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Parasites are considered drivers of population regulation in some species; unfortunately the research
leading to this hypothesis has all been conducted on managed populations. Still unclear is whether par-
asites have population-level effects in truly wild populations and what life-history traits drive observed
virulence. A meta-analysis of 38 data sets where parasite loads were altered on non-domesticated, free-
ranging wild vertebrate hosts (31 birds, 6 mammals, 1 fish) was conducted and found a strong negative
effect of parasites at the population-level (g = 0.49). Among different categories of response variables
measured, parasites significantly affected clutch size, hatching success, young produced, and survival,
but not overall breeding success. A meta-regression of effect sizes and life-history traits thought to deter-
mine parasite virulence indicate that average host life span may be the single most important driver for
understanding the effects of parasites. Further studies, especially of long-lived hosts, are necessary to
prove this hypothesis.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

A central goal of population ecology is to identify factors con-
trolling population dynamics. In wild populations, predation and
competition are well studied, with some theoretical and empirical
investigations focusing on the effects of parasites. Population reg-
ulation by parasites has been identified in Red Grouse Lagopus lag-
opus scoticus (Hudson et al., 1998), Svalbard Reindeer Rangifer
tarandus platyrhnchus (Albon et al., 2002) and Soay Sheep Ovis aries
(Gulland, 1992); unfortunately, these examples represent managed
populations, and therefore may not reflect true effects of parasites
on wild populations. Thus, the question remains—are parasites sig-
nificant drivers of population-level effects and what host life-his-
tory traits drive observed virulence (sensu lato Casadevall and
Pirofski, 1999—the capacity of a parasite to cause damage to a
host)?

The modern view of parasitism is predicated on the assumption
that ‘every parasitic organism. . . imposes a cost on its host’ because
resources, however slight, are being diverted from host to parasite
(Combes, 2005). These costs can be couched in two evolutionary
trajectories: (1) the ‘mutual aggression model, (Holmes, 1983)
which suggests that parasites evolve to be as virulent as possible,
and thus are a primary regulatory force; and (2) the ‘prudent par-
asite model’ (Holmes, 1983; Renaud and de Meeüs, 1991) which
suggests that parasites evolve towards a balance between short-
and long-term needs conferring a range of benefits to the infected
host that may or may not offset the costs (Michalakis et al., 1992;
Schmidt-Hempel, 2003).

Several researchers have argued that the only way to assess the
true effects of parasites is by altering the parasite population of the
host in situ (Møller, 2005). Alterations of parasite loads are easy to
effect in domestic and laboratory animals, and even wild animals
in the laboratory (Diamond, 1983; McCallum, 1995). However, rel-
atively little parasite work on wild, free-ranging hosts incorporates
this technique due to logistical difficulties surrounding field work
and obtaining sufficient sample sizes to detect differences between
infected and non-infected hosts. Therefore, much ecological work
on the effects of parasites ends up being correlative (Poulin,
2007a). It is unclear if the differences detected between parasitized
and non-parasitised hosts are due to indirect effects or pre-existing
differences (i.e., prior to infection; Bize et al., 2008 or host-quality;
Lailvaux and Kasumovic, 2011). Field experimentation is necessary
to quantify actual costs of parasites on hosts due to the many prob-
lems associated with extrapolating laboratory results on individu-
als or populations to real effects in the field (Seitz and Ratte, 1991).

In order to understand if parasites are truly a driver of host
populations, reviews of the effects of parasites to wild hosts need
to be conducted. Reviews to date of both observational and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijppaw.2013.05.001&domain=pdf
http://dx.doi.org/10.1016/j.ijppaw.2013.05.001
mailto:mawatson@csu.edu.au
http://dx.doi.org/10.1016/j.ijppaw.2013.05.001
http://www.sciencedirect.com/science/journal/22132244
http://www.elsevier.com/locate/ijppaw


M.J. Watson / International Journal for Parasitology: Parasites and Wildlife 2 (2013) 190–196 191
experimental work on the cost of parasites to wild hosts (birds,
mammals, fish and insects: Lehmann, 1993; birds: Møller, 1997;
birds and mammals: Tompkins and Begon, 1999; mammals: Ir-
vine, 2006) have implied that parasites are costly, but the impli-
cations of that cost are unreliable, due to the methods used to
synthesize results (Stewart, 2010). A recent meta-analytical syn-
thesis of parasite induced mortality of nestlings showed an over-
all small effect (12% mean parasite-induced mortality, range 0–
89%, n = 117), with parasite-induced mortality determined by lat-
itude, nesting site, probability of host survival and parasite prev-
alence (Møller et al., 2009). However, this meta-analysis only
considered studies of nestling birds and may be fundamentally
flawed because it includes observational data as well as experi-
mental data (Borenstein et al., 2009).

The objectives of the present analyses were to review quantita-
tively experimental studies of wild, free-ranging hosts that mea-
sure parasite-induced changes in population-level traits (i.e.
measures of fecundity and mortality); then, to evaluate this effect
of parasites using life-history traits. Based on those host life-his-
tory traits that Møller et al. (2009) found to be significant, the fol-
lowing predictions are made: (1) cavity-nesting species (includes
burrowing mammals as well as hollow nesting birds) will experi-
ence increased parasite density and intensity and thus more viru-
lent effects than ground or open nesting species (Ewald, 1983); (2)
colonial species will experience increased parasite density and
intensity and thus more virulent effects than less gregarious spe-
cies (Ewald, 1983); (3) tropical species will encounter more viru-
lent parasites than temperate species because the absence of
seasonality maintains higher parasite abundance (Møller, 1998);
and (4) higher virulence will evolve in hosts with shorter life-spans
because of the fewer opportunities there are for dispersal to a new
host in search of a mate, and as a consequence, the parasites be-
come more virulent (Lehmann, 1993; Nidelet et al., 2009).
2. Materials and methods

2.1. Data collection and inclusion criteria

The studies considered for use in the meta-analysis were ob-
tained from a survey of the primary literature. The initial search
was directed using reviews by Møller (1997), Newton (1998),
Tompkins and Begon (1999) and Irvine (2006) followed by a com-
prehensive search of ISI Web of Science and Google Scholar up to
and including January 2012. The following search terms and their
combinations were used: ‘‘parasite⁄’’, ‘‘experiment⁄’’, ‘‘manipula-
tion’’, ‘‘cost⁄’’, ‘‘effect⁄’’, ‘‘mortality’’, ‘‘survival’’, ‘‘fitness’’, ‘‘host⁄’’,
‘‘life-history’’. Older literature (pre-1985) was identified through
Literature Cited sections of recent papers and unpublished theses
(the same search terms were used in ProQuest Dissertations and
Theses, Theses Canada and Trove). Only papers written in English
were included. When reference to unpublished work was encoun-
tered, attempts were made to solicit raw data from the author(s). A
large number of studies were screened using abstracts only
(<2000); 89 full-text articles were assessed for eligibility. Of these,
51 were excluded due to a lack of numerical data, lack of sample
size and/or variance, untranslatable test statistics, duplication of
dataset from a previous paper or reported results not relevant to
the selection criteria (e.g. behavioural or physiological/individual
responses). Studies were selected if (a) host species were wild
(not domesticated), free-ranging (not held in captivity) and the
study was conducted under field-conditions (not laboratory condi-
tions); (b) parasite species were experimentally manipulated (in-
creased or decreased); and (c) the parasite was naturally
occurring and not introduced, thus avoiding the ‘suicide king’ issue
of parasites infecting hosts outside their normal range and becom-
ing more virulent in the process (Dybdahl and Storfer, 2003). Of
these, a study was included in the final meta-analyses if it provided
(a) the means and standard errors or standard deviations (or any
other statistic whereby means and standard errors could be de-
rived) of at least one population-level parameter measuring the
cost of parasitism for experimental and control groups, and (b)
the sample sizes associated with the means.

2.2. Response variables and calculation of effect sizes

Response variable and effect size data were extracted from the
text and tables for all studies except Cheney and Côté (2003), Fitze
et al. (2004), Pap et al. (2005), Slomczyński et al. (2006) (additional
information requested and received from the authors); and Bize
et al. (2004) and Hillegass et al. (2010) (data extracted from graphs
using DataThief; Tummers, 2006). Statistics were converted to ef-
fect sizes in the form of Hedges’ g (Hedges and Olkin, 1985) in
the program Comprehensive Meta-analysis (CMA; Borenstein,
2006). Hedges’ g was chosen as the effect size over the more com-
monly used Cohen’s d because Hedges’ g pools variance using n � 1
instead of n and thus provides a better estimate for smaller sample
sizes (Grissom and Kim, 2005). Studies that reported only F statis-
tics (Møller, 2002; Vandegrift et al., 2008) were not converted to
effect sizes due to issues surrounding the overestimation of effect
sizes identified by Hullett and Levine (2003) and lack of accurate
sample size data in the respective articles. The type of response
variable was coded into the data set to enable subgroup analyses.
The response variables used were: clutch size (number of eggs in
the clutch), percent hatching success (percentage of eggs that
hatched from a single clutch), number of young produced (total
brood size), percent breeding success (percentage of young pro-
duced, fledged or survived during the study period), and survival
rate (survival during the study period or between one breeding
season and the next).

2.3. Meta-analytic procedures

All meta-analyses were performed in CMA (Borenstein, 2006). A
random-effects model was used for all tests because variability
was expected in the effects being measured across different species
and hosts. Many articles included multiple effect sizes from differ-
ent measures of the effects of parasitism, so rather than combining
all the effect sizes within a study (which may have obfuscated the
true effect), in the overall meta-analysis one effect size was chosen
at random from each of the forty-three studies (Gurevitch and
Hedges, 1999). Separate random-effects meta-analyses were con-
ducted grouped by effect being studied—so any given study might
have data in several meta-analyses (sub-analyses) thus maintain-
ing the independence of the data (Gurevitch and Hedges, 1999).
One study (Roby et al., 1992) considered the responses of two host
species to the same anti-parasitic treatment, so the two hosts were
considered as independent studies.

2.4. Heterogeneity and publication bias

Publication bias, or the ‘file drawer problem’, where non-signif-
icant results are relegated to the file drawer rather than to the pub-
lished literature (Rosenberg, 2005), is an ongoing issue affecting
meta-analyses, leading to bias via the selective publication of sta-
tistically significant results (Hedges and Olkin, 1985). To guard
against this issue, publication bias was assessed using three meth-
ods: funnel plot (plot of effect size and precision to search for
asymmetry), Q-rank correlation (a test for publication bias; Begg
and Mazumdar, 1994), and trim-and-fill (Duval and Tweedie,
2000). Heterogeneity indicates the presence of effect-modifiers,
and the Q-test for heterogeneity was calculated for the overall



Table 1
Studies used in the meta-analysis investigating using parasite load manipulations the effect of parasites on their wild, free-ranging hosts. Hosts are listed in taxonomic order using
common name and parasites are listed by common name. Data for the meta-regression are coded in the following order: living in cavities/hollows (0 = open; 1 = cavity/hollow),
coloniality (0 = solitary; 1 = 2–10 pairs; 2 = 11–100 pairs, 3 = 101–1000 pairs; 4 = 1001+ pairs), latitude (in cases where the same species is used from different locations, just the
latitude is recorded), and host life-span (maximum recorded; average).

Host Parasite Response variable Source paper Meta-regression

Piscine Perciformes
Longfin Damselfish Isopods Clutch size Cheney and Côté (2003) 0, 0,13.10, 6, 6
Avian Galliformes
Red Grouse Nematode Clutch size, hatching success, # young produced Hudson (1986) 0, 0, 53.95, 8, 3

Nematodes # Young produced Redpath et al. (2006)
Columbiformes
Rock Dove Lice Hatching success Clayton et al. (1999) 0, 3, 41.15, 35, 6
Ciconiiformes
Cattle Egret Ticks # Young produced McKilligan (1996) 0, 4, 27.55, 17, 8
Pelicaniformes
Eastern Brown Pelican Ticks Hatching success Norcross and Bolen (2002) 0, 3, 33.56, 27, 25
Charadriiformes
Eurasian Oystercatcher Nematodes, trematodes,

cestodes
Clutch size, hatching success, # young prod.,
% succ.

Van Oers et al. (2002) 0, 0, 53.29, 43, 12

Crested Tern Lice, ticks # Young produced Watson unpub. Data 0, 4, 38.31, 32, 15
Apodiformes
Alpine Swift Louse-flies # Young Produced Bize et al. (2004) 1, 3, 47.12, 26, 6
Passeriformes (Hirundinidae)
Barn Swallow Mites Clutch size, hatching success, # young produced Møller (1990) 1, 2, 57.12, 10, 6

Mites Clutch size Pap et al. (2005)
Cliff Swallow Bugs # Young Produced Brown and Brown (1986) 1, 4, 41.13, 11, 5

Bugs, ticks % Successful Chapman and George (1991) 33.20
Bugs, fleas, lice Survival rate Brown et al. (1995)
Bugs Survival rate Brown and Brown (2004)

Tree Swallow Blow fly % Successful Roby et al. (1992) 1, 2, 42.59, 12, 3
Fleas Clutch size, hatching success, # young prod.,

% succ.
Rendell and Verbeek (1996)

House Martin Bugs Hatching success, % successful, # young
produced

de Lope and Møller (1993) 1, 3, 38.50, 15, 2

Bugs, malaria Clutch size, hatching success, # young prod.,
% Succ.

Marzal et al. (2005)

Purple Martin Mites Hatching success, # young produced, %
successful

Moss et al. (1966) 1, 2, 38.58, 13, 8

Sand Martin Ticks # Young produced Szép and Møller (1999) 1, 3, 48.08, 10, 2
Passeriformes (Turdidae)
Eastern Bluebird Blow fly % Successful Roby et al. (1992) 1, 0, 42.59, 10, 6
Passeriformes (Sturnidae)
European Starling Mites Hatching success, % successful Fauth et al. (1991) 1, 0, 39.45, 15, 5
Passeriformes (Paridae)
Blue Tit Fleas Clutch size, # young produced Richner and Tripet (1999) 1, 0, 46.31, 15, 3

Haematazoa % Successful Merino et al. (2000) 40.48
Ticks, fleas, blow fly Clutch size, # young produced Bouslama et al. (2002) 36.42
Haematazoa Clutch size, hatching success, % successful Tomás et al. (2007)a 40.53
Fleas, blow flies, mites % Successful Slomczyński et al. (2006) 51.47
Haematazoa Survival rate Martínez-de la Puente et al.

(2010)
40.53

Great Tit Fleas # Young produced Richner et al. (1993) 1, 0, 46.31, 15, 3
Fleas Clutch size, # young produced Opplinger et al. (1994) 46.31
Fleas Clutch size Fitze et al. (2004) 46.54

Mammalian Lagomorpha
Snowshoe Hare Nematodes # Young produced, survival rate Bloomer et al. (1995) 0, 0, 44.18, 5, 1
Mountain Hare Nematodes Survival rate Newey and Thirgood (2004) 0, 2, 57.00, 9, 4
Rodentia (Cricetidae)
Townsend’s Vole Bot fly, mites, nematodes Survival rate Steen et al. (2002) 1, 0, 49.04, 1, 1
Rodentia (Sciuridae)
Cape Ground Squirrel Ticks, lice, fleas, worms # Young produced Hillegass et al. (2010) 1, 2, 27.35, 6, 4
Colum. Ground

Squirrel
Fleas # Young produced Neuhaus (2003) 1, 2, 50.00, 11, 3

Cetartiodactyla
Bighorn Sheep Nematodes Survival rate Schmidt et al. (1979) 0, 2, 37.34, 24, 6
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meta-analysis. However, because the meta-analysis spans many
classes of organism, both as hosts and as parasites, heterogeneity
is expected to be high.

2.5. Meta-regression

Meta-regression analyses, a tool used to examine the impact of
moderator variable on effect sizes, were performed to assess the
degree to which certain life-history traits influence the virulent ef-
fects of parasites. These life-history traits (living in cavities/hol-
lows, coloniality, latitude, and host life-span) have been
identified as possible predictors to parasite virulence (Møller
et al., 2009). Cavity living was coded as 0 for species that lived in
the open and 1 for species that lived or bred in tree hollows or
underground. Coloniality was coded by maximum recorded colony
size: 0 for solitary, 1 for 2–10 pairs, 2 for 11–100 pairs, 3 for
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101–1000 pairs and 4 for 1001+ pairs. Latitude was entered using
information provided in the source article. Host life-span was
coded as maximum recorded (from a wild individual where possi-
ble; Carey and Judge, 2002) and average (age an individual which
reaches breeding age can be expected to live; Robinson, 2005);
any gaps in these two databases were filled using the Encyclopedia
of Life.
-4.00 -2.00 0.00 2.00 4.00
Parasites have positive effects    Parasites have negative effects

Fig. 1. Forest plot of effect sizes (rectangles) and confidence intervals (bars) for
each study and the effect averaged across all studies (diamond).

-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

n
d

ar
d

 E
rr

o
r

Hedges' g

Funnel Plot of Standard Error by Hedges' g

Fig. 2. Funnel plot of effect size (Hedges’ g) by standard error (SE). The white circles
represent studies included in the meta-analysis. The black circles represent missing
imputed studies. The white diamond represents overall effect size as calculated in
the meta-analysis, and the black diamond represents the corrected effect size.
3. Results

The comprehensive literature search yielded 38 studies that re-
ported the required statistics (or the required statistic was sup-
plied by the author) and so were used in the meta-analysis
(Table 1). These studies comprised 31 on avian hosts, 6 on mam-
malian hosts and 1 on a fish host. There were no studies of reptiles
or amphibians that fitted the parameters of this meta-analysis.

3.1. Overall effect and publication bias

The data set were first analysed as a whole (termed combined in
Table 1). In order to avoid replication for this combined analysis,
one sample was randomly chosen from each study. A forest plot
of the effect sizes for all studies showed that twenty-seven re-
ported negative effects of parasites, and eleven showed positive
or nil effects (Fig. 1). The mean effects size across all studies was
0.489 (95% CI, 0.220–0.759, n = 38) and was statistically significant
from a null effect size (Z = 3.56, p = 0.0004). Additionally, to deter-
mine what impact the random sampling might have had on the
power of the combined analysis, a meta-analysis was performed
on the entire data set resulting in a mean effect size of 0.47 (95%
CI, 0.282–0.658, n = 60).

A funnel plot suggested some publication bias (Fig. 2), however,
a rank correlation test between precision and effect size (Begg and
Mazumdar, 1994) was not statistically significant (Kendall’s
s = 0.105, P = 0.176; one-tailed, with continuity correction). Addi-
tionally, the trim-and-fill analysis of the random effects model im-
puted no missing studies. Despite some evidence to suggest that
there was a publication bias, there is much support for the negative
effects of parasites at the population level.

3.2. Subgroup analyses

As expected, there was significant heterogeneity in effect sizes
across studies (Q = 749.54, df = 37, p < 0.0001), thus, subgroup
analyses on response variables were analysed, both to examine
possible variables influencing the results and to examine the data
from a biologically relevant point of view. The complete data set
(not the randomly selected subset) were separated into the re-
sponse variable measured—clutch size (n = 12), percent hatching
success (n = 11), number of young produced (n = 20), percent
breeding success (n = 12), and survival rate (n = 7). A meta-analysis
was performed on each group (Table 2) and revealed significant
negative effects of parasites on clutch size, hatching success, and
young produced, but not overall breeding success or survival rate.

3.3. Meta-regression of life history traits

The effect sizes from the complete data set (n = 60; not the ran-
domly sampled subset used in the overall meta-analysis) were re-
gressed against five moderator variables—cavities/hollow living,
coloniality, latitude (chosen from Møller et al. (2009) paper on
variables that significantly impact chick survival), maximum host
life-span, and average host life-span (chosen as a more precise
measure of intrinsic host mortality than survival rate used by
Møller et al., 2009). The proportion of variance explained by all



Table 2
The influence of response variable measured on population-level host response to parasites. Data points represent mean effect sizes (Hedges g) and their 95% confidence intervals
(CI), as estimated in the meta-analyses. Combined refers to an overall averaged effect size from randomly taking one response from each study. Positive values indicate that the
parasite had a negative effect on the host, while negative numbers indicate that the parasite had a neutral to positive effect on the host. Where 95% CI do not include zero, the
effect can be considered to be statistically significant.

Response variable Mean ± SE 95% CI Z-Value p-Value Number of studies

Clutch size 0.365 ± 0.14 0.094–0.636 2.636 0.008 12
Hatching success 0.310 ± 0.11 0.097–0.515 2.873 0.004 11
Young produced 0.596 ± 0.16 0.286–0.906 3.772 0.0002 20
% Breeding success 0.219 ± 0.34 �0.447 to 0.886 0.644 0.520 12
Survival rate 0.672 ± 0.35 �0.007 to 1.351 1.939 0.053 7
Combined 0.489 ± 0.14 0.220–0.759 3.56 0.0004 38

Table 3
Meta-regression (random-effects model) results for moderator variables as a function of the effects of parasites. The influence of response
variable measured on population-level host response to parasites. Point estimates are for intercepts and the Z-test is used to test that slope
is not zero.

Moderator variable Point estimate ± SE 95% CI Z-Value p-Value

Cavity/hollow living 0.0005 ± 0.01 �0.029–0.030 0.034 0.97
Coloniality 0.008 ± 0.02 �0.034–0.050 0.36 0.72
Latitude �0.01 ± 0.01 �0.038–0.008 �1.30 0.19
Maximum lifespan �0.01 ± 0.01 �0.034–0.005 �1.44 0.15
Average lifespan �0.05 ± 0.02 �0.094–0.00064 �1.93 0.05
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Fig. 3. A meta-regression (random effects model) of effect size against host average
lifespan using the complete dataset (n = 60). The slope of this regression is
significant (p = 0.05).
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these moderator variables was nonsignificant except for average
age (significant at p = 0.05) (Table 3; Fig. 3).
4. Discussion

A meta-analysis of 38 experimental studies of the costs of par-
asites to population-level measures of natural, free-ranging hosts
revealed an overall effect size, g, of 0.49. These parasites, therefore,
produced a moderate (as defined by Cohen, 1988) negative effect.
This effect size can be interpreted as an average difference of
0.49 standard deviations between parasitised and non-parasitised
individuals. This effect is as strong as the reported effect sizes of
predators on populations. Côté and Sutherland (1997) quantified,
using a meta-analysis, the effect size of predation upon population
size in birds. The summary effect size was either 0.34 or 0.95
depending on the way the population size was measured (either
post-breeding or overall population size). Gurevitch et al. (2000)
examined the combined effects of predation and competition on
population sizes of anurans in field experiments. In this case, the
summary effect size is obfuscated by interactions between preda-
tion and competition, but the authors state that ‘‘the average over-
all effects of predator exclusion were very large’’ and the average
effect of competitor removal in the presence of predators on sur-
vival was �0.35 (negatively effecting survival). Given the summary
effect size reported in this study, the indication is that parasites
may be at least as important as predation (or predation combined
with competition) in their effects on populations. It is important to
include parasites in future research that records demographic
information. By incorporating parasite removal experiments into
predation- or competition-based experiments, the interactions be-
tween three demographic forces will yield a broader understand-
ing of host–parasite interactions (e.g. Holt and Roy, 2007).

Meta-analyses of the response variables indicated that clutch
size, hatching success, and number of young produced were all sig-
nificantly reduced in parasitised individuals. The only response
variables that was not significantly affected by parasites was
breeding success (defined variously as percentage of young pro-
duced, fledged or survived during the study period) and survival
(although sample size was very low for survival rate, p = 0.053,
thus more studies may indicate that survival is indeed significantly
reduced by parasites). Further analyses using meta-regression to
determine the key life-history traits that may be driving the ob-
served population-level effects of parasites revealed that the most
likely key driver of effects of a parasite on its host was host life-
span. Other variables previously suggested (Møller et al., 2009)
as determinants of virulence—cavity/hollow living, coloniality or
latitude were not significant.

There are strongly suggestive mathematical models (Anderson,
1978; Anderson and May, 1978; May and Anderson, 1978) and
some empirical evidence (Gregory, 1991; Hudson et al., 1998) that
parasites can regulate host populations and cycles. The large effect
size revealed in this meta-analysis supports the idea that parasites
are a major force in population regulation in wild, free-ranging ver-
tebrate host populations. Support for the idea of the importance of
parasites has far-reaching implications in both ecological and con-
servation-based science. If parasites are such strong regulators,
why are some species seemingly untouched by the effects of para-
sites despite large parasite loads? Are parasites simply another
form of predation? Should parasites be removed in populations
needing conservation regulation, or, conversely, added to invasive
populations? Unfortunately, before drawing a longbow based
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around this meta-analysis, it is important to examine the taxon-
omy of the host species that went into the model. While this
meta-analysis does include studies from twenty-four different spe-
cies, they are mainly clustered within one order of one class of host
study organism. The taxonomic bias of host species studied must
temper any conclusions—these results may only be applicable to
the hosts used in the meta-analysis. It may be that the effects of
parasites as measured here are inflated compared to other sorts
of hosts and the actual overall effects of natural parasites are much
less.

Given these caveats, the information provided from this meta-
analysis still lends itself to hypothesis generation and testing
around the life-history traits that drive the evolution of a parasite
to cause damage to its host. The results of the meta-regression,
which refuted all previous predictions regarding the determinants
of parasite virulence, suggest that intrinsic host mortality (life-
span) is the key to understanding why and how parasites evolve
to either harm or be benign to their host. Although the significance
of this result is not high, it may suggest why observed parasite vir-
ulence varies so widely between host species. The evolutionary
idea that background host mortality may explain an increase in vir-
ulence has been demonstrated in the laboratory (Nidelet et al.,
2009). Additionally, longer host lifespan have been shown to
evolve under high condition dependent morality (Williams and
Troy, 2003; Dowling, 2012). Combining these two ideas with the
results of this meta-analysis and meta-regression suggests that
we should expect long-lived hosts to have non-virulent parasites
except when the host’s condition is poor. Moreover, short-lived
hosts should show increased responses to parasites regardless of
their own condition. Therefore, in order to increase our under-
standing of the effects of parasites on wild populations, focused
studies on long-lived hosts are vital. Especially, where long-lived
and short-lived examples can be found within the same taxonomic
group.

The surprising lack of support for the hypotheses that parasites
should be more virulent with cavity/hollow living, higher numbers
of individuals living or breeding together, and in tropical latitudes
is illustrative of the conundrum of mixing the results of observa-
tional studies with experimental ones. Intuitively, one expects that
species living or breeding in hollows, underground or in a colony
would experience greater abundance and prevalence of parasites
due to repeated use of the living area. However, the number of par-
asites on an individual host does not necessarily indicate an in-
creased effect of that parasite on the host. Additionally, when
one considers observational data, the researcher is asking if parasi-
tised individuals are more affected by parasites than those individ-
uals who are naturally uninfected, while an experimental study
seeks to understand if parasites have more effects regardless of
the chance or reason for having become infected in the first place.

In conclusion, this study provides a quantitative test of the ef-
fects of parasites to their wild, free-ranging vertebrate hosts. The
results suggest that parasites are indeed drivers of population-level
life-history traits, as has been advocated for over thirty years. How-
ever, the results are heavily taxonomically biased, and therefore,
may only be applicable to a limited number of species and scenar-
ios. Interrogation of the data using meta-regression revealed that
the one life-history trait that appears to drive the capacity of a par-
asite to negatively impact its host is intrinsic host lifespan. How-
ever, it is difficult to separate the relative importance of these
life-history traits in shaping parasite virulence, and more data
are needed to understand these phenomena. An examination of
the effects of parasites on long-lived hosts is warranted to under-
stand fully the magnitude and extent of the effects of parasites in
natural situations.
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