
REVIEW

Persistent low-Level viremia in persons living with HIV undertreatment: An 
unresolved status
Celia Crespo-Bermejoa, Eva Ramírez de Arellanoa, Violeta Lara-Aguilara, Daniel Valle-Millaresa, Mª Luisa Gómez- 
Lusb, Ricardo Madridc,d, Luz Martín-Carboneroe, and Verónica Briza

aLaboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, 
Madrid, Spain; bDepartamento de Medicina- Área de Microbiología. Facultad de Medicina. Universidad Complutense, Madrid, Spain; cParque 
Científico de Madrid, Campus de Cantoblanco, Madrid, Spain; dDepartment of Genetics, Physiology and Microbiology. Faculty of Biology, 
Complutense University of Madrid, Madrid, Spain; eUnidad de Vih. Servicio de Medicina Interna. Hospital Universitario La Paz. Instituto de 
Investigación Sanitaria Hospital de La Paz (Idipaz), Madrid, Spain

ABSTRACT
Antiretroviral therapy (ART) allows suppressed viremia to reach less than 50 copies/mL in most 
treated persons living with HIV (PLWH). However, the existence of PLWH that show events of 
persistent low-level viremia (pLLV) between 50 and 1000 copies/mL and with different virological 
consequences have been observed. PLLV has been associated with higher virological failure (VF), 
viral genotype resistance, adherence difficulties and AIDS events. Moreover, some reports show 
that pLLV status can lead to residual immune activation and inflammation, with an increased risk 
of immunovirological failure and a pro-inflammatory cytokine level which can lead to a higher 
occurrence of non-AIDS defining events (NADEs) and other adverse clinical outcomes. Until now, 
however, published data have shown controversial results that hinder understanding of the true 
cause(s) and origin(s) of this phenomenon. Molecular mechanisms related to viral reservoir size 
and clonal expansion have been suggested as the possible origin of pLLV. This review aims to 
assess recent findings to provide a global view of the role of pLLV in PLWH and the impact this 
status may cause on the clinical progression of these patients.
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Introduction

Human Immunodeficiency virus (HIV) viremia is 
related to increased AIDS events and death [1]. 
Nonetheless, the use of antiretroviral therapy (ART) 
reduces morbidity and mortality in persons living 
with HIV (PLWH) [2,3]. According to international 
HIV treatment guidelines, the main objective of ART 
is to achieve and maintain undetectable viral load (VL) 
over time, decrease HIV transmission, and avoid the 
emergence of drug resistance [4,5]. The establishment 
of a cutoff point of VL at which a patient can develop 
clinical events is thus essential. However, two different 
thresholds have been identified according to different 
international guidelines: 200 copies/mL [Department of 
Health and Human Services’ (DHHS, USA)] [4] and 50 
copies/ml (European AIDS Clinical Society) [5]. 
Current treatments enable levels of virologic suppres-
sion below the detection sensitivity of many standard 
assays [6]. Nevertheless, ART does not eradicate the 
virus and residual viremia (≈1-10 copies/mL) have 

been found in a large number of patients after years 
of highly suppressive therapy [6–9].

Transient episodes of detectable viremia (blips) have 
been described in around 1/5 of HIV-infected patients 
undergoing suppressive treatment, whereas 4–10% of 
PLWH show persistent events of low-level viremia 
(≈50–500 copies/mL) [10–12]. Clinical consequences 
vary considerably according to the type of incomplete 
virologic suppression in question. For instance, no 
association has been found between blips and 
a greater risk of virologic and immunological failure 
[12–14], while persistent low-level viremia (pLLV) has 
been associated with the emergence of drug resistance 
[11,15–17], virological failure [10,14,18,19] and altera-
tion of immune status [20–22].

Today, the role of pLLV in PLWH remains unclear 
and a lot of unresolved questions complicate manage-
ment of these individuals. The aim of this paper is to 
review the possible causes and origins of pLLV in 
PLWH and the impact that pLLV may have on the 
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clinical progression of these patients according to 
recent findings.

Persistent low-level viremia: Definition and 
clinical implications

The scientific community has reached no definition 
regarding pLLV patients. In general, treated patients 
with HIV persistently presenting viremia from 50 to 
1000 copies/ml have been considered pLLV patients 
(Table 1). However, clinical implications differ when 
considering patients with pLLV between 50 and 200 
copies/ml [23–25] and patients with higher viremias 
(up to 400–500 [26–28] or up to 1000 copies/mL 
[11,29]).

An association between pLLV and a higher risk of 
virological failure (VF) has been previously observed 
(Table 1). Patients with pLLV >200 copies/mL experi-
ence 3–4 times the risk of developing VF than patients 
with ≤200 copies/ml [27,28,30], and up to 5 times the 
risk in patients with LLV between 400 and 999 cp/mL 
[31]. By contrast, the association between a pLLV below 
200 cp/ml (50–200 cp/mL) and VF is unclear. While 
some studies have found an increased risk of VF only 
in patients with LLV between 201 and 500 cp/mL and 
not in patients with ≤200 copies/mL compared to 
undetectable HIV patients [30,32], others, such as the 
recent study by Joya and colleagues (2019) [25], suggest 
that patients with lower persistent viremia (≤200 
copies/mL) may experience a risk of VF HIV that is 
3.46 times higher than that of suppressed patients. 
Moreover, in a more sensitive analyses, patients with 

LLV between 201 and 500 cp/mL showed that the risk 
of virologic failure may become significant depending 
on whether patients are ART-naïve or ART- 
experienced (aHR 1.61 (0.45, 1.11), p > 0.05; aHR 
3.50 (1.25, 9.81), p < 0.05; respectively).

Low adherence, usually defined as taking less than 
80% of prescribed drugs, and genotypic resistance, by 
which the HIV genome mutations confer lower sensi-
tivity to one or more drugs, have been associated with 
the presence of LLV [34–41]. However, there is con-
flicting data with regards to LLV and the family of ART 
drugs used, mainly protease inhibitors (PIs), non- 
analogue reverse transcriptase inhibitors (NNRTI), 
integrase inhibitors (INIs). While Konstantopoulus 
(2015) found an increased risk of LLV in patients tak-
ing PIs compared to those taking NNRTI [34], later 
studies have not confirmed these data, probably 
because treatment based on PIs or NNRTI is usually 
prescribed in patients with more advanced disease or 
with adherence problems [42]. Moreover, high 
amounts of HIV-RNA in cells have been also observed 
in pLLV patients [35].

ART scale-up has improved quality of life for many 
HIV patients, preventing AIDS deaths and reducing 
new HIV infections. However, many patients develop 
HIV drug resistance (HIVDR) due to one or more 
mutations in the genetic structure of HIV that pre-
vents the blocking of virus replication by a specific 
drug or a combination of drugs [43,44]. The impact 
of these HIVDR has been also assessed in pLLV 
patients [11,15,39–41,45,46] (Table 2). Swenson’s 
group (2014) considered that the presence of drug 

Table 1. Association between persistent low-level viremia in PLWH under ART (current studies).
ART regimen in pLLV

Year STUDY N
Follow-up 

(years)
pLLV 

patients (n)
pLLV definition 

(cp/mL)
VF definition 

(cp/mL)
VF 

(YES/NO)
NRTIs + 

PI/r
NRTIs + 
NNRTI/II Others

2015 [27] 17,902 2.7 624 VL = 50–199 VL ≥ 200 Yes, between 
200–499

351 273 -
482 VL = 200–499 237 244 -

2015 [24] 2374 11 205 VL = 50–199 VL ≥200 Yes 135 70 -
2015 [23] 2276 1 127 VL ≤ 50 VL ≥ 200 No 114 108 -

95 VL = 51–199 -
2017 [32] 1015 20 716 VL < 50 VL ≥ 1000 Yes, between 

200–999
UNS UNS -

46 VL = 50–199
52 VL = 200–999

2018 [30] 5986 11 237 VL = 50–199 VL ≥ 500 Yes, between 
200–499

100 124 13
168 VL = 200–499 82 69 17

2018 [31] 70,930 9 9901 VL = 51–199 VL ≥ 1000 Yes UNS UNS -
3358 VL = 200–399
3609 VL = 400–999

2019 [28] 2795 10 152 VL = 51–200 VL ≥ 200 Yes UNS UNS -
110 VL = 201–500

2019 [25] 2006 21.8 374 iLLV: VL = 50–199 on < 25% of 
measurements

VL ≥ 200* or 
> 1000**

Yes, in iLLV 
patients.

UNS UNS -

152 pLLV: VL = 50–199 on ≥ 25% of 
measurements

-

2020 [33] 508 8 86 VL = 50–1000 VL > 1000 Yes 5 81 -

Notes: pLLV: Persistent low-level viremia, VF: Virological failure, VL: Viral load, cp/mL: Copies/mL; ART: Antiretroviral treatment; iLLV: Intermittent LLV; UNS: 
Unspecified. NRTI: Nucleoside reverse transcriptase inhibitors; PI: Protease inhibitors; NNRTI: Non-nucleoside reverse transcriptase inhibitors; II: Integrase 
inhibitors. * On two consecutive measurements. ** During ART and six months after initiation of ART. 
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resistance mutations could predict VF in pLLV 
patients [16], and a direct association between HIV 
drug resistance mutations and ART was identified in 
viral RNA in pLLV patients [11,15,39,40,45,46]. 
Moreover, an elevated rate of mutations in the pro-
viral DNA of pLLV patients has been observed [41], 
with this rate directly proportional to the viral load 
[46] (Table 2). Mutations in proviral DNA could play 
an important role in the prognosis of patients, with-
out the need to be present in viruses with replicative 
capacity. Indeed, switching therapy in patients with-
out a fully susceptible virus has been reported to 
entail an increased risk of virological rebound [47].

By contrast, other studies have not shown any asso-
ciation between pLLV and viral resistance or inade-
quate drug concentrations [48,49]. Pereira et al. 
(2019) found no association between VF and the pre-
sence of HIVDR in pLLV patients [38]. While the 
presence of HIVDR hinders the ability to achieve unde-
tectable viral load (uVL), it does not appear to be 

responsible for virological rebound events observed 
after virological suppression [50].

The intensification of ARV is not associated with 
a reduction in the incidence of pLLV in PWLH. Two 
studies that intensify ART with Raltegravir in patients 
with pLLV found no benefit when compared to control 
patients (without Raltegravir) [51,52].

By contrast, the optimization of ART related with 
a switch to a second-line ART based on PI may 
improve virological suppression (<50cp/mL) in a high 
percentage of pLLV (from 55% to 83.3%) [40,53–56] 
although the switch to Dolutegravir-based therapy has 
not shown a lower risk of developing LLV compared to 
other PI-based therapies [57].

Given that most published data belong to the pre- 
integrase inhibitors (INIs) era, the potential role of INIs 
as a treatment backbone remains unclear in the clinical 
management of pLLV. According to Taramasso et al. 
(2020), INI-based therapies could lead to lower pLLV 
over time and therefore to the achievement of more 

Table 2. Resistance associated mutations (RAM) detected in patients with pLLV.
STUDY YEAR VL (cp/mL) Nfailure/Ntotal (%) NRTI NNRTI PI II

[46] 2010 < 300 270/449 (60) M41L 
D67N 
K70R 

L210W 
T215F 

K219Q/E 
M184 V 

K65R 
L74V

K103N 
Y181C 
G190A 
V1081

L90M 
M461 
V82A 
D30N

NA
300–999 399/552 (72)

[11] 2011 50–1000 20/54 (37) M184V 
A62A/V 
D67D/N 
K70K/P 

V75I

M230L/M 
K103N 
K101E 
V106M 
V106I 

Y188C/Y 
P225H/P 

V108I

D30D/N NA

[15] 2015 50-500 11/48 (23) M184V/I 
K219E 
L74V 
D67N 

L210W 
T215Y

L103N L10F/I 
L33F/V 

I53L 
L63P 
I47V 
L76V 
G48V 
A71V 
V77I 
V82T 
I84V

T97A 
N155H 
T97A 

Y143C 
G163R

[39] 2013 50–1999 UNS M184V K103N 
Y188C

D30N 
L90M

NA

[45] 2011 50–200 209/396 (52.8) UNS UNS UNS NA
201–500 201/287 (70)

501–1000 179/242 (74)
[41] 2020 20–500 11/16 (68.8) T215L/S 

D67DN/DE
V106I 

E138EA 
K103NS 
V179VD 
M230MI

K43T 
T74TP

G163R/K 
E138K 
L33LF 
E157Q 
G163R

Notes: pLLV: Persistent low-level Viremia; VL: Viral load; NRTI: Nucleoside reverse transcriptase inhibitors; NNRTI: Non-nucleoside reverse transcriptase 
inhibitors; PI: Protease inhibitors; II: Integrase inhibitors; UNS: Unspecified; NA: Not applicable. *Patients which LV was below to 500cp/mL was undetectable 
by sequencing. 

VIRULENCE 2921 



effective virological control [40]. More studies related 
to the use of INIs in pLLV patients are needed for more 
evidence-based data.

Finally, the clinical impact of pLLV on mortality 
and AIDS events also remains uncertain (Table 3). 
Some results have shown a risk of mortality or AIDS 
events that is 2–3 times higher [30,58], while others 
have not confirmed this [27,32,59–61] (Table 3). In 
Eastburn’s study, an association between mortality 
and RNA-levels was not observed, despite trying to 
adjust for different confounding variables such as car-
diovascular risk factors and inflammation (OR: 0.99, 
p = 0.90) or duration of treatment (OR: 1.01, 
p = 0.91) [61].

Inmunological activation and inflammation 
status in pllv patients

An association between HIV chronicity and increased 
inflammation and immune system activation has been 
established previously [62–65], with the maintenance of 
suppressed viremia thus remaining essential. Although 
the use of ART serves to remarkably decrease both 
inflammation and activation in PLWH, complete restora-
tion of the immune system remains elusive due to the 
presence of residual persistent inflammation [66–69].

Persistent low-level viremia may also affect immune 
activation and inflammation status. However, discor-
dant results published thus far prevent us from gaining 
a general overview of its real impact.

Regarding immune activation status, a significantly 
elevated immune activation, defined as CD38+ HLA- 
DR+ in peripheral blood mononuclear cells, has been 
observed in pLLV individuals when compared to vir-
ologically suppressed subjects [14], in line with recent 
findings that identified specifically higher percentages 
of CD8+ HLA-DR+ and CD8+ CD38high T cells in 
pLLV subjects that lead to an excessive immune activa-
tion in adolescents and young adults [70].

In relation to inflammation status, an elevated risk 
of immunovirological failure and an increase in proin-
flammatory cytokine levels is still observed in pLLV 
subjects, unlike those with uVL [27,30,31,63]. The con-
tinuous presence of virus in pLLV patients could com-
plicate the recovery of normal values related to 
inflammatory biomarkers [71] such as Interleukin 6 
(IL-6), associated with higher levels in PLWH in con-
trast to healthy individuals [68,72]. However, the role 
of IL-6 in pLLV patients and its association with the 
degree of inflammation remains elusive (Table 3) 
because, although low IL-6 levels have been associated 
with pLWH with VL [73], other studies have not 

observed higher IL-6 levels in pLLV individuals com-
pared to suppressed HIV viral load [61,63,71] (Table 3).

Microbial translocation (MT) entails the movement 
of commensal microbial products from intestinal 
lumen into circulation in the absence of bacteremia. 
In 2006, this mechanism was described for the first 
time in PWLH [74]. HIV infection causes important 
and irreversible intestinal damage, regardless of the 
route of transmission [75]. The presence of microbial 
products in circulation contributes to immune activa-
tion in PWLH [76,77]. MT has also been implicated in 
the degree of inflammation and immune activation 
present in pLLV patients [63,71]. Reus et al. (2013) 
showed less frequent MT (16S ribosomal DNA) in 
treated PLWH with uVL (20 copies/mL), in contrast 
to those with pLLV (20–200 copies/mL) [63]. Falasca 
et al. (2017) considered that MT could be the mechan-
ism which leads to increased inflammation in pLLV 
patients compared to patients with undetectable VL 
[71]. The fact they showed a lack of virologic suppres-
sion during follow-up seems to be related to elevated 
levels of sCD14, a biomarker of MT [71] (Table 3).

Non-aids defining events (nades) and PLLV

While AIDS events are no longer the principal problem 
in treated PLWH, new complications called Non-AIDs- 
Defining Events (NADEs) have become the main cause 
of morbi-mortality [78–84]. NADEs are determined by 
multiple factors such as age [85–89], immune status 
[90,91], treatment toxicity [92,93] and even lifestyle 
[86,89,94], which would explain the relationship 
between NADEs and increased morbi-mortality. ART 
allows patients to live longer but does not completely 
restore their immune system, leading to the appearance 
of cardiovascular diseases and cancer, among others 
diseases [95–98]. Moreover, as a consequence of the 
chronification of the disease, long-term exposure to 
these drugs appears to be implicated in metabolic and 
organ damage [99–106]. However, the new ART 
families are increasingly safe and tolerable, with meta-
bolic damage most likely caused by the HIV itself 
rather than by the drug’s toxicity [107]. The occurrence 
of NADES are closely associated with inflammation 
and immune activation [61,62,68] and it has been sug-
gested that LLV phenomena which lead to residual 
immune activation and inflammation states may influ-
ence the morbidity and mortality of NADEs 
[32,73,108,109].

The main studies on NADEs have been related to 
cardiovascular diseases, where increases in C-reactive 
protein (CRP) and D-dimer biomarkers have been 
found in PLWH compared to healthy controls 
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[81,110]. However, the potential role of pLLV in the 
emergence of NADES remains unclear. PLLV patients 
presented levels of D-dimer that are 1.5 times higher 
than persistent virologic suppressed individuals 
[P = 0.038], which may increase the risk of developing 
cardiovascular diseases [62]. This stands in contrast 
with the lack of association observed between CRP 
levels and low-level viremia [61]. Yet other results 
have shown no association [30,58,61]. In the Spanish 
AIDS Research Network cohort (CoRIS), pLLV 
(between 200 and 499 copies/mL) was associated with 
virological failure and AIDS events/mortality, but not 
with NADEs [30]. The Swedish Nationwide 
Observational Study also showed that pLLV between 
50 and 999 copies/mL was related to mortality, but not 
with a higher risk of severe NADEs or AIDS [58] (Table 
3). However, a subanalysis of this study with pLLV 
between 200 and 999 copies/mL demonstrated a two- 
fold increase in the probability of suffering severe 
NADES [58] (Table 3).

Overall, no consensus has been reached as to the 
clinical consequences of pLLV. While some studies 
claim that persistent LLV increases the risk of future 
virological failure, others have not even found 
a significant impact on AIDS events and mortality. 
While the worst impacts may be associated with VL 
above 200 cp/ml, it is less clear if there is any negative 
impact on virological failure and morbi-mortality when 
LLV is between 50 and 200 copies. Different methodol-
ogies and a lack of standardization in the number and 
characteristics of populations studied make it difficult 
to compare results (Table 3). Further studies are needed 
to find new evidence for the wellbeing of patients and 
to identify long-term outcomes in LLV individuals.

Origin of pLLV: THE relationship with viral reservoir 
and clonal expansion

Most studies published suggest that factors such as 
ART adherence difficulties and viral genotype resis-
tance could be the main cause of pLLV in HIV patients, 
as we have previously reviewed [34,36–38,40,50]. 
However, although pLLV status does not seem to be 
a random biological phenomenon [54], the origin of 
this phenomenon remains unclear and the source(s) 
and mechanism(s) continue to be largely undescribed. 
Viral reservoir size [20,111–114] and clonal expansion 
[115–117] could be also linked to their origin.

The HIV viral reservoir is the main barrier to cur-
ing HIV infection [118–120]. HIV reservoirs are 
formed very early at the onset of infection and ART 
currently remains unavailable [119,121–124]. Although 
HIV reservoirs tend to decline slowly over time [125], 

the influence of persistent immune pressure on the 
evolution of reservoir size during ART should be con-
sidered [126]. Indeed, the decrease observed in proviral 
DNA sequences linked to this HIV reservoir decline is 
variable and difficult to determine in patients with 
a weakened immune system [127–129].

Despite the unknown origins of low-level viremia, in 
2015, Samarti et al. [130] proposed two possible 
hypotheses related on the correlation of pLLV and 
HIV reservoir: the filling of reservoirs as 
a consequence of ongoing HIV viral replication; and 
the emptying of reservoirs during effective ART. No 
conclusions were reached due to a lack of studies and 
limited data, however.

More recently, Jacobs et al. (2019) reviewed the issue 
and found a generally direct association between HIV- 
DNA levels and persistent viremia, despite the differences 
observed regarding techniques used and findings [131]. 
This could explain why viral reservoir size and the emer-
gence of pLLV were not correlated by Widera et al. 
(2017) [132]. Moreover, from the studies reviewed, 
Jacobs et al. were unable to identify a cellular or titular 
reservoir contributing to persistent viremia and thus 
proposed proviral replication as the main cause of the 
continuous presence of the virus [133].

Clonal expansion also complicates HIV clearance and 
contributes to the maintenance of reservoirs [126], prob-
ably through viral splicing, integration into oncogenes, 
and contributing to the expansion of proviral HIV clones 

Table 4. Summary of the role of pLLV.
SUMMARY: ROLE OF PLLV

CLINICAL IMPLICATIONS

Increased risk of developing VF [24,25,27,28,30–33]
Nature of ART and adherence difficulties [34–37]

Drug resistance mutations Association [11,15,16,39–41,46]
Non association [38,48–50]

ART intensification with Raltegravir not reducing 
pLLV

[51,52]

A second-line ART improving pLLV status [40,53–56]
A second-line ART not improving pLLV status [57]
MORTALITY AND AIDS EVENTS
Higher risk of mortality and AIDS events [30,58]
No higher risk of mortality and AIDS events [27,32,59–61]
IMMUNOLOGICAL ACTIVATION AND INFLAMMATION STATUS
Immune activation status [14,70]

IL-6 levels Association [73]
Non association [61,63,71]

Relationship with MT (elevated levels of sCD14) [63,71]
NON-AIDS DEFINING EVENTS (NADES)
Possible influence in the morbidity and mortality of 

NADES
[32,73,108,109]

Relationship with cardiovascular diseases [58,62]
No association with NADES [30,61]
ORIGIN OF PLLV
Viral reservoir [130,131,133]
Relationship between viral reservoir and clonal 

expansion
[126,140–142]

Notes: pLLV: Persistent low-level patients, VF: Virological failure; ART: 
Antiretroviral treatment; AIDS: Acquired immunodeficiency syndrome; 
MT: Microbiotal translocation; NADES: Non-AIDS-defining events. 
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[134–137]. This relationship has been demonstrated by 
several studies [136,138,139] and we hypothesize as to 
the possibility that both mechanisms may be associated 
with the emergence of pLLV in PLWH [140]. This 
hypothesis has been demonstrated by Pinzone et al. 
(2019), who observed that one of their patients who 
had maintained an LLV status for 9 years had intact 
HIV clone sequences [126]. This would be supported 
by studies carried out in HIV patients where the prolif-
eration of cells with proviruses was also suggested as 
a mechanism of viral persistence [141,142]. According 
to this result, other studies have found a large viral 
reservoir size quantified through HIV-DNA levels in 
patients receiving effective ART treatment with residual 
viremia associated with blips [143,144]. Indeed, LLV and 
blips have been closely associated with a slow elimination 
of the viral reservoir [145].

Determining the role of the viral reservoir and the 
mechanism of clonal expansion in PLWH with pLLV 
remains crucial for the design of therapies that achieve 
HIV elimination (54).

Concluding remarks

Further knowledge of the continuous presence of the 
virus in treated PLWH is needed to design treatments 
that achieve a cure for HIV infection. Reported data 
regarding the possible causes and origins of pLLV and 
its impact on clinical progression are rather discordant. 
While some studies point to a higher risk of developing 
virological failure and different AIDS/mortality events 
related to pLLV status, others have not made such 
findings. Moreover, the emergence of viral resistance 
in pLLV patients and its direct association with ART 
adherence have been only partially observed (Table 4).

On the other hand, patients with pLLV seem to have 
an elevated risk of immunovirological failure and 
increased levels of proinflammatory cytokines, and 
there seems to be a general consensus as to the associa-
tion of pLLV with persistent immune system activation. 
Indeed, it has been speculated that the phenomenon of 
pLLV, which leads to residual immune activation and 
inflammation, may influence the morbidity and mor-
tality of NADEs.

Related to the origin of this phenomenon, the clonal 
expansion in HIV-infected cells and its impact on the 
maintenance of the viral reservoir have been previously 
described and may be related to the appearance of 
pLLV in treated HIV patients (Table 4). A lack of 
studies and standardization make further studies neces-
sary to clarify the origins and causes and in which 
a uniform definition of pLLV status should be 
established.
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