. The cells were then stained with V450
rat anti-mouse CD45R (B220) at 1:200 (BD Biosciences, 560472), APC-Cy7 ham-
ster anti-mouse CD3e at 1:200 (BD Biosciences, 557596), PE-Cy7 rat anti-mouse
CD93 at 1:200 (Thermo Fisher Scientific, 25-5892-81), APC rat anti-mouse
CD21/CD35 at 1:200 (BD Biosciences, 558658), PE rat anti-mouse CD23 at
1:200 (BD Biosciences, 553139), Alexa Fluor 647 rat anti-mouse T and B cell
activation antigen GL7 at 1:200 (BD Biosciences, 561529), PE hamster anti-
mouse CD95 at 1:200 (BD Biosciences, 554258), PE-Cy7 hamster anti-mouse
CD95 at 1:200 (BD Biosciences, 557653), or PE rat anti-mouse CD38 at 1:200
(Thermo Fisher Scientific, 12-0381-82). Identification of NP-specific GC B cells
was performed by staining with NP-PE (Biosearch Technologies, N-5070-1; with
a conjugation ratio of 16) at 1:100. Fluorescence-activated cell sorting acquisition
was performed on a FACSCanto II or FACSymphony A3 flow cytometer (BD Bio-
sciences). The cell subsets were gated as T cells (B220� CD3+), B cells (B220+

CD3�), transitional B cells (B220+ CD93+), FO B cells (B220+ CD93� CD23+),
MZ B cells (B220+ CD93� CD23low/� CD21+), GC B cells (B220+ GL7+ CD95+),
NP-specific GC B cells (B220+ GL7+ CD95+ NP+), Pre-GC B cells (B220+ GL7+

CD38+), and mature GC B cells (B220+ GL7+ CD38�). The data were analyzed
using FlowJo v10 software.

qRT-PCR. RNA extracted from sorted infected GC B cells was reverse-transcribed
into complementary DNA by using ProtoScript II reverse transcriptase (New
England Biolabs, M0368S) with random primer mix (New England Biolabs,
S1330S). The qPCR was performed in triplicate on the Bio-Rad CFX96 Touch
Real-Time PCR Detection System using Maxima SYBR green/fluorescein qPCR
master mix (Thermo Fisher Scientific, K0243). The primers for EWSR1 were
50-TATAGCACTCCAACTGCCCC-30 and 50-CCTGCGTTGTGGTGACTGTA-30. Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control, with
the primers 50-CATGGCCTTCCGTGTTCCTA-30 and 50-CCTGCTTCACCACCTTCTTGAT-30.
The results were analyzed using Bio-Rad CFX Manager 3.1 software, and the
EWSR1 mRNA expression level was normalized to that of GAPDH. Relative
mRNA expression changes between groups were determined by the comparative
CT method (51).

Generation of CKO Mice with B Cell–Specific EWSR1 Deficiency. The
mouse line C57BL/6N-Ewsr1<tm1c(EUCOMM)Wtsi>/TcpPtKV contains conditional
EWSR1 alleles through insertion of two loxP sites flanking exon 4 of the EWSR1
gene (designated EWSR1flox/flox mice) (32, 33). CD19-Cre mice [B6.129P2(C)-
Cd19tm1(cre)Cgn/J, 006785] (34) that express the Cre recombinase gene under
the control of the CD19 promoter throughout B lymphocyte development were
purchased from The Jackson Laboratory. The mice with CKO of EWSR1 in B cells
were generated by a two-step breeding scheme. The EWSR1flox/flox mice were
first crossed to CD19-Cre mice to generate mice that were heterozygous for a
loxP-flanked allele and heterozygous for the Cre transgene (EWSR1flox/+

CD19Cre/+, designated EWSR1 HET mice). Subsequently, these EWSR1 HET
mice were mated back to the EWSR1flox/flox mice to obtain mice that were
homozygous for the loxP-flanked allele and heterozygous for the Cre transgene
(EWSR1flox/flox CD19Cre/+, designated EWSR1 CKO mice). Littermate EWSR1flox/flox

CD19+/+ mice (designated EWSR1 WT mice) were used as controls in all experi-
ments. Mouse genotypes were identified by PCR with the following primers: P1,
50-ATTGATGTCCGAGTTTAAAAACCAT-30, and P2, 50-ACCTTCTATTGGATAGCACTTAAGG-30

(Fig. 2A).

Western Blots. B cells were isolated from splenocytes from naïve mice as
described above, and then the purity was assessed by flow cytometry. Purified B
cells (>95%) were lysed with Pierce IP lysis buffer (Thermo Fisher Scientific,
87787). Cell lysates were then quantified and Western blots were performed
exactly as previously described (23). The expression of EWSR1 and β-actin (as a
loading control) was detected by using the primary antibodies rabbit anti-EWSR1
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at 1:10,000 (Abcam, ab133288) and mouse anti–β-actin at 1:1,000 (Santa Cruz
Biotechnology, sc-47778), followed by the secondary antibodies horseradish per-
oxidase (HRP)–conjugated goat anti-rabbit IgG at 1:5,000 (SouthernBiotech,
4050-05) and goat anti-mouse IgG at 1:5,000 (SouthernBiotech, 1010-05),
respectively.

Mouse Immunizations. For a T cell–dependent immune response, 8- to
12-wk-old mice were injected i.p. with 100 μg of NP-KLH (Biosearch Technolo-
gies, N-5060-5) in Imject alum adjuvant (Thermo Fisher Scientific, 77161) at
0 and 7 d. At 14 d, spleens were harvested for flow cytometry for the evaluation
of GC B cell response, and blood samples were collected for the determination
of NP-specific antibody response.

RNAScope In Situ Hybridization. Spleens from mock- or NP-KLH–immunized
mice were harvested at 14 d, fixed in 10% formalin, and embedded in paraffin.
Determination of the T cell–specific marker CD3 and GC B cell–specific marker
BCL6 in the spleen sections was performed by using the RNAScope 2.5 HD
Duplex Detection Kit (Advanced Cell Diagnostics, 322500-USM) according to the
manufacturer’s instructions. RNA probes for CD3 (314721) and BCL6 (455311-
C2) were purchased from Advanced Cell Diagnostics. The images were acquired
using the Nikon Eclipse E600 microscope with a 10× objective and the imaging
software NIS-Elements (Nikon Instruments).

Proliferation and Apoptosis Assays. For the detection of proliferating GC
B cells at 14 d post NP-KLH immunization, mice were injected i.p. with EdU
(MilliporeSigma, 900584) at a concentration of 50 μg/g body weight 2 h before
spleen harvest. EdU incorporation was determined by the Click-iT Plus EdU Alexa
Fluor 488 Flow Cytometry Assay Kit (Thermo Fisher Scientific, C10632) according
to the manufacturer’s instructions. For detection of apoptotic cells, aCasp3 was
quantified by the CaspGLOW Fluorescein Active Caspase-3 Staining Kit (Thermo
Fisher Scientific, 88-7004-42) following the manufacturer’s instructions.

ELISA. For the quantification of serum immunoglobulins in naïve mice, Maxi-
Sorp 96-well plates (Thermo Fisher Scientific, 442404) were coated with
anti–mouse isotype-specific antibodies at 0.5 μg/mL in a carbonate/bicarbonate
coating buffer (100 mM, pH 9.6). For the determination of antigen-specific anti-
bodies in sera from immunized mice, the plates were coated with 20 μg/mL of
NP(27)-BSA (bovine serum albumin; Biosearch Technologies, N-5050H). The
plates were incubated at 4 °C overnight, washed with PBS containing 0.05%
Tween-20 (PBST), and then blocked with PBST containing 1% BSA for 1 h at

room temperature. After three washes with PBST, the plates were incubated with
diluted serum samples for 2 h at room temperature. Following another three
washes with PBST, the plates were incubated with HRP-conjugated goat anti-
mouse isotype-specific antibodies (SouthernBiotech; IgM: 1021-05; IgG: 1015-
05; IgG1: 1071-05; IgG2b: 1091-05; IgG2c: 1078-05; and IgG3: 1101-05). After
a final three washes, TMB ELISA Substrate (Abcam, ab171522) was added to
detect HRP enzymatic activity. The reactions were then quenched by the addition
of Stop Solution for TMB Substrate (Abcam, ab171529), and the absorbance was
read at 450 nm on the Promega GloMax Multi+ Detection System.

Enzyme-Linked Immunosorbent Spot Assay. Antigen-specific antibody-
secreting plasma cells in the spleen from immunized mice were determined
by enzyme-linked immunosorbent spot (ELISpot) assay as described previously
(52). Briefly, the ELISpot plates (MilliporeSigma, MAIPS4510) were coated with
10 μg/mL of NP(27)-BSA (Biosearch Technologies, N-5050H) at 4 °C overnight.
The plates were washed with PBS and blocked with DMEM containing 10% FBS
at room temperature for 1 h. Splenocyte suspensions were serially twofold
diluted and plated, starting with 1 million cells per well, and then incubated at
37 °C for 4 h. After washes with PBST, the plates were incubated with biotin-
conjugated goat anti-mouse isotype-specific antibodies (SouthernBiotech; IgM:
1021-08; IgG: 1015-08; IgG1: 1071-08; IgG2b: 1091-08; IgG2c: 1078-08;
and IgG3: 1100-08) at 4 °C overnight. The plates were washed and then
incubated with ExtrAvidin-alkaline phosphatase (MilliporeSigma, E2636) for
1 h. After final washes with PBST, the plates were incubated with BCIP/NBT
Liquid Substrate System (MilliporeSigma, B1911) in the dark for 5 min. The
plates were washed with water and dried overnight, and then the spots
were enumerated.

Statistical Analyses. All data were analyzed using Prism 9 software (GraphPad).
Statistical significance was determined using a two-tailed, unpaired Student’s
t test, and P values less than 0.05 were considered to be statistically significant.
*P< 0.05, **P< 0.01, ***P< 0.001, and ****P< 0.0001.

Data Availability. All study data are included in the article.
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