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SUMMARY

HIF1-alpha expression defines metabolic compartments in the developing heart,
promoting glycolytic program in the compact myocardium and mitochondrial
enrichment in the trabeculae. Nonetheless, its role in cardiogenesis is debated.
To assess the importance of HIF1-alpha during heart development and the influ-
ence of glycolysis in ventricular chamber formation, herein we generated condi-
tional knockout models of Hif1a in Nkx2.5 cardiac progenitors and cardiomyo-
cytes. Deletion of Hifla impairs embryonic glycolysis without influencing
cardiomyocyte proliferation and results in increased mitochondrial number and
transient activation of amino acid catabolism together with HIF2o and ATF4 up-
regulation by E12.5. Hif1a mutants display normal fatty acid oxidation program
and do not show cardiac dysfunction in the adulthood. Our results demonstrate
that cardiac HIF1 signaling and glycolysis are dispensable for mouse heart devel-
opment and reveal the metabolic flexibility of the embryonic myocardium to
consume amino acids, raising the potential use of alternative metabolic sub-
strates as therapeutic interventions during ischemic events.

INTRODUCTION

The heart is the first organ to form in utero, and it is essential to deliver oxygen and nutrients to embryonic
tissues from early stages of development. Different subsets of cardiac progenitors proliferate, migrate, and
differentiate into the diverse cell types that form the mature heart (Martin-Puig et al., 2008; Watanabe and
Buckingham, 2010). Nkx2.5 cardiovascular progenitors give rise to the majority of cardiac cells, contrib-
uting to epicardium, myocardium, and endocardium (Moses et al., 2001). Cardiogenesis is a complex pro-
cess that can resultin malformations, and congenital heart defects occur in 1% of live births. Several factors
have been involved in developmental cardiac failure, and among them hypoxia has been previously
described as an environmental factor associated with cardiac defects during pregnancy (Cerychova and
Pavlinkova, 2018; Nanka et al., 2008). Hypoxia-inducible factors (HIFs) are known to mediate a well-charac-
terized transcriptional response to low oxygen tensions. HIF heterodimers are formed by a constitutively
expressed B subunit (HIFB or ARNT) and an oxygen-regulated o subunit, with three different isoforms
(1e, 2a, and 3a) (Kaelin and Ratcliffe, 2008). Under normoxic conditions, the oxygen sensors prolyl hydrox-
ylases (PHDs) hydroxylate HIFa in specific proline residues (Jiang et al., 1997). These modifications are
recognized by the von Hippel-Lindau/E3 ubiquitin ligase complex, which polyubiquitinates and drives a
subunits to proteasomal degradation. In hypoxic conditions, a subunits evade degradation due to the in-
hibited PHD activity, dimerize with B subunits, and mediate the adaptive response to hypoxia by activating
the transcription of their target genes (Pouyssegur et al., 2006).

Poorly oxygenated areas appear during heart development (Lee et al., 2001) and physiological hypoxia is
involved in outflow tract remodeling (Sugishita et al., 2004). However, chronic exposure of pregnant fe-
males to low oxygen causes embryonic myocardial thinning and epicardial detachment (Menendez-
Montes et al., 2016; Ream et al., 2008) and excessive embryonic hypoxia also increases the vulnerability
to suffer common septation and conotruncal heart defects (Kenchegowda et al., 2014). Genetic-based
overactivation of HIF signaling by inactivation of Vhl in cardiac progenitors using different drivers
(Mlc2vCre, Nkx2.5Cre) causes morphological, metabolic, and functional cardiac alterations that result in
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loss-of-function models in cardiac progenitors and cardiomyocytes also causes several embryonic cardiac
alterations (Guimardes-Camboa et al., 2015; Huang et al., 2004; Krishnan et al., 2008), suggesting that a
controlled balance in oxygen levels and hypoxia signaling is required for proper cardiac development.
However, important phenotypic discrepancies between the different published loss-of-function models
exist. On one hand, the use of cardiac-specific Mlc2vCre driver in combination with a Hif1a floxed mice
does not affect embryonic survival but causes cardiac hypertrophy with reduced cardiac function in the
adulthood, together with decreased glycolysis and ATP and lactate levels (Huang et al., 2004). On the other
hand, when a null Hif1a allele in germline is used in combination with a HifTa floxed allele and the MIc2vCre
driver, mutant embryos show several cardiac alterations and increased cardiomyocyte proliferation, with
associated embryonic lethality by E12.0 (Krishnan et al., 2008). The combination of null and floxed Hif1a al-
leles under the control of Nkx2.5Cre driver provides a more homogeneous recombination than Mlc2vCre
and results in the activation of cell stress pathways that inhibit cardiomyocyte proliferation and lead to
myocardial thinning, resulting in embryonic lethality by E15.5 (Guimardes-Camboa et al., 2015). Consid-
ering the importance of hypoxia pathway in early hematopoiesis, placentation, and vascular development
(Llurba Olive et al., 2018), the potential secondary effect of using Hif1a-null alleles on cardiac development
cannot be ruled out when interpreting data from some of these mutants. Therefore, although itis clear that
sustained HIF1 signaling in the embryonic heart is detrimental for proper cardiac development, there is still
disagreement and open debate about the impact of Hif1a loss during cardiogenesis and subsequent ef-
fects on cardiac function.

HIF1 signaling is an important regulator of cellular metabolism in physiological and pathological contexts.
In addition to glycolytic activation (Majmundar et al., 2010), HIF1 reduces mitochondrial metabolism by re-
pressing pyruvate entry into the mitochondria (Kim et al., 2006) and by promoting COX4 isoform switch
from COX4-1 to COX4-2 (Fukuda et al., 2007). Moreover, HIF1 can also limit oxidative metabolism through
an inhibitory role on mitochondrial biogenesis (Zhang et al., 2007). Several in vitro studies have demon-
strated that the embryonic heart relies on glycolysis for energy supply (Chung et al, 2010, 2011), in contrast
with the adult heart that sustains most of ATP production through mitochondrial oxidation of fatty acids
(FA) (Lopaschuk and Jaswal, 2010). This metabolic switch is coincident with the change in oxygen levels af-
ter birth (Puente et al., 2014). However, a recent report from our group has shown that an earlier metabolic
shift toward FA oxidation occurs during development at around E14.5, through a mechanism dependent
on a decrease in HIF1 signaling in the embryonic myocardium (Menendez-Montes et al., 2016). Despite
the importance of glucose and FAs as cardiac energy sources, amino acids can also be used as bioener-
getics fuel. Hence, amino acids have the capacity to enter the Krebs Cycle at different levels, a phenome-
non known as anaplerosis, and to replenish metabolic intermediates that warrant both NADH/FADH, and
building blocks production that enable the cells to continue growing under amino acid metabolism. The
importance of amino acids as catabolic substrates has been described in tumor growth (Yue et al,
2017), pulmonary hypertension (Piao et al., 2013), or limited oxygen supply conditions (Bing et al., 1954,
Julia et al., 1990). However, the ability of the embryonic heart to catabolize amino acids remains
unexplored.

Herein, we describe that Hif1a loss in Nkx2.5 cardiovascular progenitors or cardiomyocytes during heart
development blunts glycolysis and drives a compensatory metabolic adaptation based on transient activa-
tion of amino acid transport and catabolism associated with increased ATF4 and HIF2a to maintain energy
production and growth. Our results demonstrate that HIF1 signaling in Nkx2.5 progenitors and cardiomyo-
cytes is dispensable for cardiogenesis and show the relevance of amino acid metabolism during cardiac
development in the absence of glycolysis, opening future research horizons toward studying the ability
of the heart to use amino acids as an alternative energy fuel and biosynthetic precursor source in different
pathophysiological contexts like cardiac ischemia and regeneration.

RESULTS

HIF1 signaling in Nkx2.5 progenitors is dispensable for cardiac development

HIF1a is expressed in the developing myocardium, with a temporal dynamics along midgestation (Guimar-
des-Camboa et al., 2015; Krishnan et al., 2008; Menendez-Montes et al., 2016). We and others have
described the heterogeneous regional distribution of HIF1 signaling with high HIF1a. levels in the compact
myocardium in contrast with low expression in the trabeculae (Guimardes-Camboa et al., 2015; Menendez-
Montes et al., 2016). To investigate the role of HIF1 in heart development we generated a cardiac-
specific loss-of-function model using two floxed alleles of Hifla gene in combination with the cardiac
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Figure 1. Embryonic phenotype of Hif1a-deficient embryos at E12.5

(A) Representative immunoblot against HIF1a (upper panel) and smooth muscle actin (SMA, lower panel) in heart lysates
of control (Hif1a"”"/Nkx2.57/*) and Hif1a/Nkx2.5 (Hif1a""/Nkx2.5°¢/*) mutant embryos at E12.5.

(B) E12.5 control (upper panels) and mutant (lower panels) heart sections stained with hematoxylin and eosin (H&E). Scale
bars, 100 um (overview) and 20 pm (insets).

(C) H&E quantification of ventricular walls and interventricular septum width in E12.5 control (black bars, n = 4) and mutant
(white bars, n = 3) embryos.

(D) Quantification of BrdU immunostaining, represented as percentage of BrdU™ cells in the compact myocardium and
trabeculae of E12.5 control (black) and Hif1a/Nkx2.5 mutant (white) embryos (n = 3). In all graphs, bars represent mean +
SEM, Student's ttest, n.s: non-significant. LV: left ventricle; RV: right ventricle; IVS: interventricular septum. Similar amount
of male and female embryos has been used in these analyses.

progenitor-specific Cre recombinase driver Nkx2.5Cre (Hif1a®/fo*/Nkx2.5°¢/*, from here on Hifla/
Nkx2.5). Cre-mediated recombination was analyzed by agarose gel electrophoresis of cardiac and non-car-
diac tissue at E12.5 (Figure STA). A 400-bp product, corresponding to the processed Hifa allele was only
obtained in cardiac tissue in the presence of Cre recombinase activity, indicating that the deletion is spe-
cific of cardiac tissue and there is no ectopic recombination. To confirm deletion efficiency, we analyzed the
expression of the floxed Hifla exon by gPCR at E14.5, confirming its correct elimination despite a signal
increase outside of the floxed region, probably caused by compensatory mechanisms (Figure S1B).
Furthermore, Phd3, whose expression is dependent on HIF1, showed decreased expression in the Hifla/
Nkx2.5 mutants (Figure S1B). We also determined HIF1a. protein distribution and abundance within cardiac
tissue by immunostaining in mutant and control littermates by E12.5 (Figure S1C). Hifla deletion in the
mutant embryos resulted in reduced HIF1a staining, with a displacement of the HIF1a channel intensity
curve to lower fluorescence intensity (Figure S1D). It is noteworthy that deletion efficiency, as measured
by gPCR, was higher than that estimated by immunostaining. This is probably because the mutant Hifla
mRNA produced after Cre recombination is sufficiently stable to be translated, although the resulting pro-
tein is not functional as it lacks the DNA-binding domain located in the N-terminal region of HIF1a.. Efficient
deletion was further confirmed by western blot of Hifla-deficient heart lysates at E12.5 (Figure 1A). The
lower molecular weight of the HIF1a protein band confirms the presence of a truncated protein in mutant
embryos, which is recognized by HIF1 antibodies raised against the C-terminal domain.

Hif1a/Nkx2.5 mutants were viable and recovered in the expected Mendelian proportions from E14.5 to
weaning (Table 1). Histological analysis of control and Hifla/Nkx2.5 mutant hearts at E12.5 (Figure 1B)
did not reveal differences between genotypes in terms of ventricular wall thickness (Figure 1C) or chamber
sphericity (data not shown). Proliferation analysis by bromodeoxyuridine (BrdU) staining at E12.5 proved
comparable proliferation index between control and Hifla-deficient hearts (Figure 1D). Similar results
were obtained at E14.5, when Hif1a-deficient embryos showed neither morphological alterations nor dif-
ferences between genotypes in terms of cell size and proliferation by means of BrdU staining (data not
shown). These results indicate that the lack of Hifla in Nkx2.5 cardiac progenitors does not influence
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Table 1. Analysis of Hif1a/Nkx2.5 mutant embryo recovery

Stage Hif1a"/Nkx2.5%" " Total Litters Observed % Expected % p value
E14.5 20 90 13 244 + 49 25 0.905
Weaning 10 38 6 28.6 + 538 25 0.787

For each stage, table shows the number of mutant embryos recovered, the total number of embryos/pups collected, and the
number of litters analyzed. The percentage of recovered mutants and the expected recovery percentage (25% in all cases)
were compared by the Wilcoxon signed rank test. Equivalent proportion of male and female embryos and mice has been
considered in the analysis.

cardiomyocyte proliferation and suggest that HIF1 signaling in this cell population is dispensable for
proper cardiac development.

Embryonic loss of Hif1a in Nkx2.5 progenitors does not influence adult cardiac function or
morphology

Albeit deletion of Hif1ain Nkx2.5 cardiovascular progenitors did not hamper embryonic ventricular cham-
ber formation, we wondered whether mutant mice might develop heart alterations in the adulthood. His-
tology analysis by hematoxylin-eosin staining at five months of age did not indicate evident changes in car-
diac morphology of Hifla-deficient hearts relative to control animals (Figure 2A). Moreover, Masson's
trichrome staining analysis excluded the presence of fibrotic areas in any of the genotypes (Figure 2B).
Nevertheless, the lack of macroscopic malformations does not rule out that cardiac performance could
be affected. To determine if embryonic deletion of Hif1a influences cardiac function during adulthood,
we performed echocardiography in 5-month-old control and mutant mice. Both 2D and M mode analysis
(Figure 2C) and the quantification of several morphological parameters confirmed the absence of anatom-
ical alterations (Figures 2D and 2E). Furthermore, conserved cardiac function in Hifla/Nkx2.5 mutant versus
control mice was demonstrated by means of ejection fraction and fractional shortening (Figure 2F). On the
other hand, electrocardiographic analysis showed normal PR and QRS segment length in Hifla/Nkx2.5
mice (data not shown), ruling out the existence of conduction or coupling defects.

These results indicate that active HIF1 signaling in cardiovascular Nkx2.5 progenitors during heart devel-
opment is not required for proper cardiac morphogenesis or normal heart function in the adulthood.

Cardiac deletion of Hif1a prevents the expression of glycolytic enzymes in the compact
myocardium

To investigate the adaptive mechanisms operating upon Hif1a loss in Nkx2.5 cardiovascular progenitors to
allow normal cardiac development, we performed massive expression analysis by RNA sequencing (RNA-
seq) of E12.5 ventricular tissue from control and Hif1a/Nkx2.5 mutant embryos. Subsequent bioinformatics
analysis identified 14,406 genes being expressed. Among them, 201 genes showed differential expression:
118 were downregulated in mutant hearts relative to control hearts and 83 were upregulated, representing
positively and negatively regulated targets respectively, dependent on functional HIF1 signaling in direct
or indirect fashion (Table S1). To obtain a summarized view of their function, the list of 201 genes was sub-
jected to enrichment analyses, which found significant associations with several metabolic processes, such
as nucleotide/nucleoside and monocarboxylic acid metabolism, amino acid metabolism, and, especially,
carbohydrate metabolism. Complete results are presented in Table S2, and a selection of significantly en-
riched processes is shown in Figure 3A, connected with the subset of differentially expressed genes that are
involved in those processes. We have previously described the existence of metabolic territories in the em-
bryonic myocardium with an enhanced glycolytic signature in the compact myocardium by E12.5 (Menen-
dez-Montes et al., 2016). Here we found that glucose transporter 1 (GLUT1) protein levels were significantly
reduced in the compact myocardium of the Hif1a/Nkx2.5 mutant embryos by E12.5 (Figure 3B). Because
Nkx2.5 cardiac progenitors contribute to different cardiac layers including myocardium, epicardium, and
endocardium, to determine if the glycolytic inhibition observed in the Hif1a/Nkx2.5 mutant embryos was
associated with Hif1a loss in the myocardial layer, we specifically deleted Hif1a in cardiomyocytes using
cTnT-Cre (Jiao et al., 2003) (Hif1a1o*"9%/cThTC"/*  hereon Hifla/cTnT). Hifla/cTnT mutants also showed
reduced HIF1a levels by E14.5 without cardiac developmental defects compared with control littermates
(data not shown). The inhibition of the glycolytic program in both Hifla/Nkx2.5 and Hifla/cTnT mutants
was further confirmed by mRNA expression analysis of the critical enzymes Glut1, Pdk1, and Ldha by in
situ hybridization at E12.5 (Figure 3C) and E14.5 (data not shown) in controls and Hifla mutants. Results
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Figure 2. Cardiac morphology and function in adult Hif1a/Nkx2.5 mutants

(A and B) H&E (A) and Masson'’s trichrome (B) staining of the left ventricle from a representative 5-month-old control
(Hif1a”"/Nkx2*/*) and Hifla/Nkx2.5 mutant (Hif1a”"/Nkx2.5"*/*) heart. Even distribution of male and female mice was
used in each experimental group (n = 6 females and 6 males). No differences associated with sex were observed in cardiac
structure or fibrosis.

(C) Representative echocardiography imaging of 5-month-old control and Hif1a-deficient mutant mice in 2D mode (upper
panels) and M mode (lower panels).

(D and E) Echocardiography-based quantification of interventricular septum (IVS) thickness (D) and left ventricle (LV)
posterior wall thickness (E) in controls (black bars, n = 9) and Hif1a/Nkx2.5 mutants (white bars, n = 11) by 5 months of age.
(F) Quantification of ejection fraction (EF) and fractional shortening (FS) in controls (black bars, n = 9) and Hif1a/Nkx2.5 mutants
(white bars, n = 11) by 5 months of age. Uniform distribution of male and female mice was used in each experimental group
(n=10females and 10 males). No differences associated with sex were observed for cardiac structural or functional parameters.
In all graphs bars represent mean + SEM, Student's t test, n.s: non-significant. For all images, scale bars, 50 pm.

showed strong inhibition of glycolytic gene expression in the compact myocardium of Hifla-deficient
hearts at both stages. This sustained glycolytic inhibition at E14.5 was further validated by gPCR in both
genetic models (Figures 3D and 3E), including the downregulation of Slc16a3, responsible for the transport
of monocarboxylic acids, such as lactate, across mitochondrial membrane.

Taken together, these results confirm our previous findings that HIF1 signaling controls the expression of
glycolytic genes in the embryonic heart and indicate that an active glycolytic program in the compact
myocardium is not essential for proper cardiogenesis.

Lipid metabolism is preserved in cardiac Hif1a mutant mice

We have previously reported that sustained HIF1 signaling in the embryonic myocardium results in severe
alterations of mitochondrial amount and function (Menendez-Montes et al., 2016). To evaluate the

iScience 24, 102124, February 19, 2021 5
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Figure 3. Glycolytic metabolism alterations in cardiac Hif1a-deficient embryos

(A) Circular plot representing logFC value for genes detected as differentially expressed in mutant (Hif1a”"/Nkx2.5°/*)
embryos, relative to controls (Hif1a”"/Nkx2.5*"*), at E12.5 (left side), associated to Gene Ontology (GO) terms related to
carbohydrate metabolism, selected among those detected as enriched with p value < 0.001 with GOrilla (right side).
logFC values for genes are color coded: blue color denotes lower expression in mutant samples. Ribbons connecting
genes and biological processes are colored by process.

(B) Representative GLUT1 immunofluorescence on E12.5 heart sections of controls (left panels) and Hif1a/Nkx2.5 mutants
(right panels). Nuclei shown in blue, Troponin T in green, and GLUT1 in red. Insets show left ventricle. Scale bars, 100 pm
and 20 um in insets.

(C) E12.5 in situ hybridization of Glut1 (top panels), Pdk1 (middle panels), and Ldha (bottom panels) in control and Hifla/
Nkx2.5 mutant right ventricles (left) and in control and Hifla/cTnT mutant right ventricles (right). Scale bar, 20um

(D and E) RT-qPCR analysis of glycolytic genes from E14.5 Hif1a/Nkx2.5 (D) and Hif1a/cTnT (E) mutant ventricles. Bars
(mean £+ SEM, n = 3) represent fold induction relative to baseline expression in littermate controls (red line). Student's t
test. *p value<0.05; **0.005<p value<0.01, ***p value<0.005. Equivalent proportion of male and female embryos have
been included in all experiments.

bioenergetics adaptations in response to the lack of cardiac HIF1 activation we investigated mitochondrial
network and activity in Hifla/NKx2.5 mutants. Analysis and quantification of ventricular ultrastructure by
transmission electron microscopy at E12.5 indicated a moderate increase in mitochondrial content in
Hif1a-deficient embryos compared with control littermates. Images also confirmed our previously reported
observation that mitochondrial number is higher in the trabecular layer than in the compact myocardial
layer (Menendez-Montes et al., 2016), both in control and Hif1a/Nkx2.5 mutant hearts (Figure 4A). Enriched
mitochondrial content in Hif1a/NKx2.5 mutants correlated with reduced expression levels of HIF1 target
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Figure 4. Mitochondrial content and lipid metabolism in Hif1a/Nkx2.5 mutants at E12.5

(A) Transmission electron micrographs of ventricular tissue from a representative E12.5 control embryo (Hif1a"%/
Nkx2.5"*, left) and a mutant littermate (Hif1a”/Nkx2.557/*, right), showing compact myocardium (top panels) and
trabeculae (bottom panels), and quantification of total mitochondria in electron micrographs from E12.5 controls (black
bars) and mutants (white bars). Results are expressed as number of mitochondria per tissue area (px?). Scale bars, 5 pm.
Bars represent mean + SEM (n = 4). Student’s t test, *p value<0.05

(B) RT-gPCR analysis of mitophagy-related genes in E12.5 Hifla/Nkx2.5 mutant ventricles. Bars (mean + SEM, n = 3 for
Bnip3and Mxi1 and n = 4 for Nix) represent fold induction relative to baseline expression in littermate controls (red line).
Student's t test, *p value<0.05.

(C) GSEA enrichment plot for the Hallmark database Oxidative Phosphorylation gene set. The red to blue stripe
represents 14,406 genes detected as expressed after differential expression analysis, ranked by logFC. Genes at the left
side (colored in red) are more expressed in Hif1a/Nkx2.5 mutants, and those located at the right side (colored in blue) are
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Figure 4. Continued

more expressed in control littermates. Vertical black lines represent the position of members of the Oxidative
Phosphorylation gene set along the ranked collection of genes. The green curve represents cumulative enrichment
score.

(D) Fold change gene expression determined by RNA-seq of genes involved in fatty acid uptake and catabolism in Hif1a/
Nkx2.5 mutants. Red line represents baseline expression in control littermates. Bars represent mean + SEM (n = 2). All
experiments were performed using a comparable number of male and female embryos at each stage.

genes involved in mitophagy like Nix and Bnip3 (Zhang et al., 2008) or genes that negatively regulate mito-
chondrial biogenesis through Myc transcriptional repression like MxiT (max interacting protein 1) (Fig-
ure 4B). Furthermore, we observed a significant enriched expression of genes related to oxidative phos-
phorylation determined by gene set enrichment analysis (Table S3, Figure 4C).

As mature cardiomyocytes rely on FA oxidation (FAO) for ATP production and cardiac performance, one
possible metabolic adaptation of Hifla-deficient hearts associated with increased mitochondrial content
could be an early utilization of FA to provide sufficient ATP levels in the absence of effective glycolysis.
However, RNA-seq (Figure 4D) and proteomic results (data not shown) demonstrated that the expression
of genes involved in lipid catabolism was not different in control and Hif1a/Nkx2.5 genotypes, at E12.5.
These results indicate that inhibited glycolysis due to Hif1a loss is not associated with a compensatory in-
crease in FAO.

In summary, our observations demonstrate that reduced HIF1 signaling promotes an increment of cardiac
mitochondrial network and suggest the activation of metabolic compensatory mechanisms other than FAO
activation upon glycolytic inhibition in Hif1a/Nkx2.5 mutant embryos.

Amino acid metabolic program is transiently enhanced in cardiac Hif1a-deficient embryos

As indicated earlier, enrichment analysis identified several metabolic processes that could be altered upon
deletion of Hifla in cardiovascular progenitors, some of them related with amino acid metabolism and,
specifically, to the “cellular response to amino acid starvation” (Table S2). Complementary functional
enrichment analyses allowed to pinpoint more precise functional terms, which suggested alterations in
Ala, Leu, Val, lle, Asn, Asp, Ser, and Gly biosynthesis (Figure 5A, Table S4). These results lead us to hypoth-
esize about the activation of a metabolic reprogramming toward amino acid oxidative catabolism in em-
bryonic cardiomyocytes in the absence of effective glycolysis associated with Hif1a deletion.

To validate this hypothesis, we performed global proteomic analysis in Hif1a/Nkx2.5 embryos and con-
trol littermates by E12.5. Quantitative analyses revealed a significant increase in the abundance of pro-
teins related to amino acid metabolism and, specifically, glutamine family metabolism (Figure 5B and
Table S5). In addition, the decrease observed for proteins related to glycolysis confirmed the inhibited
glycolytic gene expression program upon Hifla deletion (Figure 3). Therefore, quantitative results for
both gene expression, by RNA-seq, and protein abundance, by tandem mass spectrometry (MS/MS) pro-
teomics, correlate to a certain extent, showing inhibited glycolysis (Figure 5C, left) and increased amino
acid catabolism (Figure 5C, right). Specifically, Hifla/Nkx2.5 mutants showed increased expression and
protein levels of genes contributing to anaplerosis of amino acids into Krebs cycle. These contributions
(Figure S2) included aromatic amino acids (Phe, Tyr), polar amino acids (Asn, Asp, GlIn, Glu, Ser, and Cys),
Pro, Gly, and branched-chain amino acids (Val, Leu, and lle). Urea cycle was also upregulated, resulting in
increased contribution of Arg to Krebs cycle by the generation of fumarate, which can also act as a Krebs
cycle intermediate. To determine differences between the amino acid profiles of Hifla/Nkx2.5 mutant
and control hearts, we performed proton nuclear magnetic resonance ("H-NMR) spectroscopy. The ven-
tricular chambers of E12.5 Hifla/Nkx2.5 mutants showed higher levels of glutamine and total GLU
(glutamine + glutamate) (Figures 5D and 5E). This metabolic signature is consistent with the Hifla/
Nkx2.5 transcriptional and proteomic profiles. Finally, to investigate whether this amino acid signature
was maintained over time in Hifla-deficient hearts, we analyzed the expression levels of amino acid
transporters by RT-qPCR at E14.5 and E17.5 (Figure 5F). The results showed that gene expression levels
of several transporters, such as Slc7a5 (Lat1) (transporter of Trp, Phe, Tyr, and His, and also Met, Val, Leu,
and lle [Yanagida et al., 2001]), Slc7al1 (transporter of Cys [Lim and Donaldson, 2011]), and Slc3a2
(transporter of Val, Leu and lle by association with Slc7a5 [Kanai et al., 1998]), as well as the leucyl-
tRNA synthetase Lars, were still upregulated by E14.5 in Hifla-deficient hearts, but returned to con-
trol-like expression levels by E17.5.
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Figure 5. Continued

(B) Representation of protein statistical weights (wg') grouped by functional categories (FDR<1%, n = 6) versus protein
abundance in Hifla-deficient hearts relative to control embryos (zq') at E12.5, as determined by MS/MS proteomics. A
displacement right from the experimental curve indicates increased pathway in mutant embryos, whereas a left
displacement represents a reduction.

(C) Heatmap representation of mRNA (quantified by RNA-seq) and protein (quantified by MS/MS) of components of
glucose (left) and amino acid (right) metabolic pathways. Color code indicated in the legend is calculated as the value
found in Hifla/Nkx2.5 mutants relative to control littermates.

(D) Representative "H-NMR spectrain ventricular samples from E12.5 control (bottom) and Hif1a/Nkx2.5 mutant embryos
(top). The inset highlights the differences in glutamine and total GLU [glutamine (GIn) + glutamate (Glu)] NMR signals.
(E and F) (E) "H-NMR spectroscopy quantification of glutamine and total GLU abundance in control (black) and Hifla/
Nkx2.5 mutant embryos (white). Bars represent mean + SEM (n = 3). (F) RT-gPCR analysis of amino acid transporter gene
expression in Hifla mutant ventricular tissue at E14.5 (black bars) and E17.5 (white bars). Bars (mean + SEM, n = 2-4 for
E14.5 and n = 3 for E17.5) represent fold induction relative to baseline expression in littermate controls (red line). For all
graphs, Student’s t test, *p value<0.05, ***p value<0.005, n.s. non-significant. Even proportion of male and female
embryos has been included to carry out these experiments at each gestational stage.

These data indicate that upregulation of amino acid transport is transient and suggest that temporary in-
crease of amino acid catabolism and anaplerosis could act as a compensatory mechanism to overcome the
loss of glycolytic metabolism upon Hif1a loss until the FAO is established later in gestation, reflecting the
metabolic flexibility of the embryonic heart to adapt to different substrates for energy supply.

ATF4 signaling is upregulated in Hif1a/Nkx2.5 mutant embryos

The fact that there is a transient upregulation of general amino acid catabolism upon Hif1a loss in cardio-
vascular progenitors suggests the existence of upstream regulators that are temporally induced in the
Hif1a/Nkx2.5 mutants. Amino acid metabolism and its transport is tightly regulated through several path-
ways, including mTOR (mammalian target of rapamycin), GCN2 (general control non-derepresable 29), and
ATF4 (Activating Transcription Factor 4), among others (Broer and Broer, 2017). Upstream regulator anal-
ysis of our RNA-seq data using Ingenuity Pathway Analysis (IPA) in fact shows that ATF4 and CHOP could
function as main regulators of a gene set implicated in amino acid metabolism in Hifla-deficient hearts
(Figure 6A and Table S6). ATF4 is a transcriptional regulator that activates the expression of genes involved
in amino acid transport and metabolism (Harding et al., 2003) and also responds to nutrient and metabolic
stress in hypoxia (Weidemann and Johnson, 2007). Atf4 gene expression, and mRNA levels of its target
genes, such as Slc7all, Slc7a3, Asns, Lars, or Trib3, among others, are upregulated in our Hifla/Nkx2.5
deletion model by E12.5 (Figure 6B). Furthermore, ATF4 protein levels were increased at E12.5 and
E14.5 in cardiac lysates from Hif1a/Nkx2.5 mutant hearts compared with control littermates (Figure 6C).
Interestingly, transcriptional upregulation of ATF4 is sustained at E14.5, but its expression returned to con-
trol levels by E17.5 (Figure D), following an expression pattern similar to that of amino acid transporters
(Figure 5F). Because glucose deprivation upon glycolytic inhibition conditions is known to promote the
activation of unfolded protein response (UPR) (Badiola et al., 2011; lkesugi et al., 2006; Vavilis et al.,
2016), we decided to examine the expression levels of genes involved in UPR in the Hif1a/Nkx2.5 mutant
versus control hearts. The results show a significant upregulation in the expression of genes involved in
UPR such as ATF3, ATF4, or CHAC1 among others (Figure 4E).

All together these results led us to suggest that Hif1a loss in cardiovascular progenitors induces the tem-
poral activation of ATF4 expression and ATF4-mediated amino acid response probably trough UPR activa-
tion in response to glycolytic impairment.

Loss of Hif1a in Nkx2.5 progenitors leads to transient induction of HIF2 by midgestation

In the absence of active HIF1 cascade, HIF2a, an alternative HIFa isoform able to form functional hetero-
dimers with ARNT, could play a compensatory role. To explore this possibility, we analyzed HIF2a abun-
dance by western blot and found protein expression induction by E12.5 in the Hif1a/Nkx2.5-deficient hearts
and comparable levels by E14.5 relative to controls (Figures 7A and 7B). A similar induced expression by
E12.5 was observed for the HIF2 target gene, PAI-1 (plasminogen activator inhibitor 1) (Figures 7C and
7D). Interestingly, glucose deprivation has been shown to activate HIF2 signaling in an acetylation-depen-
dent manner (Chen et al., 2015). We hypothesize that this adaptive activation of HIF2 signaling could
partially contribute together with ATF4 upregulation to the transcriptional induction of amino acid trans-
porters observed in the cardiac Hifla/Nkx2.5-deficient model. Indeed, HIF2a has been involved in the
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Figure 6. Upstream regulators of amino acid catabolism activation in Hif1a-deficient hearts

(A) Regulatory network summarizing the interactions between ATF4 and CHOP with a collection of genes related to amino
acid metabolism, detected as differentially expressed at E12.5 in Hif1a/Nkx2.5-deficient hearts relative to controls. The
graph is a simplified version of a mechanistic network predicted after IPA’s upstream regulator analysis on the complete
set of 201 differentially expressed genes. Intensity of red color in target genes is proportional to logFC. Intensity of
orange color in regulator genes (ATF4 and CHOP) is proportional to the predicted activation Zscore. Arrow-pointed and
flat-headed lines represent positive and negative regulation interactions, respectively. Orange and yellow lines represent
congruent and non-congruent connections, respectively, relative to the predicted activation state of regulators. The inset
below summarizes Z score value and enrichment p value for ATF4 and CHOP, as well as the number of differentially
expressed genes that are regulated by each of them.

(B) Relative expression of genes related to amino acid metabolism downstream of ATF4 determined by RNA-seq at E12.5
in Hif1a/Nkx2.5 mutant versus control ventricles (n = 2). Student's t test. *p value<0.05, *** p value<0.005.

(C) Representative immunoblot out of 5 against ATF4 (upper panel) and Vinculin (lower panel) from ventricular heart
lysates of control (Hif1a”"/Nkx2.57/*) and Hifla/Nkx2.5 mutant (Hif1a""/ Nkx2.55"*/*) embryos at E12.5 and E14.5.

(D) RT-gPCR analysis of Atf4 gene expression at E14.5 (black bar) and E17.5 (white bar) in Hif1a/Nkx2.5 mutant ventricular
tissue. Bars (mean £ SEM, n = 5for E14.5 and n = 3 for E17.5) represent fold induction relative to baseline expression in
littermate controls (red line). Student's t test, * p value<0.05, n.s. non-significant.
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Figure 6. Continued

(E) Heatmap representing RNA-seq based, normalized expression levels for genes involved in the unfolded protein
response (UPR). The UPR gene set, as defined in the Hallmark database, was detected as enriched in mutant embryos after
GSEA, although enrichment was not statistically significant (nominal p value = 0.31). Genes presented in the heatmap
correspond to the leading-edge subset, this is, those mostly contributing to the calculated enrichment score. All
experiments and analyses were performed using equivalent amount of male and female embryos at each stage.

direct control of Slc7a5 (Lat1) expression by binding to the proximal promoter of the gene in renal clear cell
carcinoma, as well as in lung, liver, and glioblastoma cells (GBCs) (Corbet et al., 2014; Elorza et al., 2012,
Zhang et al., 2020). Additionally, HIF2 signaling has been related to the expression of other amino acid
metabolism-related genes that are increased in Hifla/Nkx2.5 mutants compared with controls, such as
Mthfd2 or Atf3 (Green et al., 2019; Turchi et al., 2008). Hence, these results suggest that HIF2 could further
participate in the metabolic reprogramming toward amino acid catabolic pathways in the absence of effec-
tive HIF1 signaling.

In summary, our data demonstrate that HIF1 signaling in Nkx2.5 cardiac progenitors and cardiomyocytes is
dispensable for proper heart formation and that the absence of Hif1a triggers a cardiac metabolic reprog-
ramming, enhancing temporal amino acid catabolism to ensure sufficient ATP and biosynthetic precursors
to sustain cardiac growth and function even in the absence of glycolysis (Figure 7E). Importantly, these ad-
aptations might be relevant in the adulthood under pathological scenarios associated with oxygen
signaling like pulmonary hypertension or cardiomyopathy toward the development of novel drugs against
new metabolic targets.

DISCUSSION

Here, we describe that Hif1a loss in Nkx2.5 cardiovascular progenitors or cardiomyocytes causes glycolytic
program inhibition in the compact myocardium (CM) by E12.5, without compromising normal cardiac
development and embryonic viability. Our results show that upon Hif1a deletion, the embryonic myocar-
dium conserves FAO capacity but exhibits the ability to activate metabolic programs oriented to amino
acid catabolism, together with an increase in the mitochondrial content by E12.5. Taken together, our find-
ings point out the metabolic versatility of the embryonic heart and conciliate the discrepancies from pre-
vious deletion models of Hifla in cardiovascular progenitors.

Integration with previous Hif1a deletion model in the embryonic heart

As outlined in the introduction, there is a lack of consensus between previous reports on cardiac embryonic
mouse models of Hif1aloss (Guimardes-Camboa et al., 2015; Huang et al., 2004; Krishnan et al., 2008). The
Hif1a haploinsufficiency of some of these models outside the heart Nkx2.5 territories might cause extrac-
ardiac affections, such as vascular or placental, that could significantly influence the described phenotype.
Indeed, the use of a Hifla-null allele has been reported to cause cardiovascular malformations associated
with maternal diabetes (Bohuslavova et al., 2013). In this regard, the exhaustive characterization by Guimar-
aes-Camboa et al. at gene expression level extensively overlaps with our RNA-seq data, except in terms of
stress and apoptotic pathways, upregulated only in the null-allele context of their mutant.

Moreover, we have also analyzed a Hif1a null/floxed model in Nkx2.5 progenitors in parallel with the ho-
mozygous floxed model described here. We found that although glycolytic inhibition by E14.5 is compa-
rable in both models (data not shown), only the null/floxed mice exhibited embryonic lethality (5% retrieved
versus 25% expected, p value 0.0029, n = 7 litters), in contrast with the observed viability for the homozy-
gous floxed mice. This observation, together with other results, supports the notion that cardiac HIF1 is
dispensable for heart development, although an extensive comparison, in terms of gene expression in
placental and vascular embryonic tissue, between the homozygous floxed and the null/floxed models
would be necessary to exclude extracardiac influences of Hifla deficiency affecting heart development
as reported by Guimaraes-Camboa and colleagues, and also observed by the lab of Steven Fisher using
a global conditional HifTa knockout mice (Kenchegowda et al., 2014).

Amino acid catabolism and metabolic versatility of the embryonic heart

A key finding of our investigation is the fact that the embryonic myocardium is able to upregulate alterna-
tive metabolic pathways (amino acids transportation and catabolism), and to promote mitochondrial
enrichment that could support the ATP demand upon glycolytic inhibition subsequent to Hifla loss. The
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Figure 7. HIF2 signaling induction upon Hif1a deletion

(A) Representative immunoblot against HIF2a (upper panel) and Tubulin (lower panel) in heart lysates of control (Hif1a
Nkx2.5*) and Hif1a/Nkx2.5 mutant (Hif1a”"/Nkx2.5°"*/*) embryos at E12.5 and E14.5.

(B) Quantification of HIF2a band intensity normalized by Tubulin as loading control (n = 3).
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Figure 7. Continued

(C) Representative immunoblot against PAI-1 (upper panel) and Vinculin (lower panel) in heart lysates of control (Hif1a"/
Nkx2.57*) and Hif1a/Nkx2.5 mutant (Hif1a”"/Nkx2.5°"**) embryos at E12.5 and E14.5.

(D) Quantification of PAI-1 band intensity normalized by Vinculin as loading control (n = 3). For all graphs, bars (mean +
SEM, n = 3) represent fold induction relative to baseline expression in littermate controls at E12.5 or E14.5. Student’s t
test. *p value<0.05, n.s: non-significant. Comparable proportion of male and female embryos has been included to
perform these experiments at each gestational stage.

(E) Model representing the embryonic myocardium by E12.5. Compact myocardium is mainly glycolytic (yellowish) by the
action of HIF1 signaling, whereas trabeculae rely more on mitochondrial metabolism (orange) in control embryos (left). In
Hif1a mutants (right), glycolysis is compromised and the whole myocardium relies on mitochondrial metabolism,
displaying higher mitochondrial content, and favoring the use of amino acids as energy source parallel to the activation of
ATF4 and HIF2 signaling.

use of amino acids as cardiac metabolic fuel has been proposed mainly in oxygen-deprived scenarios (Bing
et al., 1954; Julia et al., 1990). Amino acids provide, by deamination, carbon skeletons that can be con-
verted into pyruvate, alpha-ketoglutarate, succinyl-CoA, fumarate, oxalacetate, acetyl-CoA, and acetoace-
tyl-CoA, all of them metabolites that can be incorporated into the Krebs cycle (Evans and Heather, 2016;
Neubauer, 2007). As detailed earlier, our cardiac Hifla-deficient model upregulates, both at the transcrip-
tional and protein levels, a variety of amino acid transporters and biosynthetic and catabolic enzymes,
which can replenish the Krebs cycle upon glucose deprivation. Moreover, the fact that this upregulation
is accompanied by an increase in mitochondrial content indicates that the embryonic heart, in the absence
of Hifla, readapts its metabolism to maintain enough ATP levels and building blocks, without compro-
mising the normal protein synthesis required for myocardium development and embryo viability.

Interestingly, this adaptation is transient and reversible, as revealed by the control-like levels of amino acid
transporters and Atf4 transcripts found at later stages by E17.5, without precluding the embryonic meta-
bolic switch toward FAO previously described (Menendez-Montes et al., 2016). These observations indi-
cate that the embryonic myocardium has the plasticity to modulate its metabolism to adapt to the ener-
getic demand and nutrient availability. Moreover, in addition to this interesting role of amino acid
catabolism activation in the embryonic context, the use of amino acids as an alternative energy source
could be an attracting option to achieve cardioprotection and recovery after cardiac injury. In this regard,
some of the enzymes upregulated in our massive screenings in Hifla-deficient hearts are involved in Ser
biosynthesis and one-carbon cycle, including Phgdh, Psph, and Shmt1. These pathways have been previ-
ously described to increase glutathione levels and protect the heart against oxidative stress (Zhou et al.,
2017), also in a context of myocardial hypertrophy (Padrén-Barthe et al., 2018).

Origin of catabolized amino acids in Hif1a-deficient hearts

An interesting open aspect of the metabolic adaptation exhibited by the Hifla-deficient hearts is the
source of amino acid supply during glycolytic inhibition upon Hif1a loss. In this regard, two potential sour-
ces could be considered. First, protein-forming amino acids could be recycled through autophagy. This hy-
pothesis is reasonable considering the context of the embryonic heart, where protein turnover, especially
transcription factors, occurs fast and at a high rate (Merz et al., 1981). Moreover, a positive nitrogen balance
has been reported in both adult rat and human hearts, indicative of rapid turnover of tissue proteins (Sprin-
son and Rittenberg, 1949). Interestingly, our Hif1a mutant embryos showed increased transcription of p62,
a cargo-recognizing protein involved in autophagic degradation of cellular proteins (Lim et al., 2015).
Although an extensive characterization analyzing autophagy, pro- and anti-autophagic signaling pathways,
and protein labeling and turnover would be needed to further investigate this hypothesis, the fact that
autophagy could be involved in this metabolic adaptation suggests an exciting link between cardiac meta-
bolism, hypoxia, and autophagy.

Another possible source of amino acids in Hifla-deficient hearts is fetal circulation. Even though an exten-
sive characterization of fetal blood nutrient content over gestation has not been reported, the transcrip-
tional increase in several membrane amino acid transporters observed in Hif1a/Nkx2.5 mutants suggests
that Hif1a-deficient cardiomyocytes could be obtaining amino acids directly from embryonic circulation.
Interestingly, cardiac amino acids uptake in human subjects infused intravenously with protein hydrolysate
increases by 245% (Bing et al., 1954), showing that the heart can respond to blood amino acids levels. More-
over, the regulation of amino acid transporters’ expression in the placenta is essential for maintaining high
levels of amino acids in the fetal blood to sustain embryo growth (Diaz et al., 2014). In this regard, an
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increased cardiac uptake of amino acids in the Hif1a-deficient embryo could result in increased amino acids
supply through the placenta that might respond to some secreted cues in the absence of cardiac HIF1
signaling.

Molecular determinants of amino acid catabolism activation

Amino acid metabolism and transport is tightly regulated through several pathways, including mTOR,
GCN2, and G-protein-coupled receptors, among others (Broer and Bréer, 2017). ATF4 is a transcriptional
regulator that activates the expression of genes involved in amino acid transport and metabolism (Harding
etal., 2003) and also responds to nutrient and metabolic stress in hypoxia (Weidemann and Johnson, 2007).
Atf4 gene expression is positively regulated in the Hif1a/Nkx2.5 deletion model at both transcriptional and
protein levels. In addition, upstream regulators’ analysis identified ATF4 and CHOP (Ddit3) as putative reg-
ulators of amino acid metabolism in Hif1a-deficient hearts. ATF4 is an essential factor for amino acid star-
vation, by activating the gene expression of genes containing amino acid response elements (AARE)
(Zhang et al., 2010) and regulates CHOP expression (Averous et al., 2004).

Loss of HIF1a signaling results in downregulated expression of glycolytic enzymes. Glucose deprivation, in
turn, has been shown to cause activation of UPR (Badiola et al., 2011; lkesugi et al., 2006; Vavilis et al., 2016).
In our Hif1a deletion model, reduced glycolysis was accompanied by increased expression of UPR genes,
suggesting that Hif1a deletion could contribute to ATF4 activation through glycolytic inhibition and UPR
activation in the embryonic myocardium.

Interestingly, the Hif1a deletion model by Guimardes-Camboa et al. (2015) also shows increased ATF4
signaling in Hif1a-deficient hearts, supporting ATF4 as one of the main regulators of the described meta-
bolic adaptation upon loss of effective glycolysis in HifTa-deficient hearts. Moreover, as ATF4 is upregu-
lated in both animal models, and considering the lack of lethality of our floxed/floxed mice despite an effi-
cient Cre-mediated recombination of Hif1a floxed exon 2, the upregulation of ATF4 does not seem to be
responsible for the embryonic lethality reported by Zambon’s/Evan’s groups that, in contrast, reported the
activation of p53 stress pathway. Further analysis of p53-associated effects in the Hif1a null/floxed mice, as
well as extracardiacimpact of elimination of one Hif1a copy in the germ line might contribute to understand
the phenotype of null/floxed mice.

Previous work in renal clear cell carcinoma, liver, and lung has identified a novel axis connecting HIF2 with
mTOR through the action of the L-type amino acid transporter LAT1 (Elorza et al., 2012). Furthermore,
mTORC1 has been reported to activate purine synthesis through the activation of ATF4 via a cellular
stress-independent mechanism (Ben-Sahra et al., 2016). Hence, we hypothesized that upregulation of
HIF2a. in the Hif1a/Nkx2.5 mutant hearts might lead to the activation of mTOR pathway that could further
connect with ATF4 activation. However, analysis of the phosphorylation state of mTOR targets Factor 4E
Binding Protein (4EBP1) and Sé Kinase (S6K) by western blot and immunohistochemistry revealed inhibition
of these downstream effectors of mMTOR in the Hif1a/Nkx2.5 mutant hearts (data not shown), demonstrating
that HIF2/LAT1/mTOR axis is not conserved in the embryonic myocardium and suggesting that ATF4 up-
regulation occursin a HIF1 and mTORC1-independent manner, probably associated to enhanced UPR acti-
vation due to impaired glycolysis.

We also show that Hif1a/Nkx2.5 mutants display higher levels of glutamine and glutamate compared with
controls. Both amino acids are important carbon and nitrogen sources that can be used for energy produc-
tion as well as for nucleotide and protein synthesis in cancer cells. In some tissues like the brain, part of
glutamate can arise from branched-chain amino acids like leucine, isoleucine, or valine, which are trans-
ported into the cytosol via L-type amino acid transporters (LAT1-4) and converted into branched-chain
alpha ketoacids through the action of cytosolic (BCAT1) or mitochondrial (BCAT2) branched-chain amino-
transferases (Yudkoff, 1997). A recent article on GBCs describes the regulation of branched-chain amino
acid reprogramming by HIFs and shows that the main LAT isoform expressed in GBC is LAT1. The authors
show that Lat1 promoter can be transactivated by both HIF1 and HIF2, although BCAT1, associated to GBC
proliferation, is only regulated by HIF1 in this cell type (Zhang et al., 2020). In contrast, in the Hif1la/Nkx2.5
mutant hearts we have observed upregulation of LAT1 and BACT1 independently of HIF1 abrogation, sug-
gesting that in the embryonic heart HIF2 might play an important role in controlling the expression of these
key elements of BCAA metabolic reprogramming. Further functional and molecular characterization of
HIF1/HIF2 double mutant mice would contribute to confirm this hypothesis. Another important aspect

¢? CellPress

OPEN ACCESS

iScience 24, 102124, February 19, 2021 15




¢? CellPress

OPEN ACCESS

for future research would be to determine the relative contribution of HIF2 versus ATF4 in the amino acid
metabolic reprogramming observed in the Hifla/Nkx2.5 mutant mice as both transcription factors share
several common target genes related to amino acid transport and catabolism.

In summary, our work demonstrates that HIF1 elimination in cardiac progenitors and cardiomyocytes is
dispensable for heart development and function, and that impaired glycolysis during cardiogenesis in
Hif1a-deficient mice induces a transient reprogramming of amino acid metabolism concomitant with
HIF2 and ATF4 activation. These observations uncover the metabolic flexibility of the embryonic heart
that might share common adaptive bioenergetics responses to cancer cells under compromised glucose
and FAO availability.

Limitations of the study
Performing metabolic flow studies during embryonic development is challenging as metabolites can be
utilized by the maternal metabolism before reaching the embryo. Hence, future functional assays on amino
acids utilization will contribute to reinforce our transcriptomic and proteomic data on amino acids import
and catabolism activation.

The definitive role of ATF4 and HIF2 in metabolic reprogramming to amino acid catabolism in the absence
of glycolytic program in the Hif1a cKO will require future genetic analysis of single and double knockout
models.

Resource availability
Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the Lead Contact, Silvia Martin-Puig (silvia.martin@cnic.es; silvia.martin@ufv.es).

Materials availability

Mouse lines generated in this study are available upon request from the Lead Contact with a completed
Materials Transfer Agreement and might require additional payment.
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geo) and are accessible through GEO Series accession number GSE164453.

Proteomic datasets (raw files, protein databases, search parameters, and results) have been deposited in
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TRANSPARENT METHODS
Animal care and housing

Hif1a"/* (Ryan et al., 2000)mice were maintained on the C57BL/6 background and crossed
with mice carrying Nkx2.5Cre recombinase (Stanley et al., 2002) or TnTCre recombinase (Jiao et
al., 2003) in heterozygosity. Hifla™/f* homozygous females were crossed with double
heterozygous males and checked for plug formation. Mice were housed in SPF conditions at the
CNIC Animal Facility. Welfare of animals used for experimental and other scientific purposes
conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC, enforced in Spanish
law under Real Decreto 53/2013. Experiments with mice and embryos were approved by the
authorized Environmental Department of Comunidad de Madrid, Spain, with reference
numbers: PROEX 12/14 and PROEX 267/19.

Genotyping

Genotyping was performed using the following primers (Sigma Aldrich; USA) for Hifla floxed
alleles: 5" CGTGTGAGAAAACTTCTGGATG 3’ and 5" AAAAGTATTGTGTTGGGGCAGT 3'. For Hifla
null allele: 5 GCCCATGGTAAGAGAGTAGGTGGG 3’ and 5’ 5" AAAAGTATTGTGTTGGGGCAGT 3'.
For Cre alleles genotyping, Nkx2.5: 5  GCCCTGTCCCTCAGATTTCACACC 3, Y%
GCGCACTCACTTTAATGGGAAGAG 3’ and 5 GATGACTCTGGTCAGAGATACCTG 3’ and cTnT: 5
TACTCAAGAACTACGGGCTGC 3’ and 5" GCACTCCAGCTTGGTTCCCGA 3'.

Embryo extraction

Embryos at E12.5, E14.5 and E17.5 were extracted after pregnant female euthanasia by CO;
inhalation and head and liver were removed. Equivalent proportion of male and female embryos
have been included in all experiments. After dissection, embryos were snap frozen in liquid
nitrogen for biochemical studies or fixed overnight at 42C in 4% PFA solution (RT15710, Electron
Microscopy Sciences; USA). After fixation, embryos were dehydrated in ethanol series,
embedded in paraffin and sectioned at 5um for immunostaining and histological purposes and
at 10um for in situ hybridization.

Histological and immunohistochemical analysis

Histological sample processing and immunostaining was performed as described elsewhere
(Menendez-Montes et al., 2016). Briefly, 5um-thick paraffin sections were stained with
hematoxylin &eosin (HE) following standard histological procedures at the CNIC Histopathology
Facility. For adult cardiac tissue H&E and Masson Trichrome staining analysis, even distribution
of male and female mice was used in each experimental group. No differences associated with
sex were observed in structure or fibrosis. For immunostaining, sections were rehydrated, and
antigens were retrieved by incubation in citrate buffer (10 mM sodium citrate, 0.05% Tween20,
pH 6) in a pressure cooker. Sections were permeabilized with 0.5% Triton-X100 for 10 min and
blocked with 10% goat serum (GS) (Cat. No. 16210-072, Life Technologies; NY; USA). Sections
were incubated with primary antibodies in 10% GS overnight at 42C. After several washes with
PBS-T, sections were incubated with secondary antibody (Life Technologies; NY; USA or Dako;
Denmark) in 5% bovine serum albumin (BSA) for 1h at room temperature in the dark. When
necessary, signal was amplified using fluorochrome-conjugated streptavidin (Life Technologies;
NY; USA) for 1h at room temperature in the dark, or with the TSA System (Perkin Elmer; MA;
USA). Finally, sections were incubated with DAPI (Millipore, MA; USA) and mounted in
Fluorescent Mounting Medium (53023, Dako, Denmark). Images were acquired with Zeiss



LSM700 (Zeiss; Germany) or Nikon A1R (Nikon; Japan) confocal microscopes. The primary
antibodies used in this study were: HIF1a (NB100-479, Novus Biologicals; USA and GTX30647,
Genetex, USA); cTnT (CT3, Developmental Studies Hybridoma Bank; USA); BrdU (347580, BD
Biosciences; USA); Cy3-conjugated Smooth Muscle Actin (C6198, Sigma Aldrich; USA) and GLUT1
(Cat. No. 07-1401, Millipore, USA).

Quantification of histological and immunostained sections

HE staining was quantified as previously reported (Menendez-Montes et al., 2016) using Image)
(Rasband, 2015). Briefly, images of HE-stained sections were acquired with a NanoZoomer-XR
Digital slide scanner (Hamamatsu; Japan). Compact myocardium and IVS thickness and total
width and height of ventricular chambers were measured using NDP View (Hamamatsu; Japan).
Values of at least three independent litters were analyzed for significant statistical differences
by Student’s t test. For fluorescence intensity analysis in cardiomyocyte nuclei, our own pipeline
for CellProfiler software was employed (Lamprecht et al., 2007). Briefly, cell nuclei were
segmented and subsequently filtered by cTnT positive cytoplasmic staining. After filtering, HIF1a
channel intensity was measured.

RNA extraction, cDNA synthesis and RT-qPCR

RNA extraction from embryonic hearts, cDNA synthesis and quantitative PCR were performed
as previously described (Menendez-Montes et al., 2016). Primers are available under request.
Briefly, total RNA was extracted using QiAzol Lysis Reagent (Qiagen; CA; USA) and the miRNeasy
Mini Kit (Qiagen; CA; USA). Total amount of isolated RNA was retrotranscribed using the
MultiScribe Reverse Transcriptase kit 8Applied Biosystems; CA; USA) and cDNA concentration
was adjusted to 250ng/uL. All real-time gPCR reactions were performed in an AB7000
thermalcycler (Applied Biosystems; CA; USA) using SYBR Green PCR Master Mix (Applied
Biosystems; CA; USA). Gene-specific primers were obtained from PrimerBank
(http://pga.mgh.harvard.edu/primerbank/index.html) and checked for exon spanning using
Primer3 (http://primer3.sourceforge.net/webif.php). Baseline normalization and thresholding
were performed in automated mode with the SDS Software (Applied Biosystems; CA; USA). Cq
values were analyzed using gBase (Biogazelle; Belgium) using 3 housekeeping genes (GusB, Hprt
and Rpl32). Primer-specific efficiencies were tested with serial dilutions of control cDNA.
Statistically significant differences between control and mutants were analyzed by Student’s t
test.

Probe synthesis and in situ hybridization

General probe synthesis, purification and in situ hybridization steps were followed according
with our previous protocol (Menendez-Montes et al., 2016). Briefly, for anti-probe preparation,
reverse primers carrying T7 polymerase promoter sequence at the 5’ end were used. Amplified
fragments were purified using QlAquick Gel Extraction Kit (Qiagen; CA; USA) and probes were
transcribed using 100ng of the fragment and T7 polymerase in presence of DIG-labelled
nucleotides (Roche, Switzerland) for 6h. Probes were treated with Dnase | and purified using
illustra AutoSeq G50 Dye Terminator Removal kit (GE Healthcare, UK). For the probe synthesis,
the following primers were used: Glutl 5 GGACTTTGATGGCTCCAGAA 3’ and 5’
GAGTGTCCGTGTCTTCAGCA 3, Pdkl 5 CTGGGTTTGGTTACGGATTG 3 and 5
GCCAGCTACTCCACGTTCTT 3’ and Ldha 5 GGAAGGAGGTTCACAAGCAG 3’ and 5
CTGCAGTTGGCAGTGTGTCT 3'.



For in situ hybridization staining, 10um paraffin sections of embryos, stored at -202C, were
rehydrated and subsequently post-fixed in 4% PFA. After this, mRNA was exposed by incubation
with Proteinase K (0.01mg/mL) at 372C for 10 min, and masking proteins were denatured by
incubation in 0.7N HCI for 15 min at room temperature. Sections were blocked with
hybridization buffer (50% formamide, 25% SSC 20X pH 5.5, Denhardt’s buffer 1X, 0.1% Tween20;
Chaps 10% 0.01mL/L; 0.05g/L tRNA) and incubated overnight at 652C with DIG-labeled probe at
a final concentration of 5uL/mL. After several washes in decreasingly stringent conditions,
sections were incubated overnight at 42C with anti-DIG-AP Fab fragments (Roche; Switzerland).
Finally, sections were conditioned in alkaline phosphatase buffer (NaCl 0.1M; MgCI2 0.05M; Tris-
HCI 0.1M pH 9.5; 0.1% Tween20) and developed with BM Purple (Roche; Switzerland) at 372C
for 1-4 days, until the signal was clear

Electron microscopy and micrograph quantification

Embryonic hearts were processed for transmission electron microscopy following the standard
procedures. Briefly, after overnight fixation in 3% glutaraldehyde/4%PFA, samples were refixed
in 1% osmium tetroxide and embedded in epoxy resin. 60nm sections were counterstained with
uranyl acetate and lead citrate and imaged using a JEOLJEM1010 (100 KV) transmission electron
microscope. Control and mutant embryonic hearts from three independent litters were
analyzed. For quantification of mitochondria and lipid droplets, ten images of compact
myocardium and ten of trabeculae were taken at 5000x magnification. Mitochondria and
droplets were counted manually by blinded observers using the Imagel CellCounter plugin.
Values were normalized to the total tissue area, in pixels, excluding extracellular areas in the
image.

Protein extraction and Western Blot

Embryonic hearts were homogenized using RIPA buffer and a TissuelLyser in presence of
protease and phosphatase inhibitors (Inhibitor cocktail (Roche, Switzerland) and 1uM sodium
ortovanadate). After clarification by centrifugation, protein concentration was measured using
Pierce BA Protein Assay kit (23227, Thermo Scientific; USA) following manufacturer instructions.
30ug of protein were denaturized at 952C for 5 min, loaded on an 8% polyacrylamide SDS-PAGE
gel and run at 120V for 90min. Subsequently, samples were transferred to a nitrocellulose
membrane by wet transfer at 400mA for 2h. Membranes were blocked with 5% BSA for 1h and
incubated with primary antibodies O/N at 42C. Next day, membranes were washed in TBS-T
buffer and incubated with the corresponding HRP-conjugated secondary antibodies (Dako,
Denmark) at 1:5000 dilution for 1h at RT. After washing, signal was developed using ECL Primer
Western Blotting Detection Reagent (Amersham; UK) and detected by a LAS-3000 imaging
system (Fujifilm; USA). The primary antibodies used in this study were: anti-HIF2a[ep190b]
(NB100-132, Novus Biologicals) dilution 1:200, anti-HIF1la (10006421, Cayman; USA) dilution
1:200, anti-PAI-1 (sc-5297, Santa Cruz) dilution1:500, anti-ATF4 (11815, Cell Signalling; USA)
dilution 1:500, anti-vinculin (V4505, Sigma-Aldrich; USA) dilution1:5000 , anti-atubulin[DM1A]
(ab7291,Abcam; UK) dilution 1:1000 and anti-SMA cy3 (C6198, Sigma-Aldrich; USA) dilution
1:1000.

RNASeq and bioinformatics analysis of gene expression

RNASeq data processing and differential expression analyses (n=2 per group) were performed
as previously described (Menendez-Montes et al., 2016): E12.5 ventricles were collected and
total RNA was extracted as detailed above. RNA integrity was verified using Agilent 20100
Bioanalyzer (Agilent Technologies; CA; USA). Index-tagged cDNA libraries were constructed from
500ng total RNA using TruSeq RNA Sample Preparation v2 kit (Illumina; CA; USA). Libraries were
quantified in a Q-bit fluorometer (Life Technologies; CA; USA). After normalization, libraries



were applied to an lllumina flow cell for cluster generation and sequencing-by-synthesis. Single
reads of 75bp were generated following the standard RNA sequencing protocol. To produce
fastq files, reads were processed using CASAVA package (lllumina; CA; USA).

For differential expression analysis, only genes expressed with at least at 1 count per million in
at least in 2 samples were considered. Changes in gene expression were considered significant
if associated with Benjamini-Hochberg adjusted P value < 0.055. Functional enrichment analyses
were performed with Gorilla (Eden et al., 2009), Panther (Thomas et al., 2003), IPA (Qiagen,
USA), REVIGO (Supek et al., 2011) and GSEA (Subramanian et al., 2005). Enriched functional
terms were filtered by applying P value thresholds described in the corresponding Table or
Figure captions. Circular plots summarizing logFC values for genes, and their association to
enriched functional terms were generated with GO plot (Walter et al., 2015).

Magnetic resonance spectroscopy and data processing

E12.5 snap-frozen embryonic ventricles were processed and analyzed by High Resolution Magic-
Angle Spinning (HR-MAS) Nuclear Magnetic Resonance Spectroscopy (*H-NMR as previously
described (Menendez-Montes et al., 2016). Briefly, intact heart tissue was placed in zirconium
oxide rotor in the presence of 0.1mM Trimethylsilyl propanoic acid in deuterium water. Samples
were acquired at 500.13 MHz using a Bruker AVIII 500 spectrometer at 11.7 T over 4 hours using
a CPMG pulse sequence. Data processing was performed using the Metabonomic R package
(lzquierdo-Garcia et al., 2009, Roést et al., 2016, Gil-De-La-Fuente et al., 2019). Spectra were
referenced to the TSP singlet at 0 ppm (parts per million) chemical shift.

Proteomics analysis

Proteins from pellets after metabolite extraction were pooled in groups of four, treated with
50mM iodoacetamide (IAM) and digested with trypsin using the Filter Aided Sample Preparation
(FASP) digestion kit (Expedeon) (Wisniewski et al., 2011) according to manufacturer’s
instructions. Dried peptides were labeled with iTRAQ-8plex according to manufacturer’s
instructions, desalted on OASIS HLB extraction cartidges (Waters Corp.), separated into 4
fractions using the high pH reversed-phase peptide fractionation kit (Thermo) and dried-down
before MS analysis on an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) (Garcia-Marqués et al., 2016). Peptide identification, quantification and
systems biology analysis was performed as in (Garcia-Marqués et al., 2016) Significant
abundance changes of proteins or homogeneous categories of KO mice compared to controls
were detected at 1% FDR.

Adult mice echocardiography and analysis

5 months-old mice were anesthetized using 1.5% isoflurane at a flow rate of 1L/min. Once
anesthetic plane was reached, cardiac images were acquired using a MS400 probe, at 30MHz
for 2D and M mode images and 24MHz for Color and Pulsed Doppler modes, using an ultrasound
scanner VEV02100 (Visualsonics, Canada). Equal male and female mice were used in each
experimental group. No differences associated with sex were observed for cardiac functional
parameters.

Statistical analysis and data representation

For histological, immunohistochemical quantifications, electron microscopy and RT-qPCR,
values were pooled for embryos with the same genotype from independent litters and analyzed
by the indicated statistical test using SPSS software (IBM; USA), with statistical significance



assigned at P <0.05. Values were represented as mean*SEM using GraphPad Prism (GraphPad;
USA).
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Figure S1. Deletion efficiency of Hifla/Nkx2.5 mutants.

Related to Figure 1.

A) Agarose electrophoresis showing PCR products from heart (H) and tail (T) tissue of
E12.5 mutant embryos (Hif1a”/Nkx2""’*, |lanes 1 and 2) and controls (Hif1a”/Nkx2.5"%,
lanes 3 and 4). Top gel: floxed (615 bp) allele of the Hifla gene. Middle gel: wild-type
(264 pb) and Cre (583 bp) alleles of the Nkx2.5 gene. Bottom gel: processed Hifla allele
after Cre-mediated recombination (400bp) and unprocessed allele (1213bp). B) RT-gPCR
quantification of Hifla, exon 2 (floxed) from Hifla and Phd3 transcripts in E14.5 Hifla-
mutant hearts. Bars (meantSEM, n=3-6) represent fold induction relative to baseline
expression in littermate controls (red line). *p-value<0.05; **0.01<p-value<0.05; ***p-
value<0.005, Student’s t test. C) HIF1la immunofluorescence at E12.5 in control and
mutant embryos (Dapi staining shows nuclei in blue, Troponin T in green and HIFla in
red). Scale bars, 20um. D) Representative analysis of cardiomyocyte HIFla nuclear
protein expression intensity, quantified by immunohistochemical staining of heart



sections from an E12.5 control embryo (green curve) and a Hifla-null littermate (red

curve).
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Figure S2. Schematic representation of amino acid contributions to Krebs and Urea Cycles.
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Schematic overview of the transcriptomics (MRNA expression, left column) and proteomics data
(standardized protein quantifications, right column) of the re-wired metabolic pathways in the
heart of Hifla/Nkx2.5 mutants (Hif1a”//Nkx2.5¢/*) over control embryos (Hifla”/Nkx2"*/*) at
E12.5. Data are represented as individual heat maps for the transcript/protein of each pathway
calculated as logarithmic Fold Change (logFC) and coded by color intensity following the scale at
the bottom. ND indicates no detection. All 14406 expressed genes and 4276 quantified proteins
were considered.
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