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Abstract: DDX3 belongs to RNA helicase family that demonstrates oncogenic properties and has
gained wider attention due to its role in cancer progression, proliferation and transformation.
Mounting reports have evidenced the role of DDX3 in cancers making it a promising target to abrogate
DDX3 triggered cancers. Dual pharmacophore models were generated and were subsequently
validated. They were used as 3D queries to screen the InterBioScreen database, resulting in the
selection of curcumin that was escalated to molecular dynamics simulation studies. In vitro anti-cancer
analysis was conducted on three cell lines such as MCF-7, MDA-MB-231 and HeLa, which were
evaluated along with exemestane. Curcumin was docked into the active site of the protein target
(PDB code 2I4I) to estimate the binding affinity. The compound has interacted with two key residues
and has displayed stable molecular dynamics simulation results. In vitro analysis has demonstrated
that both the candidate compounds have reduced the expression of DDX3 in three cell lines. However,
upon combinatorial treatment of curcumin (10 and 20 µM) and exemestane (50 µM) a synergism was
exhibited, strikingly downregulating the DDX3 expression and has enhanced apoptosis in three cell
lines. The obtained results illuminate the use of curcumin as an alternative DDX3 inhibitor and can
serve as a chemical scaffold to design new small molecules.

Keywords: DDX3; cancers; natural compounds; combinatorial treatment

1. Introduction

DEAD box protein 3, DDX3, also referred to as DDX3X, belongs to the family of DEAD box
RNA helicase [1]. These RNA helicases demonstrate a specific motif called the DEAD/H (Asp-Glu-
Ala-Asp/His) [2]. Although, exploration for the key functions of human DEAD/H box proteins is
still underway, it has been evidenced that these proteins are involved with energy-dependent RNA
metabolism, such as ribosome biogenesis, translation, pre-mRNA splicing, RNA editing, and RNA
turnover [2–4]. Of all the members of DEAD-box proteins, DDX3 is highly conserved. In humans,
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there exists at least two pseudo genes and two DDX3 homologs, DDX3X and DDX3Y, sharing about 92%
of protein sequence identity with varied functional and expression patters across various organs [2].
Notably, the protein is known to transport between cytoplasm and nucleus [1,5], however is primarily
localized in cytoplasm in a majority of human tissues and cell lines [1]. DDX3 is positioned on the
X-chromosome bands p11.3 –> p11.23 [2,6] whose deletion is embryonically lethal. The function of
DDX3 is widely explored in several viruses as an important factor for replication [7] and its role in
cancer is a recent advancement [2]. This protein is evidenced to manifest anti-apoptotic properties,
invasion, is associated with migration and its elevated levels in mammary epithelium triggers breast
tumorigenesis. [8–12]. Additionally, DDX3 is connected with cell cycle progression [13] and inhibiting
DDX3 brings about the G1-arrest [14].

Structurally, DDX3 is made up of two recA-like domains and 12 conserved motifs. The crystal
structure of DDX3 has been co-crystallized with adenosine monophosphate (AMP) [2,15,16] existing
between the Q motif and the P-loop. The adenine moiety of the AMP interacts with the residues
prompted from the Q motif such as Arg202 and Gln207 while the phosphate group interacts with
the residues originating from the P-loop, Gly227, Ser228, Gly229, Lys230 and Thr231. Additionally,
the purine interacts with the phenyl group of Tyr200 holding the AMP firmly at the nucleotide binding
pocket. Due to the flexible nature of the P-loop, the DDX3 may demonstrate several conformations,
while the DDX3 with AMP binding illustrates an open conformation [2]. Correspondingly, targeting
the nucleotide-binding pocket of DDX3 by small molecules might be an effective strategy in reducing
the cancer cases.

Of late, several inhibitors that target the DDX3 have been identified, one of which is RK-33 [17],
specifically designed to occupy the ATP-binding pocket of DDX3. Furthermore, this inhibitor
demonstrated selective inhibition towards DDX3 over other proteins of the same family and hinders the
RNA helicase activity [11,14]. Moreover, RK-33 has demonstrated selective anticancer effect in Ewing
sarcoma [18] and acts as a radiosensitizer [14,19]. Another inhibitor, ketorolac salt is evidenced to inhibit
DDX3 and proved as potent candidate compound in treating oral cancer [20]. It is documented that the
compound NZ51, which is a ring expanded nucleoside analogue has hindered the motility and viability
of breast cancer cells, particularly targeting the DDX3 [21]. Encouraged by these reports, we intended
to perform molecular modelling and virtual screening techniques to retrieve potential candidate
compound and evaluate its efficacy on three cell lines, the MCF-7, MDA-MB-231 (breast cancer) and
HeLa (cervical cancer).

Notably, DDX3 is overexpressed in breast cancer [22], colorectal cancer [23,24], liver cancer [2],
lung cancer [2,14,19] and oral cancer [2,20]. Breast cancer is one of the predominantly noticed cancers
in women associated with 570,000 deaths in the year 2015 [25]. DDX3 is reported to have been in
elevated levels in metastatic breast cancer particularly, in triple negative cancer cases [22]. Additionally,
a positive correlation was determined between overexpression of hypoxia-inducible factor 1-alpha
(HIF-1α) and DDX3 expression in breast cancer [26]. Cervical cancer is one of the major cancer
deaths observed in women and is ranked fourth among female cancers [27]. Therefore, in the current
investigation, we aimed at finding a natural compound as an inhibitor for DDX3 in three cell lines.

2. Materials and Methods

2.1. Pharmacophore Generation

The generation of the pharmacophore model is a crucial event as it is employed to retrieve the
potential compounds from a given database. For the current investigation, two different pharmacophore
models have been utilized namely, the common feature pharmacophore model generation and the
receptor-based pharmacophore model generation. In the common feature pharmacophore model
generation, four reported inhibitors with an IC50 value lower than 10,000 nM were chosen, while the
receptor based pharmacophore model was generated employing the protein with the PDB code 2I4I [15]
and are detailed below.



Biomolecules 2020, 10, 857 3 of 17

2.2. Common Feature Pharmacophore Generation

From a set of known ligands obtained from the binding db [28], a pharmacophore was generated
employing the Common Feature Pharmacophore Generation. This utilizes HipHop algorithm from a set of
given active ligands to produce a common feature pharmacophore [29]. For the current investigation,
the interfeature distance was taken as 2.00 with maximum pharmacophores as 10, while retaining all
the other parameters as default. The features chosen for the pharmacophore generation are hydrogen
bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HYP), hydrophobic aromatic (HA)
and ring aromatic (RA), respectively. The most active known compounds were retrieved from the
binding db [28,30,31] to extract the key features for biological activity as demonstrated in Figure 1.
Hereinafter the generated pharmacophore is referred to as pharm1.

Figure 1. 2D structures of compounds employed for common feature pharmacophore generation.
The IC50 values in nM are represented in parenthesis.

2.3. Receptor Based Pharmacophore Generation

Also known as structure-based pharmacophore modelling, this method uses the structure of
a protein in complex with its co-crystallized ligand to generate selective pharmacophore models
exploiting the receptor ligand interactions [32]. Correspondingly, the Receptor-Ligand Pharmacophore
Generation protocol was enabled with maximum pharmacophores as 10 with minimum and maximum
features as 4 and 5, respectively, while retaining the default settings of all the other parameters.
The protein for the current study was downloaded from the protein data bank (PDB code 2I4I),
co-crystallized with adenosine monophosphate. Hereinafter the generated pharmacophore model is
labelled as pharm2.

2.4. Validation of the Pharmacophore Models

Validation of the generated pharmacophore models is a step that involves the evaluation of the
models in retrieving the prospective active compounds when subjected to screen larger databases.
Accordingly, the pharm1 and pharm2 were judged for their propensity towards the active compounds
employing the receiver operating characteristic (ROC) curve. This prediction was conducted alongside
the pharmacophore generation. For effective execution of the protocol, a set of four ligands as
mentioned in Figure 1 were considered active compounds, while a set of eight compounds derived
from binding db were labelled as inactive compounds as represented in Table 1. Subsequently, the area
under the curve (AUC) was computed to grade the pharmacophore quality.
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Table 1. List of inactive compounds considered for pharmacophore validation.

Compound No. SMILES IC50 nM ChEMBL ID

Compound 1 Oc1cccc(NC(=O)CCN2C(=S)S\C(=C/c3cccc(Br)c3)\C2=O)c1 90,000 CHEMBL457233
Compound 2 Oc1cccc(NC(=O)CCCN2C(=S)S\C(=C/c3cccc(Br)c3)\C2=O)c1 150,000 CHEMBL456405
Compound 3 COc1ccccc1\C=C\2/SC(=S)N(CCC(=O)Nc3cccc(O)c3)C2=O 200,000 CHEMBL514760
Compound 4 OC(=O)c1ccccc1NC(=O)CCN2C(=S)S\C(=C/c3cccc(Br)c3)\C2=O 200,000 CHEMBL484400
Compound 5 Nc1c(C#N)c(nn1c2ccccc2)\C(=C\c3oc(cc3)c4ccccc4[N+](=O)[O-])\C#N 300,000 CHEMBL484749
Compound 6 Oc1ccc(NC(=O)CCN2C(=S)S\C(=C/c3cccc(Br)c3)\C2=O)cc1 300,000 CHEMBL515669
Compound 7 Nc1c(C#N)c(nn1c2ccccc2)\C(=C\c3oc(cc3)c4cccc(Cl)c4)\C#N 500,000 CHEMBL500746
Compound 8 Oc1ccccc1NC(=O)CCCN2C(=S)S\C(=C/c3cccc(Br)c3)\C2=O 500,000 CHEMBL459179

2.5. Drug-Like Database Formulation from InterBioScreen Database

The validated pharmacophore models were escalated to screen and thereby retrieve the prospective
drug-like compounds. For the current investigation, the InterBioScreen database was employed consisting
of 59,619 compounds with manual inclusion of known compounds. These compounds were initially
explored for their pharmacokinetic and pharmacodynamic properties employing the ADMET Descriptors
accessible with the DS v18. ADMET stands for Absorption, Distribution, Metabolism, Excretion,
and Toxicity and is an important parameter that can serve to promote a drug during developmental
process and the upper limit of the values were set as described previously [33]. Accordingly, the absorption
level was fixed at 0 and 1, the blood brain barrier (BBB) was opted as 2 and 3 and the solubility was secured
at 3 and 4. The filtered compounds were upgraded to estimate their oral bioavailability and thus can be
labelled as drug-like compounds. This was achieved by enabling the Filter by Lipinski obtainable with the
DS [34]. The resultant compounds were upgraded for virtual screening using the two pharmacophore
models after enabling the Ligand Pharmacophore Mapping in DS.

2.6. Virtual Screening of InterBioScreen Database Using Pharm1 and Pharm2

The obtained drug-like compounds were examined for possessing the key features by mapping
them, using pharm1 and pharm2 as the 3D queries. From the secured compounds, visual inspection
was conducted to select the compounds that mapped with both the models, a criteria adapted which
illuminates the potentiality of the compounds. The obtained compounds were upgraded for molecular
docking studies to estimate the binding affinities with the protein.

2.7. Molecular Docking Studies

Molecular docking studies logically elucidates on the binding affinities between the protein and
the ligands, thereby predicting the possible binding modes for the Hit compound. For the current
investigation, the CDOCKER programme [35] accessible with the DS was utilized, that operates on
CHARMm-based molecular dynamics. From the initial ligand conformation, random conformations
were generated using high temperature MD that are correspondingly moved to the binding site.
The generation of the candidate poses is achieved by rigid-body rotations and simulated annealing
coupled by minimization to refine the ligand pose. To accurately predict the binding mode of the
ligand, a total of 100 conformation were generated. The best pose was chosen based upon the highest
-CDOCKER interaction energy for the compound from the largest cluster that displayed hydrogen
bond interactions with the key residues.

The target for the current study is human DEAD-box RNA helicase (DDX3X) bearing the PDB code
2I4I, in complex with adenosine monophosphate (AMP) [15]. The key residues were marked for all the
residues that lie in 10 Å around the AMP. The protein was prepared by removing the heteroatoms and
water molecules, while supplementing with the hydrogen atoms and filling the gaps. Upon enabling
the Clean Protein tool available with the DS, prompts if any gaps are present and are subsequently filled
using the Insert Loop option and thereafter refined by Loop Refinement protocol available with the DS.
The prepared protein and the ligands were promoted to molecular docking mechanism to delineate on
their binding affinities.
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2.8. Molecular Dynamics Simulation Studies

Molecular dynamics simulations (MDS) provide knowledge about the dynamic nature of small
molecules with the protein counterpart at the atomistic level. The initial structures for the MDS
were the protein-ligand complexes that were obtained from the molecular docking studies. In order
to accomplish this study, the GROMACS v2016.6 package [36,37] was used, retrieving the protein
topologies from CHARMm 27 all-atom force field. The ligand topologies were extracted from
SwissParam [38]. The dodecahedron water box was generated and solvated with TIP3P water model
to accomplish the simulations followed by the addition of counter ions. The initial structures were
relaxed through steepest descent algorithm and energy minimized. Following this, a double step
equilibration was conducted, first with constant number of particles, volume, and temperature (NVT)
ensemble for 1 ns at 300 K using V-rescale thermostat. Later, the constant number of particles, pressure,
and temperature (NPT) equilibration was executed for 1 ns monitoring the pressure of the system
at 1 bar using Parrinello-Rahman barostat. The NPT equilibrated structures were promoted to MDS
for 50 ns, while retaining the other parameters as default. The results were processed and examined
utilizing visual molecular dynamics (VMD) [39], UCSF Chimera [40], DS and GROMACS.

2.9. In Vitro Bioassay Validation

2.9.1. Procurement of Cell Lines and Culture

Human MCF-7, MDA-MB-231 and HeLa cell lines were purchased from the Korean Cell Line
Bank (KCLB, Seoul, Korea). The MCF-7 and MDA-MB-231 cell lines were maintained in RPMI-1640
medium (Gibco, Life Technologies, Carlsbad, CA, USA) and HeLa cell line were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco) containing 10% (v/v) fetal bovine serum (FBS, Gibco) and
1% penicillin–streptomycin (Gibco) at 37 ◦C in a humidified atmosphere of 5% CO2.

2.9.2. Procurement of Compounds and Reagent

Curcumin and exemestane (Sigma-Aldrich, St. Louis, MO, USA) were diluted in dimethyl
sulfoxide (DMSO, Sigma-Aldrich). The DDX3, Bcl-xL primary antibodies was obtained from Cell
Signaling Technology (Danvers, MA, USA).

2.10. Cell Viability Assay

Cells were cultured in 48 well, plated at a density of 5 × 104 cells per well. The seeded cells were
treated with various concentration for 24 h. After incubation, the cells were added with 55 µL of
5 mg/mL 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT; Duchefa Biochemie,
Haarlem, The Netherlands) solution for 2 h, and the medium was removed which was followed
by lysis with DMSO. The absorbance at 570 nm was measured with PowerWave HT microplate
spectrophotometer (BioTek, Winooski, VT, USA).

2.11. Western Blot Analysis

After treatment, the cells were lysed with RIPA buffer (50 mM Tris-HCl pH 7.5, 0.1% SDS, 1% Triton
X-100, 150 mM NaCl, 0.5% Sodium deoxycholate and 2 mM EDTA) containing protease/ phosphatase
inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA, USA) at 4 ◦C for 1 h. The supernatants
were collected and quantified using BCA protein assay kit (Thermo Fisher Scientific) according to
the manufacturer’s instructions. Protein of 10–20 µg concentration was loaded on 8–12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and then transferred to polyvinylidene
difluoride membrane (PVDF, ATTO, Tokyo, Japan). The membranes were blocked with TBS-T buffer
(Tris-buffered saline containing 0.1% Tween 20) containing 5% (w/v) skim milk power for 1 h at 25 ◦C,
and then incubated with primary antibodies for 16 h at 4 ◦C. After incubation with the secondary
antibody for 3 h at 25 ◦C, the membranes was detected using Clarity™Western ECL Blotting Substrates
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(Bio-Rad, Hercules, CA, USA). The quantification of protein expression was analyzed with Image J
(Version 1.50i) software (National Institutes of Health, Bethesda, MD, USA).

2.12. Statistical Analysis

The data were expressed as mean ± standard error of mean (SEM) and analyzed by GraphPad
Prism Version 4.0b (GraphPad Software Inc., La Jolla, CA, USA), for statistical significance using one-way
analysis of variance (ANOVA). p < 0.05 was considered as statistically significant. All experiments were
performed in triplicates.

3. Results

3.1. Pharmacophore Generation

3.1.1. Common Feature Pharmacophore Generation

Utilizing the four compounds mentioned in Figure 1, a common feature pharmacophore was
generated. Initially, the Feature Mapping module available with the DS enabled to observe and discern
on the key features imbibed by the compounds. Accordingly, the hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), hydrophobic (HYP), hydrophobic aromatic (HA) and ring aromatic (RA)
were chosen. The Common Feature Pharmacophore Generation protocol has prompted ten pharmacophore
models with different features and characters as tabulated in Table 2.

Table 2. Generation of different pharmacophore models and their corresponding features.

Model No. Features * Rank Direct Hit Partial Hit Max Fit

01 2HA,HYP,HBD 31.233 1111 0000 4
02 HA,HYP,HBD,RA 30.714 1111 0000 4
03 HA,HYP,HBD,RA 30.629 1111 0000 4
04 HA,2HYP,HBD 28.033 1111 0000 4
05 HA,2HYP,HBD 28.033 1111 0000 4
06 2HA,HBD 27.918 1111 0000 3
07 2HYP,HBD,RA 27.514 1111 0000 4
08 HA,HBD,RA 27.470 1111 0000 3
09 HA,HBD,RA 27.438 1111 0000 3
10 2HYP,HBD,RA 27.429 1111 0000 4

* Hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HYP), hydrophobic aromatic (HA)
and ring aromatic (RA).

From this the pharmacophore model 1 (pharm1) was chosen based upon the rank and the
maximum fit. This resulted in a four featured pharmacophore possessing two hydrophobic aromatic
feature, one hydrophobic feature and one hydrogen bond donor feature as depicted in Figure 2.

3.1.2. Receptor-Based Pharmacophore Generation

Receptor-based pharmacophore generation wisely exploits the interactions that exists between the
co-crystallized ligand and the residues contributed from the protein. Accordingly, the Receptor-Ligand
Pharmacophore Generation protocol has generated ten pharmacophore features as represented in Table 3.

Interestingly, the ten models have demonstrated the same selectivity score of 9.9146, while
displaying different features, Table 3. In order to select the best pharmacophore model, the features
represented by the key residues was considered. Accordingly, a five-featured second model (pharm2)
was chosen that has three HBA and two HBD, respectively, as illustrated in Figure 3. The HBAs were
found to be represented by the key residues Gln207, Ser228, Lys230, Thr231, while the HBDs have
shown interactions with the important residues such as Arg202, Tyr200, respectively, as depicted in
Figure 3A and the geometry is shown in Figure 3B.
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Figure 2. Common feature pharmacophore model and its geometry. Pharma1 has represented
four features.

Figure 3. Receptor based pharmacophore model and its geometry. (A) Illustrates the features
complimentary with the key residues. (B) Depicts the interfeature distance.
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Table 3. Varied pharmacophore models and features derived during the receptor pharmacophore generation.

Model No. Number of Features Feature Set *

01 5 HBA,HBA,HBD,HBD,RA
02 5 HBA,HBA,HBA,HBD,HBD
03 5 HBA,HBA,HBD,HBD,RA
04 5 HBA,HBA,HBA,HBD,HBD
05 5 HBA,HBA,HBD,HBD,RA
06 5 HBA,HBA,HBD,HBD,RA
07 5 HBA,HBA,HBD,HBD,RA
08 5 HBA,HBA,HBD,HBD,RA
09 5 HBA,HBA,HBD,HBD,RA
10 5 HBA,HBA,HBD,HBD,RA

* Hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and ring aromatic (RA). All the models have
generated a selectivity score of 9.9146.

3.2. Validation of the Pharmacophore Models

Validation of the pharmacophore models is a crucial step in determining the efficiency of the
pharm1 and pharm2 in retrieving the active compounds from a given set of compounds. Accordingly,
the ROC was plotted calculating the AUC. Accordingly, the AUC for pharm1 and pharm2 was
calculated as 0.78 and 0.73, respectively as shown in Figure 4A,B, proving that the models are capable
enough to retrieve the active compounds from the dataset.

Figure 4. Validation of the pharmacophore model by ROC method. (A) Represents the ROC plot of
pharm1. (B) Indicates the ROC curve of pharm2. Both the models have demonstrated a quality score
(greater than 0.7) suitable of employing for virtual screening.

3.3. Virtual Screening of InterBioScreen Database

The validated pharmacophore models were used as the 3D queries to screen the InterBioScreen
database with an objective of obtaining new potential leads. Correspondingly, upon conducting the
drug-like assessment, a total of 2387 compounds were yielded that were upgraded and allowed to
map with the pharm1 and pharm2 employing the Ligand Pharmacophore Mapping tool accessible with
the DS retaining all the parameters as default. Subsequently, pharm1 retrieved 273 compounds and
pharm2 has mapped to 136 compounds, as depicted in Figure 5A. To obtain the compounds with high
inhibitory ability, a manual visual inspection was ventured to select compounds common from both
the models. This search resulted in 17 compounds, as illustrated in Supplementary Figure S1. These
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17 compounds were forwarded to determine their binding affinities with the protein target DDX3 RNA
helicase, 2I4I.

Figure 5. Pictorial representation of workflow to find a prospective compound. (A) Interprets the virtual
screening method. (B) Depicts the molecular docking guided binding affinity studies. (C) Illustrates
the stability analysis based on molecular dynamics simulation studies. (D) Bio assay validation of the
selected compound.

3.4. Molecular Docking Studies

Molecular docking is one of the eminent methods employed in the field of molecular biology and
computer-assisted drug design [41]. This approach is primarily undertaken to foresee the binding
mode(s) of a given small molecules (ligand) with the protein [41] and estimates the binding affinities
between them [42]. Additionally, they are used to elucidate the interactions that exists between
the ligand and the protein at the atomistic level [41,42]. The 17 compounds acquired from the
aforementioned steps were docked into the active site of the protein along with the cocrystal (AMP) as
the reference compound. Accordingly, the reference compound has generated a -CDOCKER interaction
energy of 50.74 kcal/mol that serves as an upper limit to choose the prospective drug-like compounds,
Figure 5B. From the largest cluster and visual inspection for the key residue interactions, one compound
has demonstrated the comparable dock score with the cocrystal. This compound was identified as
curcumin that has displayed a -CDOCKER interaction energy of 44.08 kcal/mol clamped by several key
residues rendered by varied interactions, Figure 5B. Correspondingly, the compound was upgraded to
MDS to comprehend on the stability of the system.

3.5. Molecular Dynamics Simulation Analysis

MDS approaches are fundamentally employed to decipher on the dynamic molecular motions,
functions and to understand the behaviour of protein and ligands at the atomistic level. Correspondingly,
50 ns run was initiated with the best docked conformations as the starting structure and the results were
analysed as root mean square deviation (RMSD), radius of gyration (Rg), potential energy, binding
mode analysis and hydrogen bond analysis, Figure 5C.

3.6. Stability Analysis

The RMSD analysis has revealed that the system was stability ranged between 0.6 nm to 0.8 nm
with an average of 0.5 nm, as illustrated in Figure 6A. Although, a sharp rise in the RMSD was noticed
between 16 ns to 18 ns, the system remained stable thereafter. The same was observed from the
potential energy profiles as demonstrated in Figure 6B. Additionally, the radius of gyration (Rg) was
computed to comprehend on the compactness of the protein, which demonstrated that the protein was
compact between 2.35 nm and 2.7 nm as shown in Figure 6C.
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Figure 6. Molecular dynamics simulation analysis. (A) Illustrates the root mean square deviation
analysis. (B) Represents the potential energy profiles. (C) Demonstrates the compactness of the
protein by radius of gyration. (D) Defining the binding mode of the compound at proteins active site.
(E) Implies the hydrogen bond analysis.

3.7. Binding Mode Analysis and Intermolecular Interactions

For the binding mode analysis, the representative structures from the last 2 ns were extracted and
superimposed against the crystal structure. It was revealed that the curcumin has occupied the binding
pocket notably the AMP binding site of domain 1 as depicted in Figure 6D held by several residues.
Focusing on the intermolecular interactions, it was detected that curcumin has formed two hydrogen
bonds with the residues Thr201 and Arg202 respectively as detailed in Table 4 and Figure 7A. Besides,
the residue Tyr200 was observed to form a π-π stacked interaction, while the residues Thr198, Gln207,
Thr226, Gly227, Gly229, Gln281 and Glu285 have formed van der Waals interactions assisting to hold
the ligand firmly at the active site. The residue Arg202 has additionally interacted with curcumin via
π-alkyl interaction. Moreover, the O atom of the residue Arg199 has prompted a carbon-hydrogen
bond interaction with the H44 atom of curcumin characterized by a bond length of 3.0 Å. Another
carbon hydrogen bond was noticed between the HA1 atom of Gly229 and the O6 atom of the ligand by
a bond length of 2.5 Å as illustrated in Figure 7B. Correspondingly, upon monitoring the hydrogen
bond interactions, it was noted that the hydrogen bonds were prevalent throughout the simulations as
in Figure 6E, illuminating the use of curcumin as DDX3 inhibitor. The compound was evaluated for
in vitro analysis as shown in Figure 5D.

Table 4. Intermolecular interactions observed between DDX3 and curcumin.

Compound Hydrogen Bonds π-π Stacked van der Waals Interactions

Curcumin
Thr201: HN-O3 (2.2 Å) Tyr200 Thr198, Gln207, Thr226, Gly227,

Gly229, Gln281, Glu285Arg202: HN-O3 (2.3 Å)

3.8. Bioassay Validation of Curcumin as Potential DDX3 Inhibitor

3.8.1. Anti-Proliferative Effect and Inhibition of DDX3 Protein Expression of Curcumin

To evaluate the anti-proliferative effect of curcumin, MTT assays were carried out on the HeLa
cell line, MDA-MB-231 and MCF-7 representing the cervical cancer and human breast cancer cell lines
treated with various concentration of curcumin for 24 h. The viability of human cervix and breast
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cancer cell lines was markedly decreased by curcumin in a dose-dependent manner. The IC50 values
were recorded as 55.39 µM, 75.46 µM and 31.62 µM for HeLa, MDA-MB-231 and MCF-7 cell line,
respectively, as represented in Figure 8A. Based on those results, further experiments were conducted
with each concentration curcumin. The three cell lines, which include HeLa, MDA-MB-231 and MCF-7
cells were treated with 10 µM, 50 µM, and 100 µM. The DDX3 protein expression was decreased
dose-dependently in three cell lines treated with curcumin as illustrated in Figure 8B This data indicated
that curcumin could inhibit DDX3 protein expression in HeLa, MDA-MB-231 and MCF-7 cells.

Figure 7. Intermolecular interactions between protein and curcumin. (A) Illustrates the hydrogen bond
interactions between DDX3 and curcumin. (B) Represents the overall intermolecular interactions.

Figure 8. The cytotoxic effects and DDX3 protein expression on curcumin in HeLa, MDA-MB-231,
and MCF-7 cell lines. (A) The cells were treated with the curcumin as various concentrations (0–100 µM)
for 24 h. Then, the cell viability was measured by MTT assay. (B) The curcumin was treated with
indicated concentration each cell lines for 24 h. Western blot analysis were conducted to identify the
DDX3 protein expression. The β-actin protein was used as loading control. * p < 0.05 vs. untreated
group; ** p < 0.01 vs. untreated group; *** p < 0.001 vs. untreated group.
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3.8.2. Anti-Proliferative Effect and Inhibition of DDX3 Protein Level on Exemestane

To examine the cell viability of exemestane, MTT assays were performed in HeLa, MDA-MB-231
and MCF-7 cells treated with various concentrations of exemestane. As shown Figure 9A, the viability
was reduced by exemestane in a dose-dependent manner, however at a higher concentration than
curcumin. The IC50 values is 67.57 µM, 59.29 µM, and 51.30 µM in HeLa, MDA-MB-231 and MCF-7
cell line, respectively, as illustrated in Figure 9A. Correspondingly, further experiments were examined
with 50 and 100 µM concentration of exemestane. We also identified the protein level of DDX3 using
western blot analysis. As shown Figure 9B, DDX3 protein expression was reduced in exemestane
treated three human cancer cell lines. Those date showed that exemestane could decrease DDX3
protein expression in HeLa, MDA-MB-231 and MCF-7 cells.

Figure 9. The cytotoxic effects and DDX3 protein expression on exemestane in HeLa, MDA-MB-231,
and MCF-7 cell lines. (A) The exemestane was treated with indicated concentrations in each cell
lines for 24 h. Then, the cell viability was measured by MTT assay. (B) The cell lines were treated to
each indicated concentration for 24 h. The DDX3 expression level were analyzed using Western blot.
The β-actin protein was used as loading control. * p < 0.05 vs. untreated group; ** p < 0.01 vs. untreated
group; *** p < 0.001 vs. untreated group.

3.9. Exemestane is Synergistic with Curcumin

To determine the synergistic inhibitory effect on cell viability, several combination of curcumin
(1–20 µM) and exemestane (50 µM; based on IC50 value) were examined by MTT assay. The cell
viability of combination treated group was more significantly decreased compared with only curcumin
treated group in HeLa, MDA-MB-231 and MCF-7 cells as illustrated in Figure 10A. Based on those
results, we decide the curcumin (10 and 20 µM) and exemestane (50 µM) for further experiment.
In addition, we examined the DDX3 protein expression in co-treated group. As shown Figure 10B,
DDX3 protein expression in co-treated group were reduced compared with only curcumin treated
group in HeLa, MDA-MB-231 and MCF-7 cells. These results indicated that co-treated groups was
synergistic effect in cell viability and inhibition of DDX3 protein expression. In addition, the expression
of Bcl-xl protein, anti-apoptotic protein, was decreased in each group of only curcumin or exemestane
treatment. The decrease in the Bcl-xl protein was enhanced in the combinatorial treatment than in the
individual treated groups. Those data suggests that both curcumin and exemestane treatment can
induce apoptosis, and combination treatment can enhance the apoptosis in the three cell lines.
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Figure 10. The synergic effects and protein expression of DDX3 and Bcl-xL on combination treatment of
curcumin and exemestane in HeLa, MDA-MB-231, and MCF-7 cell lines. (A) The various concentration
of curcumin with or without 50 µM of exemestane was treated in the cell lines for 24 h. Control group
(0 µM) was treated with same amount of DMSO. Then, the cell viability was measured by MTT assay.
(B) The cell lines were treated with curcumin (10 and 20 µM) with or without exemestane (50 µM)
for 24 h. The DDX3 and Bcl-xL expression levels were analyzed using Western blot. The β-actin
protein was used as loading control. *** p < 0.001 vs. untreated group; ### p < 0.001 vs. only the same
concentration of curcumin group.

4. Discussion

Breast cancer is the leading cause of death in women globally [43,44]. Generally, breast cancer can
be classified unto three subtypes depending on the molecular markers [45,46]. With immense advances
in the therapeutic field of breast cancer, the chances of disease free survivors have increased enormously,
when diagnosed at an early stage and confined to the primary organ [47]. Upon subsequent metastasis,
limits the therapeutics with a decline in the success rate [47]. Under such conditions, identifying a
target that is elevated in both primary and metastatic stages could be an ideal strategy to successively
combat the disease. Therefore, DDX3 would serve as a perfect target as its expression is linked to
primary and metastatic cancer samples [22].

Cervical cancer is a preventable disease noticed in women, that affects more than half a million
every year with an estimate of 300,000 deaths globally [48]. Cervical cancer is primarily caused due to
the human papillomavirus (HPV) [49]. It is evidenced that 18 HPV genotypes are directly associated
with cervical cancer, however, more than one type can possibly exist in pre-invasive and invasive
cervical cancer [49]. Although, there exists some association between HPV infection and DDX3, a little
is known regarding the underlying molecular mechanism between HPV interactions with DDX3 and
is yet to be elucidated in HPV-infected cervical cancer [50].

Several inhibitors for DDX3 have been reported earlier. A group of DDX3 inhibitors called the
ring-expanded nucleosides (RENs) which were promising antiviral agents have displayed anticancer
activities [16]. One such analogue, the NZ51 has shown to decline cellular motility and the viability
of the cell in breast cancer cell lines such as MCF-7 and MDA-MB-231 cells at low range of IC50

values [21]. Heerma et al., further concluded from their findings that the inhibition of DDX3 induces
global cell cycle progression delay by affecting the cells in all phases [8]. Amongst the DDX3 REN
agents, the compound RK-33 has a prospective for medicine [16], rendering its activity towards, Ewing
sarcoma [18], lung cancer [14], medullablastoma [51], breast cancer [11] and in colorectal [24] and
prostate cancer [19]. A recent study has documented the role of doxorubicin against human DDX3 [52].
Radi et al., have reported the discovery of small molecule human DDX3 inhibitor targeting the RNA
binding site as potential HIV-1 inhibitors [53]. 1,3,4-thiadiazole inhibitors with potential antiviral
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activity targeting DDX3 were reported by Brai et al. [54]. In another investigation, avenanthramide A
reduced the ATPase activity of DDX3 to combat colorectal cancer [55].

The chosen cell lines represent breast cancer (MCF-7 and MDA-MB-231) and cervical cancer
(HeLa). DDX3 is one of the valuable targets to alleviate a host of cancers using small molecules [14,19],
Therefore, in the current investigation, we have performed the pharmacophore based virtual screening
methods to obtain a potential candidate and evaluated it in vitro in three cell lines. The computationally
identified compound curcumin is known to possess several therapeutic applications [56–59] besides
possessing anticancer properties [60,61]. Owing to the wider therapeutic applications of curcumin, we
evaluated curcumin against DDX3. To the best of our knowledge, this is the first report to document the
effect of curcumin on DDX3. The in vitro results have demonstrated that curcumin has downregulated
the expression of DDX3 in three cell lines including, MCF-7, MDA-MB-231 and HeLa cell lines.

We were also interested in targeting DDX3 with an approved drug and therefore, exemestane
was chosen. The compound exemestane is known as aromatase inhibitor for breast cancer [62,63].
Exemestane was docked into the binding site of 2I4I to estimate the binding affinities between the
DDX3 and small molecules. Corresponding results have shown that exemestane has occupied the
binding site of the protein rendered by a dock score of 22.93 kcal/mol. Several key residues were
found to hold the compound firmly at the active site. The HN atom of Gly227 has interacted with O2
atom of exemestane compound by a bond length of 2.2 Å forming a hydrogen bond. The HA atom
of the residue Thr226 and O2 atom of exemestane have formed a carbon hydrogen bond interaction
with the a bond length of 2.8 Å. The key residue Tyr200 has prompted two π-alkyl interactions
with the ligand. The residues Arg202, Thr204, Gln207, Thr226, Gly229, Lys230, Thr231, Ala232 and
His527 have aided in accommodating the compound at the active site of the protein via the van der
waals interactions. There findings have encouraged us to escalate it to in vitro assay. Upon treating
the three cell lines with exemestane, the expression of DDX3 was reduced, as shown in Figure 9.
This triggered our interest to perform the combination study of curcumin and exemestane and estimate
the DDX3 expression. The results have indicated that DDX3 expression was reduced significantly
upon combinatorial treatment than single/individual compound.

The compound curcumin has formed two hydrogen bond interactions with the key residues
Thr201 and Arg202 as reported earlier [2,52]. The residue Arg202 is recorded to be a key residue
originating from the Q motif of the protein binding pocket of the DDX3 as noticed in the crystal structure.
Our findings also highlighted this crucial interaction, proclaiming that curcumin could be employed
against DDX3.Taken together, our findings proclaim that curcumin could act has an individual
drug or could be a better option with exemestane to treat DDX3 elevated cancers. Furthermore,
our findings pave the way for new research avenues and serves as a fundamental platform for
combinatorial treatments.

5. Conclusions

The current study aims at identifying a potential candidate to target DDX3. DDX3 has been
implicated in several cancers and targeting DDX3 could be an ideal strategy to abrogate cancers. In this
pursuit, several in silico investigations were executed to identify potential compound and further
validated in vitro. The computational approaches have identified curcumin as a prospective candidate,
which had reduced the expression of DDX3 in three cell lines. However, upon administering curcumin
along with exemestane, the expression of DDX3 was reduced remarkably. These findings could pave
the way for new research avenues and may assist in designing potential candidate for DDX3.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/6/857/s1,
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