
fnagi-14-877078 April 25, 2022 Time: 12:53 # 1

ORIGINAL RESEARCH
published: 29 April 2022

doi: 10.3389/fnagi.2022.877078

Edited by:
Jun Wang,

Icahn School of Medicine at Mount
Sinai, United States

Reviewed by:
Jian-jun Chen,

Chongqing Medical University, China
Ching-Chi Chiu,

Chang Gung University, Taiwan

*Correspondence:
Lu Fan

lufan@njucm.edu.cn
Juanjuan Tang

tangjj@njucm.edu.cn
Ruini Chen

ruini2007@njucm.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Parkinson’s Disease
and Aging-related Movement

Disorders,
a section of the journal

Frontiers in Aging Neuroscience

Received: 16 February 2022
Accepted: 23 March 2022

Published: 29 April 2022

Citation:
Wang W, Zhu G, Wang Y, Li W,

Yi S, Wang K, Fan L, Tang J and
Chen R (2022) Multi-Omics

Integration in Mice With Parkinson’s
Disease and the Intervention Effect

of Cyanidin-3-O-Glucoside.
Front. Aging Neurosci. 14:877078.

doi: 10.3389/fnagi.2022.877078

Multi-Omics Integration in Mice With
Parkinson’s Disease and the
Intervention Effect of
Cyanidin-3-O-Glucoside
Wang Wang1†, Guoxue Zhu2†, Yuwen Wang3, Wei Li4, Shilin Yi1, Kai Wang1, Lu Fan1* ,
Juanjuan Tang1* and Ruini Chen1*

1 School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China, 2 Nanjing
Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine,
Nanjing, China, 3 The Sixth Outpatient Department, Jinling Hospital, Nanjing, China, 4 College of Traditional Chinese
Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China

Background: Parkinson’s disease (PD) is a multifactorial degenerative disease of the
central nervous system, which affects mostly older adults. To date, research has focused
on the progression of PD. Simultaneously, it was confirmed that the imbalances in gut
microbiota are associated with the onset and progression of PD. Accurate diagnosis
and precise treatment of PD are currently deficient due to the absence of effective
biomarkers.

Methods: In this study, the pharmacodynamic study of cyanidin-3-O-glucoside in
PD mice was used. It intends to use the “imbalance” and “balance” of intestinal
microecology as the starting point to investigate the “gut-to-brain” hypothesis
using metabolomic-combined 16S rRNA gene sequencing methods. Simultaneously,
metabolomic analysis was implemented to acquire differential metabolites, and
microbiome analysis was performed to analyze the composition and filter the remarkably
altered gut microbiota at the phylum/genera level. Afterward, metabolic pathway and
functional prediction analysis of the screened differential metabolites and gut microbiota
were applied using the MetaboAnalyst database. In addition, Pearson’s correlation
analysis was used for the differential metabolites and gut microbiota. We found that
cyanidin-3-O-glucoside could protect 1-methyl-4-phenyl-1,2,3,6− tetrahydropy ridine
(MPTP)-induced PD mice.

Results: Metabolomic analysis showed that MPTP-induced dysbiosis of the gut
microbiota significantly altered sixty-seven metabolites. The present studies have
also shown that MPTP-induced PD is related to lipid metabolism, amino acid
metabolism, and so on. The 16S rRNA sequencing analysis indicated that 5 phyla
and 22 genera were significantly altered. Furthermore, the differential gut microbiota
was interrelated with amino acid metabolism, and so on. The metabolites and gut
microbiota network diagram revealed significant correlations between 11 genera and
8 differential metabolites.
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Conclusion: In combination, this study offers potential molecular biomarkers that
should be validated for future translation into clinical applications for more accurately
diagnosing PD. Simultaneously, the results of this study lay a basis for further study of
the association between host metabolisms, gut microbiota, and PD.

Keywords: Parkinson’s disease, cyanidin-3-O-glucoside, metabolomics, microbiome, Pearson’s correlation
analysis

INTRODUCTION

Parkinson’s disease (PD) is an adult neurodegenerative disease
characterized clinically by tremors, muscle stiffness, and
bradykinesia, which leads to a high rate of misdiagnosis in
the clinical setting of PD. It affects approximately 1% of the
population aged over 60 years, increasing to approximately 4%
by the age of 80 years. Furthermore, the clinical symptoms of
patients with PD tend to lag behind the pathological changes. At
present, the therapeutic strategy for PD is the classical method,
dopamine replacement therapy, which can only ameliorate the
motor symptoms and is ineffective in slowing, halting, or
reversing disease progression. However, long-term therapy could
bring out the development of “motor complications,” including
wearing-off, motor fluctuations, and L-dopa-induced dyskinesia
(Shao and Le, 2019). Although a series of biomarkers stem from
clinical, neuroimaging, and genetic studies, the sensitive and
specific biomarkers for PD remain deficient (Trifonova et al.,
2020). To date, a number of hypotheses have been presented, such
as mitochondrial dysfunction, oxidative stress, accumulation of
misfolded aggregates, and inflammation (Bhinderwala et al.,
2019; Khan et al., 2020). Despite all these years of research,
the pathogenesis of PD is still not completely understood
(Milutinović et al., 2020). The screening of reliable biomarkers
might result in the development of novel drugs that could provide
a more accurate diagnosis of PD progression (Lama et al., 2020).

Metabolomics is routinely used as an emerging technique
for investigating metabolic profiling through data mining
and bioinformatic analysis (Johnson et al., 2016; Laíns
et al., 2019). The biomarkers are endogenous, as well as
the metabolism of pharmaceuticals and co-metabolism
between the host and gut microbiota (Wu et al., 2021).
Metabolomics research possesses enormous potential to contact
particular physiological or pathological conditions with genetic,
environmental, or physiological elements due to the sensibility
of metabolites to small variations of endogenous and exogenous
(Nicholson et al., 2002).

Neurodegeneration in PD was associated with gastrointestinal
(GI) dysregulation, which was proved by a large number of
clinical and neuropathological evidence (Abbott et al., 2001). The
“gut-to-brain” hypothesis indicates that the accumulation and
aggregation of α-synuclein in the gut and the neurodegeneration
in the enteric nervous system (ENS) begin up to 20 years
before the neurodegeneration in the central nervous system
(CNS) (Braak et al., 2006; Hawkes et al., 2010; Cersosimo and
Benarroch, 2012). Immunological, neuroendocrine, and direct
neurochemical mechanisms are the main mechanisms between
the intestine and brain that are modulated by gut microbiota

(Kaur et al., 2021). Simultaneously, intestinal inflammation
related to dysbiosis may affect the misfolding aggregation of
α-synuclein (Resnikoff et al., 2019). So far, some research
has examined the metabolic profiling of PD through several
biological samples (Okuzumi et al., 2019; Lichtenberg et al.,
2021). However, there is a lack of research on metabolomics
combined with gut microbiota, which could link the symbiotic
microbiota and health easily. A better understanding of the
gut microbiota and metabolomic profile could illuminate the
association between host metabolisms, gut microbiota, and PD.

Cyanidin-3-O-glucoside (Cy-3-G), a major water-soluble
flavonoid anthocyanin, is mainly present in plant-based foods
(including leafy vegetables, berries, red cabbages, and colored
grains) and possess protective effects on many organs (Jia
et al., 2020). It has a wide range of pharmaceutical benefits,
such as antioxidant activities (Liu et al., 2018), gut microbiota
modulation (Tian et al., 2019), neuroprotective effects (Bhuiyan
et al., 2011), anticancer (Liang et al., 2019), and metabolic
syndrome (Jiang et al., 2019). Furthermore, the previous
researches set the foundation for the further study of Cy-
3-G to PD. Therefore, this study takes the “imbalance” and
“balance” of intestinal microecology as the starting point to
investigate the “gut-to-brain” hypothesis using metabolomics
combined with 16S rRNA gene sequencing methods. Finally, the
metabolic biomarkers and gut microbiota biomarkers of PD were
screened and identified, and the research system of “Cy-3-G-
gut microbiota—PD” was constructed to explore the relationship
between its treatment of PD and intestinal microecological
“imbalance” and “balance”.

MATERIALS AND METHODS

Chemicals and Reagents
Liquid chromatography-mass spectrometry (LC-MS) grade
methanol, formic acid, and ammonium acetate were purchased
from Thermo Fisher Scientific (Waltham, MA, United States).
1-methyl-4-phenyl-1,2,3,6-tetrahydropy ridine (M0896, MPTP)
was obtained from Aladdin-e (Shanghai, China). Cy-3-G (HY-
N0640) and dimethyl sulfoxide (DMSO, HY-Y0320) were
purchased from MedchemExpress (Monmouth Junction, NJ,
United States). Ultra-high purity water was prepared by the
Millipore-Q water purification system (Millipore, Bedford, MA,
United States). HiPure Stool DNA Kits were obtained from
Guangzhou Magen Biotechnology Co., Ltd. (Magen, Guangzhou,
China). Agarose and goldview were provided by Beijing
Mengyimei Biotechnology Co. (Beijing, China). Anhydrous
alcohol was supplied by Guangzhou Chemical Reagent Factory
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(Guangzhou, Beijing). MinElute PCR Purification Kit was bought
from New England Biolabs, Inc. (Beverly, MA, United States).
AMPure XP magnetic beads were purchased from Beckman
Coulter (United States).

Rats and Treatments
A total of 35 specific pathogen free (SPF) male C57BL/6J
mice (7–8 weeks old, 20–25 g, animal license No. SCXK (Su)
2018-0008) were bought from GemPharmatech Co. During the
whole experiment, the mice were housed in a temperature-
and humidity-controlled holding facility (22 ± 2◦C, 55% ± 5%
humidity) with a 12-h light/dark cycle and free access to food and
water. After 3 days of adaptation, 35 mice were randomly divided
into three groups, namely, control, model, and Cy-3-G (10, 20,
and 40 mg/kg), each with 7 mice. All procedures conformed to
the principles of the Care and Use of Laboratory Animal and
were approved by the Animal Ethics Committee of the Nanjing
University of Chinese Medicine.

The five groups of mice were pretrained for behavioral tests
in the 1st week. In the next 4 weeks, the mice in the control
and model groups were given an equal volume of normal saline,
and the Cy-3-G group received 10, 20, and 40 mg/kg Cy-3-
G. Then, the mice of the PD model group (model group and
Cy-3-G group) were made by subcutaneously injecting MPTP
with a dose of 20 mg/kg/d two times a week for 0.5 h after the
intraperitoneal injection of Cy-3-G. The control group was given
an equal volume of saline. Simultaneously, mice of the model and
Cy-3-G groups received 250 mg/kg probenecid (intraperitoneal
injection) at 0.5 h after the injection of MPTP. The control group
received an equal volume of DMSO. All the mice were sacrificed
on the 36th day after the behavioral test, and the experimental
procedures are shown in Figure 1.

Sample Collection and Preparation
After the mice were sacrificed, blood samples were collected and
centrifuged at 4,500 rpm for 10 min at 4◦C to obtain supernatants
for metabolomic analysis. At 4◦C, 100 µl of serum was added to
400 µl of 80% (v/v) methanol solution, vortexed, and centrifuged
at 15,000 × g for 20 min. Some of the supernatants were diluted
to a final concentration containing 53% methanol using LC-MS
grade water. The samples were subsequently transferred to a fresh
Eppendorf tube and then centrifuged at 15,000 × g, 4◦C for
20 min for LC-MS/MS analysis.

At least 2 fecal pellets were received from each mouse on
the 36th day after the behavioral test. They were placed in
sterile EP tubes and stored at −80◦C for 16S rRNA gene
sequencing analysis.

Effects of Cy-3-G on the Behavioral Test
of MPTP-Intoxicated Mice
Rotarod Test
The rotarod test was used to evaluate the mouse motor
coordination and balance based on the rotarod apparatus (Med
Associates, United States). The method was performed in the
same way as in the previous research (Zhu et al., 2021). The
rotarod was linearly accelerating from 5 to 40 rpm in 5 min.

Afterward, the mice were placed in the rotarod to conduct
an experiment, and the mean latency time to fall of the
rotarod was recorded.

Open-Field Test
The open-field test (OFT) was used to evaluate locomotor activity
and anxiety behavior and was performed according to previous
research (Zhang et al., 2017). The mice were placed directly in
the box, which was divided into 24 grids of 8 cm × 8 cm.
Afterward, the mice were removed from the box and placed in
the center of the open field and were video recorded for 5 min
(ambulatory movements and rearing) after being preadapted for
5 min. The box was cleaned using 10% alcohol between the tests.
Furthermore, the research was scored on the distance traveled
and the amount of rearing in 5 min.

Forced Swimming Test
To assess the limb coordination ability and motility of the mice,
we utilized the forced swimming test (FST) (Sun et al., 2021). The
mice were removed from mouse cages and placed in a glass tank
(20 cm× 30 cm× 20 cm) with a water depth and temperature of
15 cm and 25◦C, respectively. We were recording the immobility
during the last 1 min. When the mice floating were motionless or
making the necessary movements to keep their heads above the
water, it was considered immobile. The FST was repeated 3 times,
and the averages were calculated.

Pole Test
The pole test was performed to assess the motor coordination
and bradykinesia ability and was conducted according to the
previously described method (Luo et al., 2018). The apparatus
consisted of a plastic rod (diameter: 0.5 cm, height: 50 cm) and
a wooden ball on the pole. The mouse was placed on the top
of the pole, and the time of turning its head downward and
the total time from its placement to the bottom with its hind
limbs contacting the ground were recorded. The pole test was
repeated three times with an interval of 2 min, and the average
times were analyzed.

Tail Suspension Test
The tail suspension test (TST) was used to assess depression-
like behavior in MPTP-induced mice. Mice were suspended,
acoustically and visually isolated, 50 cm above the floor. In this
study, the mice did not touch the tail suspension instrument
except for the tail, and the immobility time was recorded
during a 5-min test.

Immunohistochemistry
For immunohistochemistry, tissues (brains and intestines) were
sectioned at 30 µm thickness and treated with methanolic H2O2
for 30 min. The sections were incubated with 0.5% Triton X-
100 in phosphate-buffered saline (PBS) for 15 min and blocked
with 4% normal serum in PBS for 15 min before incubating
with the primary antibody. The sections were incubated
overnight with TH (1:2,000, Servicebio, GB11181), ZO-1 (1:300,
Servicebio, GB111981), occludin (1:500, Servicebio, GB111401),
or claudin (1:300, Servicebio, GB11032). The sections were
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FIGURE 1 | Schematic representation of the experiment.

washed three times in PBS (pH 7.4, and incubated with secondary
antibodies (1:200, Servicebio, GB23303) for 50 min at room
temperature. After the slices were slightly spin-dried 3 times,
3,3′-diaminobenzidine tetrahydrochloride (DAB) condensed
chromogen (Servicebio, G1211) was utilized to visualize. After
immunostaining, sections were counterstained with hematoxylin
(Servicebio, G1004). Sections were photographed using the
Vectra Polaris Imaging System (Akoya).

Metabolite Extraction and
UHPLC-MS/MS Analysis
Instrument Condition
The serum was analyzed using a Vanquish UHPLC liquid
chromatography system coupled with a Q ExactiveTM HF-
X Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo
Fisher, Bremen, Germany) with a heated electrospray ionization
source (ESI). A Hypesil Gold column (100 mm × 2.1 mm,
1.9 µm) and 17 min linear gradient at a flow rate of 0.2 ml/min
were utilized. The mobile phase was comprised of A (methanol)
and B (0.1% formic acid in water) for the positive mode and A
(methanol) and B (5 mM ammonium acetate, pH 9.0) for the
negative mode. The solvent gradient was set as follows: 2% A,
1.5 min; 2–100% A, 12.0 min; 100% A, 14.0 min; 100–2% A,
14.1 min; 2% A, 17 min. The mass spectrometer of Q ExactiveTM

HF-X was used in the ESI positive/negative mode with a spray
voltage of 3.2 kV, a capillary temperature of 320◦C, a sheath gas
flow rate of 40 arb, and an aux gas flow rate of 10 arb.

Data Processing and Metabolite Identification
Raw data files acquired through UHPLC-MS/MS were processed
using Compound Discoverer 3.1 software (CD3.1, Thermo
Fisher) for realizing peak alignment, peak picking, and
quantitation for each metabolite. All normalized data were
entered into R package models1 for multivariate statistical
analysis, such as unsupervised dimensionality reduction method

1http://www.r-project.org/

principal component analysis (PCA) and orthogonal projection
to latent structures-discriminant analysis (OPLS-DA). A cross-
validation and permutation test (200 permutations) were utilized
to further validate the OPLS-DA model. For the cross-validation
and permutation test, the data were partitioned into seven
subsets, where each of the subsets was then utilized as a validation
set. Among them, the correlation coefficient (R2) explains the
total variation in the data matrix, which was shown in the model.
Predictive ability (Q2) values were usually recognized as the
strongest statistical parameter for model reliability research in
metabolomics. Variable importance in projection (VIP) score
of the OPLS model was performed to arrange the significant
metabolites that were screened between two groups, with a
threshold of 1. Furthermore, multivariate analysis methods based
on the T-test were utilized for screening differential metabolites.
Taken together, variables with a p-value of T-test < 0.05 and
VIP ≥ 1 were considered potential biomarkers associated with
PD or Cy-3-G. Volcano plot analysis combined with fold
changes in abundance was utilized to illustrate the regulation
of differential metabolites. Pathway enrichment of potential
biomarkers was executed using MetaboAnalyst 5.02, which was
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. The pathway was perceived as markedly enriched, with
a threshold of 0.5.

16S rRNA Gene Sequencing Analysis
According to the standardized protocol, HiPure Soil DNA
Kits were utilized for extracting microbial genomic DNA. The
V3+ V4 target region of the 16S rRNA gene was amplified using
PCR with the universal primers (341F: 5′-CCTACGGGNGGCW
GCAG-3′ and 806R: 5′-GGACTACHVGGG TATCTAAT-3′).
According to the standard protocols, the samples were pooled
in equimolar and paired-end sequenced (PE250) on an Illumina
Novaseq 6000 platform. The raw reads were stored in the
NCBI Sequence Read Archive (SRA) database. Furthermore, the

2https://www.metaboanalyst.ca/
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following steps were utilized to make the quality control of reads
and the effect of merging. First, raw reads were filtered using
FASTP (Chen et al., 2018) (version 0.18.0) according to the
following rules: reads that included more than 10% of unknown

nucleotides (N) or less than 50% of bases with a quality (Q-
value) > 20 were removed. Second, FLSAH (Magoč and Salzberg,
2011) (version 1.2.11) software coupled with a minimum overlap
of 10 bp and mismatch error rates of 2% was utilized to merge

FIGURE 2 | Effects of Cy-3-G on the behavioral test (A), body weight (B), and colon length (C) of PD model mice; Representative microphotographs of
dopaminergic neurons stained for TH and the quantification of TH positive cells in each group (D). The pictures were taken at an original magnification of 10×.
Control: blank group; Model: MPTP -intoxicated group; Cy-3-G-H: high dosage group; Cy-3-G-M: medium dosage group; Cy-3-G-L: low dosage group; *p < 0.05,
**p < 0.01, ***p < 0.001 vs. Control; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. Model.
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the paired-end clean reads into raw tags. Ultimately, raw tags
whose base number in the continuous low quality value (the
default quality threshold is ≤ 3) reached 3 bp default length
or less than 75% of the tag length were broken. The clean
tags were clustered at a 97% sequence similarity level using
the UPARSE (Edgar, 2013) (version 9.2.64) pipeline to obtain
operational taxonomic units (OTUs). Effective tags were obtained
by removing all chimeric tags using the UCHIME algorithm
(Edgar et al., 2011). It was selected as a representative sequence
among the clusters in which the tag sequence owns the highest
abundance. The tag sequence with the highest abundance was
selected as a representative sequence within each cluster.

The characteristic OTU sequences were classified using a
naive Bayesian model with an RDP classifier based on the
SILVA database, with confidence threshold values ranging from
0.8 to 1. The LEfSe software in the R project was utilized
to screen the biomarkers in each group. The Welch’s t-test
and Wilcoxon signed-rank test were utilized to calculate the
alpha index between groups. Beta diversity analysis, principal
coordinate analysis (PCoA), for example, was performed using
the R project Vegan package and plotted in the R project ggplot2
package to compare the similarity of species diversity.

Integrated Microbiome and Metabolomic
Analysis
To evaluate the possible relationships between gut microbiota
and metabolites, the correlation analysis of these phylum/genera
and differential metabolites were conducted. The phylum/genus-
metabolite networks were built based on the Gephi software
(version 0.9.2) for visualization (Zuo et al., 2021), with | r| > 0.8
and p < 0.05 as the criterion. The variables in the established
networks were analyzed for metabolite set enrichment analysis
(MSEA) based on the MetaboAnalyst 5.0 database. Among them,
metabolite was considered significant when p < 0.05 was used
as the standard.

RESULTS

Cy-3-G Treatment Attenuates
MPTP-Induced Dopaminergic
Neurodegeneration and Intestinal Barrier
Destruction
There was a significant variation in the mice’s weight and the
appearance of colonic tissue between the groups during the study,
showing a difference in the toxicity of MPTP in different groups
(Figures 2B,C). Simultaneously, to evaluate the pharmacological
action of Cy-3-G on MPTP-induced behavioral deficits, a series
of behavioral tests, including the rotarod test, OFT, FST, pole
test, and TST, were established. As shown in Figure 2A, MPTP-
induced mice have a significantly longer rod-standing time
compared with control group mice, whereas Cy-3-G treatment
significantly improves MPTP-intoxicated mice to stand for a
shorter time. Moreover, the OFT results showed that MPTP-
intoxicated mice significantly decreased the distance traveled
compared with the control group, while Cy-3-G treatment group

mice showed significantly decreased these phenomena. Among
the MPTP treatment group mice, the time of turning their heads
downward and the total time from their placement to the bottom
significantly increased compared with the control group. Cy-
3-G could improve the parameter at high and middle doses.
According to the TST results, the immobility time in model mice
was prolonged significantly compared with the control group,
and Cy-3-G could improve obviously. Furthermore, we found
that there were no differences in FST between the MPTP-treated
group and control group. The results showed that treatment
with Cy-3-G could significantly improve the MPTP-induced
behavioral deficits in mice.

To define the neuroprotective effect of Cy-3-G against MPTP-
induced neurotoxicity, TH-positive cells in the substantia nigra
pars compacta (SNpc) were quantified. Compared with the
control group, the number of TH-positive cells was notably
changing, while the change trends of the Cy-3-G-treated group
were contrary to that of the model group (Figure 2D). Control,
model, and Cy-3-G-treated group mice were subjected to
immunohistochemical experiments. As a result, the expressions
of the tight-junction proteins (ZO-1, occluding, and claudin)
were significantly lower in the MPTP model group than
in the control group, while such effects were abolished by
treatment with Cy-3-G (Figure 3). The results illustrated that
treatment with Cy-3-G effectively increased the expression of
intestinal tight-junction proteins and improved the disorder
of gut microbiota.

Serum Metabolic Profiling of Cy-3-G in
Treating Parkinson’s Disease Mice
Serum metabolic profiling of control, model, and Cy-3-G-treated
mice was obtained using LC-MS/MS. Based on the serum
metabolic profiling, the PCA model results showed that the
control group, MPTP-intoxicated group, and Cy-3-G-treated
group could be obviously separated (Figure 4). In the OPLS-DA
model, a significant difference between control and model mice
was found, indicating that Cy-3-G results in remarkable disease
changes. Variables with p a value of T-test <0.05 and VIP ≥ 1
were considered potential biomarkers associated with PD or
Cy-3-G (Supplementary Figure 1 and Figures 4C–F), which
were screened for further structure identification. Furthermore,
a permutation test (200 permutations, Supplementary Figure 1)
was utilized to check for overfitting of the OPLS-DA. We
identified the screened potential biomarkers using the retention
time, accurate masses, and fragment ions in MS spectra acquired
through LC-Q Exactive Orbitrap MS. Simultaneously, the
information was further verified using online databases such as
HMDB3, METLINE4, and MassBank5. Interestingly, forty-one
metabolites in the positive model and twenty-six metabolites
in the negative model (Supplementary Table 1) were identified
as potential biomarkers of MPTP-induced PD. Concurrently,
twenty-three metabolites in the positive model and thirteen
metabolites in the negative model (Supplementary Table 2)

3http://www.hmdb.ca/
4http://metlin.scripps.edu
5http://www.massbank.jp/
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FIGURE 3 | Location and expression of tight junction protein ZO-1, occludin, and claudin-1 in colonic epithelium from different groups, respectively. **p < 0.01 vs.
control; #p < 0.05, ##p < 0.01 vs. model.

were identified as potential biomarkers of Cy-3-G treatment
in PD. These metabolic biomarkers were mainly involved in
lipid metabolism, amino acid metabolism, cofactor metabolism,
and vitamin and energy metabolism (Figures 4G,H). Through
comparison, a total of 8 biomarkers (2-hydroxyphenylalanine,
LPC 22:6, PC (19:0/20:4), PC (18:0/20:5), stearamide, oleamide,
11,12-Epoxy-(5Z,8Z,11Z)-icosatr-enoic acid, arachidonic acid)
were simultaneously altered with opposing trends in variation
after MPTP and Cy-3-G treatment (Figure 5).

Identification and Functional Annotation
of Differential Gut Microbiota
In 21 samples, 3,043 OTUs were obtained. The species annotation
analysis results at the phylum and genus levels are shown
in Figures 6A,B. The figure demonstrated ten abundances
of bacteria at phylum and genus level that ranked in the
top ten, and the other bacteria were grouped together as
“Other,” while unclassified exemplified bacteria were those that
were not taxonomically annotated. As shown in Figures 6A,B,
Bacteroidetes, Firmicutes, and Verrucomicrobia were the most
dominant phyla in the gut microbiota of all fecal samples
at the phylum level obtained in the result. During modeling,
the abundances of Bacteroidetes were significantly increased
in the MPTP model group compared with the control group,
while the abundances of Firmicutes and Verrucomicrobia were
significantly decreased. By contrast, the change trends of the Cy-
3-G-treated group were contrary to that of the model group.
These results were consistent with the previous reports that
Firmicutes and Bacteroidetes imbalances were related to the

changes in age (Mariat et al., 2009), including PD. In previous
studies, the Verrucomicrobia phylum (Akkermansia genus or
species, for example) was significantly changed in patients with
PD (Hill-Burns et al., 2017).

The principal coordinate analysis (PCoA) results showed
that gut microbiota composition profiles of the control, MPTP-
induced, and Cy-3-G-treated groups were separated evidently
(Figures 6C,D). An Upset plot was performed using the R
project UpSetR package to identify unique and common species
(Figure 6E) in order to illustrate the characteristics of species
composition among groups. In the control, MPTP-induced, and
Cy-3-G-treated groups, 10, 4, 4 unique species were screened,
respectively. Simultaneously, 4 and 2 common species were
found in two groups, namely, control vs. MPTP-induced groups
and MPTP-induced vs. Cy-3-G-treated groups. Afterward, 79
common species among the three groups were identified. It was
deemed that there are no such species in the group when the
average tag number of a species in the group is less than 1. LDA–
LEfSe analysis [linear discriminant analysis (LDA) integrated
with effect size] was utilized to generate a cladogram in order to
identify the distinguishing taxa within the groups (Figure 6F).
Welch’s t-test analysis was utilized to identify taxa (phyla and
genera) based on the differential abundances within the groups.
Five differential phyla were recognized with a P-value of < 0.05,
including Bacteroidetes, Proteobacteria, Verrucomicrobia,
Tenericutes, and Cyanobacteria (Figures 7A,C). Compared
with the control group, the abundance of Proteobacteria
and Bacteroidetes was significantly increased, whereas the
abundance of Verrucomicrobia, Tenericutes, and Cyanobacteria
decreased in the MPTP-induced group. At the generic
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FIGURE 4 | PCA score plot of all analyzed samples in positive-ion (A) mode and negative-ion (B) mode with the statistical parameters; VIP of OPLS-DA between the
control and model groups in positive-ion (C) mode and negative-ion (D) mode; VIP of OPLS-DA between the model and Cy-3-G-H groups in positive-ion (E) mode
and negative-ion (F) mode; Bubble chart of GO function analysis (G) and the metabolites statistics of KEGG (H).

levels, twenty-two differential genera were recognized with
a P-value of < 0.05 (Figure 7A) in the MPTP-induced model
group compared with the control group. Simultaneously,
the significantly changed microbes in abundance, such

as Muribaculum, Ruminococcaceae_UCG-013, Blautia,
Family_XIII_AD3011_group, Ureaplasma, and Staphylococcus,
were shown in the Cy-3-G group compared with the
MPTP-induced group (Figure 7C). Through comparison,

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2022 | Volume 14 | Article 877078

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-877078 April 25, 2022 Time: 12:53 # 9

Wang et al. Multi-Omics Integration of PD

FIGURE 5 | Variations in the trends of the metabolites that are biomarkers of both PD and Cy-3-G treatment. *p < 0.05, **p < 0.01, ***p < 0.001 vs. Control;
#p < 0.05, ##p < 0.01 vs. Model.

a total of 12 biomarkers (Family_XIII_AD3011_group,
Ruminococcaceae_UCG-013, and Ureaplasma based on
the Welch’s t-test analysis in Figure 8A; Akkermansia,
Alloprevotella, Helicobacter, Bacteroides, Parasutterella,
Prevotellaceae_UCG_001, Clostridium_sensu_stricto_1, Blautia,
Ureaplasma, and Staphylococcus based on the LDA-LEfSe
analysis in Figure 8B) were simultaneously altered with
opposing trends in variation after MPTP and Cy-3-G treatment.

Tax4Fun was utilized to predict the function of the gut
microbiota of mice in control and MPTP-induced groups. The
results showed that the differential microbes were closely related
to amino acid metabolism, NOD-like receptor signaling pathway,
carbohydrate metabolism, cofactor metabolism, and vitamin and
energy metabolism (Figures 7B,D).

Correlation Analysis for Differential
Metabolites and Microbes
A correlation heatmap and network diagram were
utilized to delegate the covariation between perturbed
gut microbe genus and altered metabolites (Figure 9A).
Moreover, the gut microbiota (Family_XIII_AD3011_group,
Ruminococcaceae_UCG-013, Ureaplasma, Akkermansia,
Alloprevotella, Helicobacter, Bacteroides, Parasutterella,
Prevotellaceae_UCG_001, Clostridium_ sensu_stricto_1
and Staphylococcus) and differential metabolites (2-
hydroxyphenylalanine, LPC 22:6, PC (19:0/20:4), PC (18:0/20:5),

stearamide, oleamide, 11,12-epoxy-(5Z,8Z,11Z)-icosatrienoic
acid, and arachidonic acid) were significantly correlated,
demonstrating that the changes in serum metabolites may be
associated with the gut microbiota disruptions. Simultaneously,
we found that the metabolites of LPC 22:6 and gut microbiota
(except Akkermansia, Clostridium_sensu_stricto_1, and
Blautia) showed negative correlations. The metabolite of
2-hydroxyphenylalanine has a negative correlation with the
gut microbiota (Alloprevotella, Bacteroides, Ureaplasma, and
Staphylococcus). Akkermansia and Clostridium_sensu_stricto_1
have a negative correlation with gut microbiota. As for other
aspects, there is a positive correlation between metabolites and
gut microbiota. Concurrently, the interaction network diagram
of the metabolites–microbes was constructed to further study
the intrinsic relationship between these metabolites and gut
microbiota (the solid-line curve represents positive correlation
and the dotted line represents negative correlation in Figure 9B).

DISCUSSION

The Research of Parkinson’s Disease
From the Perspective of Metabolic
Pathways
Studies have revealed that both dysbiosis and alteration
of gut microbiota could affect the CNS, thereby causing
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FIGURE 6 | The histogram of species distribution at the phylum (A) and genus (B) levels in three groups revealed by 16S rRNA sequencing (different colors
represent different bacteria at phylum or genus levels). PCoA analysis among control, model, and Cy-3-G groups at the phylum (C) and genus (D) levels. Upset plot
based on the gut microbiota among control, model, and Cy-3-G groups (E); Cladogram of microbial taxa differentially represented among control, model, and
Cy-3-G group (F).

CNS diseases (PD included) (Sun and Shen, 2018).
However, the correlation between gut microbiota and
metabolomics remains largely unidentified. The findings
of this study suggest that MPTP-induced PD is related
to lipid metabolism, amino acid metabolism, cofactor
metabolism, and vitamin and energy metabolism. The 16S
rRNA sequencing results showed that the differential gut

microbiota were interrelated with amino acid metabolism,
NOD-like receptor signaling pathway, carbohydrate metabolism,
cofactor metabolism, and vitamin and energy metabolism. The
correlation between differential gut microbiota and potential
biomarkers was analyzed.

Choline is necessary for the synthesis of the neurotransmitter
acetylcholine and phospholipid (an integral component of cell
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FIGURE 7 | The differential abundance taxa in phyla (A) and genera (C) based on the Welch’s t-test analysis between control vs. model (A) and model vs.
MPTP-induced (C) groups; The function of the gut microbiota of mice in the control and MPTP-induced groups based on Tax4Fun between control vs. model (B)
and model vs. MPTP—induced (D) groups.

membranes) (Amo et al., 2019). Some studies have revealed
mitochondrial respiratory chain dysfunction and aberrant
choline metabolism using SH-SY5Y cells (Baykal et al., 2008).
Betaine is a natural product that is widely distributed in plants,
animals, microorganisms, and foods such as Lycium chinense
(Shin et al., 1999; Craig, 2004). Previous studies have revealed
that betaine could maintain the appropriate balance between
phosphatidyl ethanolamine and phosphatidyl choline to preserve
the proper membrane flexibility and prevent lipid peroxidation
through its existence among the methylation within the cellular
membranes (Alirezaei et al., 2015). It is shown that betaine
has a protective effect against stress-induced oxidative damage
(Ganesan and Anandan, 2009). However, the increased reactive
oxygen (ROS) production and oxidative damage to biological
molecules are related to various pathological mechanisms, such
as neurodegenerative disorders (Batandier et al., 2002). A variety
of studies have shown that the mechanism of action of rotenone
(a model drug of PD), the inhibition of complex I, leads to
the growth of mitochondrial oxidative stress. Several in vitro
studies have demonstrated that betaine has protective effects
on rotenone-induced PC12 cells. Phenylalanine, an essential
amino acid, is derived from animal protein and vegetables and
is acquired exclusively through the diet. At the same time,
phenylalanine is easily absorbed by the brain and then processed
into neurotransmitters. In the long run, normal brain functioning
could be interfered with by phenylalanine. The biosynthesis of

L-3,4-dihydroxyphenylalanine (L-DOPA) relies on the precursor
molecule phenylalanine.

According to the result, five metabolites (docosapentaenoic
acid, eicosapentaenoic acid, docosahexaenoic acid, cis-
5,8,11,14,17-eicosapentaenoic acid, and adrenic acid) were
decreased in the MPTP-induced group, leading to the
metabolic disorder of lipid metabolism. Docosapentaenoic
acid, eicosapentaenoic acid, and docosahexaenoic acid are
omega-3 polyunsaturated fatty acids that are beneficial to
treat neurodegenerative diseases such as Parkinson’s disease,
Alzheimer’s disease, and Huntington’s disease (Shirooie et al.,
2018). Simultaneously, polyunsaturated fatty acids also have
reliable neuroprotective effects using the PD animal models
and then in clinical trials, mainly through reducing apoptotic
cell death and activating the glutathione-dependent antioxidant
systems, which are conducive to a decrease in motor dysfunction.

The Research of Parkinson’s Disease
Based on the Correlation Analysis for
Differential Metabolites and Microbes
In the Verrucomicrobia phylum, Akkermansia muciniphila
possesses a beneficial influence on the mucous membrane and
improves the barrier function of the gut epithelium (Wang
et al., 2021). Thus, the maintenance of a health gut barrier
and other pathogenic factors of many bacteria, including
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FIGURE 8 | Variations in the trends of the taxa in genera that are biomarkers of both PD and Cy-3-G treatment based on cladogram and LDA (A) and t-test
analysis (B). *p < 0.05, ***p < 0.001 vs. control; #p < 0.05, ###p < 0.001 vs. model.

lipopolysaccharide and bacterial endotoxin, could therefore
injure the host. In contrast, Akkermansia could degrade the
mucus layer by using mucus as an energy source (Kumari
et al., 2013). Akkermansia was also associated with a high
prediction score for PD (Wang et al., 2021). The phenomenon
of Firmicutes/Bacteroides ratio is found to vary with age
(Alirezaei et al., 2015), and relevance with neurodegeneration
(PD, for example) was considered. Several members of the
Lachnospiraceae family, such as Blautia, are gradually attracting
attention as a result of their ability to produce short-chain fatty
acids (SCFAs). These metabolites (such as acetate, propionate,
and butyrate) appear to play an important role in coordinating
the function of the enteric nervous system and promoting
gastrointestinal integrity and motility (Zhang et al., 2016).
Simultaneously, the potential role of SCFA-producing bacteria
has been highlighted in the pathogenesis of PD with respect to

their contribution to the reduction of SCFAs to the development
of gastrointestinal motility dysfunctions (Vascellari et al., 2020).
At the genus level, helicobacter was found to be significantly
increased. It has been reported that the intestinal bacteria of
helicobacter could cause the misfolding of a-syn and aggravate
the inflammation effect of a-syn by activating innate immunity
(Stolzenberg et al., 2017). From these results, we suggest that
the misfolded a-syn could activate the proinflammatory factors
secrete and microglia-mediated natural immune response, and
enhance the differentiation and multiplication of T cells into
effector T cells. Neurotoxicity (apoptosis and death of dopamine
neurons) could lead to the occurrence of PD and may occur as a
result of the effector T cells crossing the blood–brain barrier and
migrating to brain lesions (Fang, 2016).

In conclusion, this study illustrated that PD is associated
with gut microbiota disorders and that Cy-3-G could play a
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FIGURE 9 | Correlation heatmap is applied to represent the correlation values between perturbed gut microbe genus and altered fecal metabolites (A). “*” (white)
refers to the significance level of the corresponding correlation coefficient in each group. *P < 0.05. Interaction network diagram of the metabolites–microbes
pathways based on correlation analysis (B). The yellow (blue) line represents a positive correlation (negative correlation) between the metabolite and microbes.

role in the treatment of PD by modulating the structure and
metabolism of gut microbiota. Nevertheless, the following works
need to be done if we want to get more comprehensive and
reliable outcomes. First, the metagenomic experiment should
be established to analyze the function of these differential gut
microbiotas. Second, the sample size should be expanded and
clinical data should be collected for more in-depth study in order
to better guide the clinical work. Finally, the optimal dosage
of Cy-3-G in the treatment of PD’s gut microbiota dysbiosis-
integrated pharmacology should be illustrated.

CONCLUSION

Although a range of biomarkers derived from clinical,
neuroimaging, and genetic studies have been proposed
(Liepelt et al., 2009; Heywood et al., 2015; Majbour et al.,
2016), an analysis must necessarily be viewed as more qualitative
than quantitative. Therefore, sensitive, specific, and reliable
biomarkers for PD remain elusive. However, since PD is
a multifactorial disease, multiple mechanisms may likely
contribute to its pathogenesis. Despite decades of research, the
underlying etiopathogenesis of PD is still not fully elucidated.
Given the lack of knowledge regarding the mechanisms that
regulate the onset and progression of the disease pathology, new
approaches dedicated to the discovery of specific biomarkers
that offer more accurate diagnosis and better monitoring of PD
progression and prognosis are in urgent need. This study targets
the intestinal microbiota for the prevention of brain-related
degenerative diseases. This study might be a supplement for the
deficiency of the screening of diagnostic biomarkers and the
basic research of Cy-3-G.

In the above work, serum metabonomics combined with 16S
rRNA gene sequencing analysis were utilized to study the specific
interaction between PD and gut microbiota and the inherent

regulative mechanism of Cy-3-G on PD’s gut microbiota.
Metabonomics was applied to screen the differential metabolites
and metabolic pathways. The study found that forty-one
metabolites in the positive model and twenty-six metabolites in
the negative model were potential biomarkers of MPTP-induced
PD. Concurrently, twenty-three metabolites in the positive model
and thirteen metabolites in the negative model were identified
as potential biomarkers of Cy-3-G-treated PD. These metabolites
and metabolic pathways were mainly related to lipid metabolism,
amino acid metabolism, cofactor metabolism, and vitamin and
energy metabolism. In the 16S rRNA gene sequencing analysis
results, PD was found to be related to twenty-two different gut
microbiotas at the genus level. The 16S rRNA sequencing result
shows that the differential gut microbiotas were interrelated with
amino acid metabolism, NOD-like receptor signaling pathway,
carbohydrate metabolism, cofactor metabolism, and vitamin and
energy metabolism. Our findings provide a theoretical basis for
further understanding the mechanism underlying the role of gut
microbiota in regulating PD.
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