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Abstract

Human T-cell leukemia virus type 1 (HTLV-1) was the first oncogenic human retrovirus iden-

tified in humans which infects at least 10–15 million people worldwide. Large HTLV-1

endemic areas exist in Southern Japan, the Caribbean, Central and South America, the Mid-

dle East, Melanesia, and equatorial regions of Africa. HTLV-1 TAX viral protein is thought to

play a critical role in HTLV-1 associated diseases. We have used numerous bio-informatics

and immuno-informatics implements comprising sequence and construction tools for the

construction of a 3D model and epitope prediction for HTLV-1 Tax viral protein. The confor-

mational linear B-cell and T-cell epitopes for HTLV-1 TAX viral protein have been predicted

for their possible collective use as vaccine candidates. Based on in silico investigation two B

cell epitopes, KEADDNDHEPQISPGGLEPPSEKHFR and DGTPMISGPCPKDGQPS

spanning from 324–349 and 252–268 respectively; and T cell epitopes, LLFGYPVYV,

ITWPLLPHV and GLLPFHSTL ranging from 11–19, 163–171 and 233–241 were found

most antigenic and immunogenic epitopes. Among different vaccine constructs generated

by different combinations of these epitopes our predicted vaccine construct was found to be

most antigenic with a score of 0.57. T cell epitopes interacted strongly with HLA-A*0201

suggesting a significant immune response evoked by these epitopes. Molecular docking

study also showed a high binding affinity of the vaccine construct for TLR4. The study was

carried out to predict antigenic determinants of the Tax protein along with the 3D protein

modeling. The study revealed a potential multi epitope vaccine that can raise the desired

immune response against HTLV-1 and be useful in developing effective vaccines against

Human T-lymphotropic virus.

Introduction

Human T Lymphocyte Virus 1 or HTLV-1 is a type C retrovirus that possesses proteins capa-

ble of oncogenesis [1]. Belonging to the Retroviridae family (sub-family: Orthoretrovirinae;
genus: Deltaretrovirus), HTLV-1 has been identified to be the first human virus with
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oncogenicity [2]. Suspected of zoonotic origin, Human T Lymphocytic Viruses (HTLVs)

come from a larger group of Primate T-lymphotropic viruses (PTLVs); their cousins being the

Simian T-lymphotropic Viruses (STLVs) found in non-human primates (NHPs) [3–11]. To

date, 4 types of HTLV viruses have been identified (HTLV-1, HTLV-2, HTLV-3, and HTLV-

4) among which HTLV-1 is the most clinically active member [12]. According to a study in

2010, HTLV-1 infects approximately 20 million people globally [13]. Possible modes of trans-

mission include breastfeeding (predominant), sexual intercourse, transfusion of infected blood

components and sharing of needles and syringes [14]. Though the maximum of infected cases

are asymptomatic, these individuals can still act as “Carriers” of the virus and are capable of

transmitting the virus to a healthy individual [14].

HTLV-1 has etiological manifestation with severe inflammatory diseases like HTLV-

1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), HTLV-1 associated Uve-

itis [12,15] and a lymphoproliferative disorder called Adult T Cell Leukemia/Lymphoma

(ATL) [16–19]. HTLV-1 infected individuals have been found to be susceptible to other neuro-

logical [20], pulmonary [21], ophthalmological [22], rheumatological [23] and urological [24]

coinfections because HTLV-1 can cause suppression of the immune system [25].

Approximately 100nm in diameter, HTLV-1 is an enveloped virus. The viral matrix protein

(MA) lines the inner membrane of the virion envelope, the structure which encompasses the

viral capsid (CA). The tenants of the capsid include two strands of genomic RNA (identical)

and three enzymes; Pro (functional protease), IN (integrase) and RT (reverse transcriptase)

[2,26]. The viral pathogenesis begins by membrane fusion between HTLV-1 and the target

CD4+ T cells [27]. Cellular attachment is facilitated by a type of glycosaminoglycan known as

Heparan Sulfate Proteoglycan [28] which is a commonly expressed cell surface molecule in

case of mammalian cells [29] Glucose Transporter 1 (GLUT1) and Neuropilin-1 (NRP1—

receptor for semaphorin-3A and VEGF-A165) have also been observed to play roles in cellular

attachment [30,31]. Once the HTLV-1 virus infects a cell, the progression of the infection

occurs by cell-to-cell transmission. This transmission process involves the formation of a viral

synapse at the site of contact between an HTLV-1 infected T cell and a healthy T cell by polari-

zation of a microtubule organizing center (MTOC) at a junctional point between the two cells.

The single-stranded, complex RNA genome of an HTLV-1 virus encodes a range of struc-

tural proteins including Gag, Pro, Pol (polymerase) which have roles in assembling the virion

and maturation of the virus; Env, which assists the entrance of the viral nucleic acid inside the

host and host transformation [13,32,33]; along with two important regulatory proteins Rex

(encoded from ORFIII) and Tax (encoded from ORFIV). Among the two regulatory proteins,

the Rex protein acts as a post-transcriptional regulator, Tax has been found to show oncogenic

abilities [34–38] and has crucial roles in regulating viral transcription and transformation of T

cells mediated by HTLV-1 [39,40]. Accessory genes p12 and p30 and their protein products p8

and p13 are encoded by ORFI and ORFII function in initiating the viral infection and play

roles in creating persistence of the virus in animal models [41–44].

When a Human T-cell leukemia virus type 1 enters the human body through any of the

transmission modes including transfusion, breastfeeding and sexual intercourse [14], HTLV-1

viruses by the help of membrane fusion facilitated by the virus’s own membrane protein Env

and the target cell’s receptors insert their nucleic acid inside target CD4+ T cells (these cells

are more susceptible as HTLV1 targets) [43]. The genomic RNA is reversely transcribed to

DNA by reverse transcriptase enzyme (RT); following steps involving transportation of the

viral DNA to the host nucleus and integration of the viral DNA with the host DNA. This amal-

gamated structure consisting of both the host and the viral DNA is termed as Provirus. The

process of integration is worthwhile for the HTLV-1 virus as its copies are being made in spite

of the whole viral structure not being present in the host by the help of the host’s own
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replication mechanism. A protein known as the HBZ protein (HTLV-1 basic leucine zipper

factor) is encoded by the antisense transcript of the proviral genome [27] which upon interac-

tion with the Jun family of AP-1 transcription factors JunB, c-Jun, JunD [45–47], cAMP

response element binding (CREB) and CREB binding protein (CBP)/p300 regulate both cellu-

lar and viral gene transcription [48–50] and also plays a vital role in the proliferation of

infected T cells [51–53].

Although the HTLV1 mediated pathogenesis is the cumulative result of multiple types of

proteins, Tax protein has been found to be a key trigger element of a nuance of cellular events

like resistance to apoptosis, cell signaling, cell cycle regulation and interference with check-

point control and inhibition of DNA repair through its transactivational properties [26]. In

patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), Tax

protein is expressed at an elevated level regardless of the proviral load and therefore can be

considered as an overt marker for HAM/TSP prognosis and a target for the development of

therapeutics [1]. Tax protein has also been found to play significant role as a leukemogen and

has successfully managed to arrest apoptosis in T-lymphocytes in vitro and cause cancer in

transgenic animals [54,55]. Findings have established the fact that in 60% of the leukemic

cases, Tax expression is undetectable [56]. This could be due to the fact the high levels of Tax

protein in an infected cell make them susceptible to be attacked by Cytotoxic T Cells (CTL)

which could be a reason for depleted levels of Tax expression [57].

For more than two and a half decades, multiple studies have been conducted on under-

standing the pathogenesis of HTLV-1 in order to develop therapeutics and vaccines against

the virus. A favourable target for previous approaches to developing HTLV-1 vaccines and

therapeutics has been the envelope glycoprotein (Env) since it is important for creating the

baseline for viral gene transmission to a non-infected cell through cell mediated fusion [58].

As for a non-structural protein, Tax can also be a promising target for its importance as a

determining factor of viral persistence and pathogenesis [1,39,40,55] for playing role as a key

transcriptional activator [39,40]. Asymptomatic carriers, if not at an elevated level, have Tax

protein expressions in infected cells (Median probability Tax protein expression of an infected

cell in an Asymptomatic Carrier is 28% [1]). The goal of the current study is to map small con-

tinuous antigenic amino acid sequences in the Tax protein (epitopes) and selection of the most

tangible Tax protein epitope candidate for in silico vaccine development against HTLV-1 fol-

lowing the principles of comparative modeling, stereochemical and epitope conservation anal-

ysis. In vivo, epitopes are presented to T cells through Human Leukocyte Antigen (HLA)

molecules and are also detected by B cell receptors. The identification of epitopes by both T

cells and B cells is a forerunner for the development of adaptive immunity against a specific

antigen which the current study aims to develop against HTLV-1.

It is natural to consider the envelope glycoprotein of HTLV to be a more favourable candi-

date for vaccines; firstly because the envelope glycoprotein plays an important role in initiating

viral pathogenesis by acting as the anchoring protein between the virus and the receptor and

secondly, because previous studies have found highly immunodominant epitopes in the glyco-

protein that are likely to evoke the immune cells [59–61]. However, factors like conservancy of

the glycoprotein as well as nature of the epitopes should also be taken into account. In a previ-

ous study conducted on the molecular characterization of HTLV-1 gp46 glycoprotein, minor

sequence variations were observed across different geographical regions as well as clinical

characterization of the samples [62]. Additionally, the envelope glycoprotein is sensitive to

mutations and will render non-expressive and dysfunctional if it undergoes any kind of muta-

tion [63]. In case of epitope mapping, often in protein sequences immunodominant epitopes

coincide with neutralizing epitopes, which can lead to faulty and diminished levels of epitope

identification by immune cells [64]. A similar scenario was observed for envelope glycoprotein
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gp46, when Palker et al.’s study found that the central neutralizing region of gp46 (190–209)

and the C-terminal neutralizing epitope (296–312) as Desgranges et al. defined had immuno-

dominant properties [65]. Moreover, a study conducted by Horal et al., highlighted overlap-

ping immunodominant and neutralizing epitopes in the regions including 176–199, 190–212,

224–244, 240–262, and 292–314 [66]. These facts imply the chances of improper identification

of epitopes by immune cells and subsequent failure of the vaccine itself to provoke proper

immune response. The Tax protein on the other hand is predominantly expressed in infected

cells as transcription activators as well as exosomes, even in the early stages, therefore identifi-

cation of the epitopes by immune cells and building the adaptive immune system against

HTLV will be a more agile process [67–69].

The approach of this study to designing a Tax protein epitope based vaccine against HTLV-

1 in silico might prove to be effective in activating the acquired immune system and stimulat-

ing specific humoral and cell mediated immune response against HTLV-1 in healthy individu-

als; treating both symptomatic and asymptomatic individuals with HTLV-1 infection and in

preventing the development of further neurological, pulmonary, ophthalmological, rheumato-

logical and urological co-infections in infected individuals.

Materials and methods

A flow chart describing the overall procedures of construction of a multi-epitope based peptide

vaccine for HTLV-1 Tax protein has been illustrated in Fig 1.

Protein sequence retrieval

The amino acid sequence of Trans-activating transcriptional regulatory protein of HTLV-1

(Tax protein) was retrieved from the NCBI Protein database in FASTA format. The NCBI Pro-

tein database consists of a collection of sequences retrieved from SwissProt, PIR, PRF, PDB. It

also includes translations from elucidated coding regions in GenBank, RefSeq and TPA.

Numerous bioinformatics and immunoinformatics tools and databases were used to identify

and analyse physicochemical, structural and functional properties of the selected Tax protein

sequence and prediction of B-cell and T-cell epitopes.

Primary and secondary structure analysis

The primary structure of the protein was evaluated using ProtParam tool of the Expasy server

[70]. ProtParam computes various physical and chemical characteristics of given protein

sequence, such as number of amino acid, isoelectric point (pI), molecular weight, instability

index, aliphatic index, number of total atoms, grand average of hydropathicity (GRAVY). The

secondary structure was analyzed using self-optimized prediction method with alignment

(SOPMA) [71] and PSIPRED [72] to access properties like transmembrane helices, globular

regions, bend region, random coil and coiled-coil region and to obtain a graphical presenta-

tion of the protein sequence of interest (HTLV-1 Tax protein).

Tertiary structure analysis

The three dimensional structure from the amino acid sequence of the selected HTLV-1 Tax

protein was predicted and analyzed using Phyre2 and (PS)2 Servers [73–75]. Phyre2 server

allows 3D modelling of a provided amino acid sequence using the alignment of hidden Mar-

kov models by the help of HHsearch [76], improving accuracy of alignment and detection rate

in a pronounced way. Phyre2 also models 3D structures for regions in a query sequence that
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does not have any detectable homology with recognized structures by incorporating an ab ini-

tio folding simulation called Poing [77]. The (PS)2 homology modelling server operates

through a substitution matrix for detecting homologous proteins by combining both sequence

and secondary structure information [74,75].

Fig 1. Working-flowchart of the multi-epitope vaccine construct design against HTLV-1.

https://doi.org/10.1371/journal.pone.0248001.g001
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Model refinement

The generated 3D model of HTLV-1 Tax protein was refined at an atomic level based on a ref-

erence 3D protein model using high resolution protein structure refinement tool ModRefiner

[78] and 3DRefine [79].

Validation of protein structure

Additional evaluation of the 3D structure was done by the help of multiple web tools. Rama-

chandran plot was generated using PROCHECK [80] to further assess the Phi/Psi angles for

better understanding of the protein backbone confirmation. PROCHECK [80] was also used

for stereochemical analysis of the predicted protein using a residue-by-residue approach. An

additional evaluation of the generated 3D structure was carried out using ERRAT [81] and

Verify 3D [82].

B-cell epitope prediction

Linear B cell epitopes were predicted using sequential B-cell epitope predictor BepiPred-2.0

under IEDB (Immune Epitope Database) server [83]. Selection of the predicted B cell epitopes

was done based on transmembrane topology (to discriminate between soluble and membrane

proteins) and antigenicity for which TMHMM server 2.0 [84] and Vaxijen 2.0 web server [85]

were used respectively. Allergenicity and toxigenicity of the selected epitopes were checked

using AllerTOP v. 2.0 [86] and ToxinPred [87] respectively.

T-cell epitope prediction

NetCTL 1.2 server was used to predict CTL epitopes for the selected HTLV-1 Tax protein

sequence [88]. Binding affinity towards multiple HLA class molecules was assessed using

MHC I binding prediction tools of IEDB server [89]. In case of predicting MHC class I binding

epitopes, the Stabilized Matrix Base Method (SMM) was used in order to calculate the IC50

values [90]. Epitopes having an IC50 value less than 200nm were selected for the steps

following.

Population coverage calculation

Population coverage for the selected epitopes was observed using the IEDB resource for popu-

lation coverage [91] considering denominated MHC restriction of T cell responses and poly-

morphic HLA combinations for different regions of the world. The selected epitopes were

then scrutinized for their antigenic and immunogenic potentials using Vaxijen 2.0 [83] and

immunogenicity analysis resources of the IEDB server [92]. The IEDB analysis resource was

also used for assessing epitope conservancy. AllerTOP v. 2.0 [86] and ToxinPred [87] were

used for assessing allergenic and toxigenic aptitude of the selected epitopes.

3D epitope structure prediction and molecular docking analysis

To substantiate the interaction between the selected T cell epitopes and HLA molecules, in sil-
ico docking was carried out between the molecules using AutoDock Vina [93]. For the process,

HLA-A�0201 was selected due to having a high genetic frequency. In order to stimulate the

docking, a crystal structure of HLA-A�0201 was retrieved from RCSB protein database

(Research Collaboratory for Structural Bioinformatics) [94] having the PDB ID 1B0R. PEP-

FOLD [95] server was used to predict peptide structures of the selected T cell epitopes based

on antigenicity. To carry out docking simulation first of all the peptide ligand (Influenza

Matrix Peptide) bound to HLA-A�0201 was removed by PyMol software package. This
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removed peptide ligand was then docked with the binding groove of HLA-A�0201. The bind-

ing groove had center box coordinates X: 29.900, Y: 0.614, Z: 49.512 and the dimensions of the

grid box were X: 40, Y: 40 and Z: 40 (unit of the dimensions, Å) targeting the active site of the

protein.

Construction of multi epitope vaccine, modeling, and validation

The selected B cell and T cell epitopes based on antigenicity and allergenicity were linked in

order to create a fusion peptide using GPGPG and AAY peptide linker [96] in multiple combi-

nations. VaxinPad [97] was used to predict a peptide based adjuvant for the amino acid

sequences generated using the selected epitopes. Selection of the adjuvant was based on immu-

nomodulatory potential accompanied with properties like hydrophobicity, hydrophilicity, ste-

ric hindrance, solvation, hydropathicity and isoelectric point (pI). EAAK rigid peptide linker

was used to link the selected adjuvant in the N-terminal end of the multi epitope combina-

tions. The multi epitopes were then assessed for their antigenic and allergenic potencies using

Vaxijen 2.0 web server [85] and AllerTOP v. 2.0 [86]. Multi epitope sequences exhibiting the

maximum antigenic potential and non allergenicity were selected for tertiary structure evalua-

tion. I-TASSER (Iterative Threading ASSEmbly Refinement) homology modelling tool was

used to predict 3D structures [98–100] for the selected multi epitope sequences. The final 3D

structures were further validated using PROCHECK [80], ERRAT [81] and Verify3D [82].

Upon completion of evaluation, the 3D structures were visualized using Pymol [101].

Disulfide engineering of the 3D multi epitope vaccine constructs

To check if the structurally validated 3D vaccine constructs were accessible to the addition of

novel disulfide bonds to provide the protein with increased stability and decreased conforma-

tional entropy [102], Disulfide by Design 2 (DbD2) was used for disulfide engineering of the

3D multi epitope vaccine constructs [102].

Codon adaptation and in silico cloning

In order to express multi epitope vaccine construct selected based on antigenicity, peptide vali-

dation parameters and binding affinity towards HLA molecules in an Escherichia coli K12

strain codon optimization was done using Java Codon Adaptation Tool (JCat) [103]. The opti-

mized codon sequence was further screened for expression parameters, codon adaptation

index (CAI) and percentage of GC-content. For in silico cloning simulation, a bacterial, kana-

mycin resistant expression vector pETSUMO which consists of a 6x polyhistidine tag was

selected [104]. The in silico restriction cloning simulation between the adapted codon sequence

and pETSUMO expression vector was carried out using Snapgene software. The use of a pET-

SUMO expression vector will facilitate TA cloning as well as provide an easier screening

modus operandi for transformed cells. The hexa histidine tag present in pETSUMO expression

vector will facilitate swift detection of the recombinant vaccine construct in immunochroma-

tographic assays [105].

Molecular docking of vaccine constructs with TLR4

In order to predict the binding affinity between the Multi Epitope Vaccine Construct and Toll

like receptor 4 [TLR-4 (PDB: 4G8A)], a member of the toll like receptor family of protein

involved in triggering the innate immunity system [106], molecular docking approaches were

implemented computationally. PatchDock (Beta 1.3 Version) docking server [107,108] was

adopted to receptor-ligand docking and the generated Protein Data Bank (PDB) file of the
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protein-peptide docking complex was visualized in BIOVIA Discovery Studio Visualizer

v12.1.0.15350.

Results

Sequence retrieval, transmembrane topology and antigenicity features

analysis of the HTLV-1 Tax protein sequences

The complete amino acid sequences of HTLV-1 Tax protein were retrieved from NCBI data-

base. Seven amino acid sequences of the protein were retrieved in FASTA format with acces-

sion number AYN25353.1, BBA30574.1, BBD74587.1, AYN25375.1, AYN25364.1,

AYN25342.1, AYN25331.1 and BAX77785.1. Antigenicity of the protein was confirmed

through assessment in VaxiJen v2.0 server and the Tax protein amino acid sequence with

accession number BAX77785.1 was found to be most antigenic with a score of 0.4610 at

threshold 0.4. Antigenicity is a prerequisite for a protein or amino acid sequence to be a vac-

cine candidate. The transmembrane topology of the protein was determined by TMHMM

Server v. 2.0 and it was found that the protein fulfills the criteria of exo-membrane protein.

Primary and secondary structure analysis

A physico-chemical analysis of the protein primary structure was performed by the Expasy

server’s ProtParam tool. From the result generated by ProtParam it was found that the 353

amino acids long HTLV-1 tax protein has a molecular weight of 39470.53Da with a high ali-

phatic index of 87.56%. Having pI of 6.45, less than 7, the protein belongs to negatively charged

proteins. Instability index of 48.9 indicates that the protein is unstable in vitro. Interestingly it

has a negative grand average hydropathy score accompanied with a high extinction coefficient

as summarized in Table 1. Secondary structural features analysed by SOPMA and PSIPRED

reveals the abundance of random coil (54.96%) followed by extended strand (21.53%), alpha

helix (17.85%) and 5.67% of beta turn. in HTLV-1 Tax protein. The secondary structure plot is

presented in Fig 2a while Fig 2b illustrates the distribution of different forms of secondary

structure in HTLV-1 Tax protein.

Tertiary structure prediction, refinement and validation

The tertiary structure of a protein is critical to its function and stability. 3D structure of the

protein was predicted using the Phyre2 server and PS2 server. PDB ID 2I46 was selected as a

template. The structure was predicted with 75% reliability. A pymol generated 3D structure of

Table 1. Different physio-chemical properties of HTLV-1 Tax protein.

Parameter Value

Amino acids 353

Molecular weight 39470.53 Da

Theoretical isoelectric point (pI) 6.45

The instability index (II) 48.96

Grand average of hydropathicity (GRAVY) -0.054

Total number of atoms 5551

Aliphatic index 87.56

No. of negatively charged residues (asp+glu) 25

No. of positively charged residues (arg+lys) 21

https://doi.org/10.1371/journal.pone.0248001.t001
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HTLV-1 Tax protein is displayed in Fig 3a. Major local distortions contained by homology

based modeling include irregular H-hydrogen bonding networks, steric clashes and unphysical

phi/psi angles which reduce the structure models usefulness for high-resolution functional

analysis. Protein model refinement is required to overcome these distortions.

Refinement of the predicted 3D structure is required for bringing it closer to its native

structure. 3Drefine was used for the structure refinement. The 3Drefine tool utilizes repetitive

optimization of hydrogen bonding networks along with energy minimization at atomic-level

on the optimized model by utilizing knowledge-based force fields and composite physics for

efficient protein structure refinement. It generated 5 refined models with RMSD ranging from

0186 to 0.357. The best refined structure had the highest 3D score of 34961.1 accompanied by

least RMSD 0.186.

After refinement the refined model was validated using PROCHECK, ERRAT and VERIFY

3D. Ramachandran plot generated by PROCHECK showed that 77.7 7% of the residues fall

within the most favoured region (Fig 3b). Results generated from ERRAT showed an overall

quality factor of 39.86 for the best refined structure (Fig 3c) and Verify3D depicts that only

27.20% of the residues in the protein had 3D-1D score equal or above 0.2.

Fig 2. (a) Secondary structure plot of HTLV-1 Tax protein. Here, helix is indicated by blue, while extended strands and beta turns are indicated

by red and green, respectively. (b) Distribution of different forms of secondary structure in HTLV-1 Tax protein.

https://doi.org/10.1371/journal.pone.0248001.g002
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Fig 3. a) Predicted 3-dimensional structure of HTLV-1 Tax protein using comparative modeling. b) Analysis of

Ramachandran plot of HLTV-1 Tax protein. Here, yellow indicates allowed region, red for favored region, light yellow

shows generously allowed region while white for disallowed region. Torsion angels are determined by phi and psi

angels. c) ERRAT generated result of Tax protein where 95% indicates rejection limit.

https://doi.org/10.1371/journal.pone.0248001.g003
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B cell epitope prediction

Overall antigenicity assessment of HTLV-1 tax protein by VaxiJen server regarded protein as a

promising antigen at threshold 0.4. Transmembrane topology analysed by TMHMM predicted

that all the residues of the protein are exposed outside the cell membrane. Epitope was pre-

dicted by the IEDB server using Kolaskar and Tongaonkar antigenicity and Bepipred linear

epitope prediction method. Based on antigenicity test performed by VaxiJen server 7 epitopes

(324KEADDNDHEPQISPGGLEPPSEKHFR349, 252DGTPMISGPCPKDGQPS268, 114PFRNGY-

MEPTLGQ126, 51EHQITWDPIDGR62, 93PITHTTPNIPPS104, 131LSFPDPGLRPQ141,
77SFPTQRTS84) were found to be antigenic (Table 2). TMHMM is used to evaluate the trans-

membrane topology of the antigenic B cell epitopes. EHQITWDPIDGR and SFPTQRTS

with antigenicity score 1.3783 and 0.7813 respectively were exposed inside while epitope

LSFPDPGLRPQ, PITHTTPNIPPS, PFRNGYMEPTLGQ, DGTPMISGPCPKDGQPS and

KEADDNDHEPQISPGGLEPPSEKHFR having antigenicity score of 1.3581, 0.9582, 0.9083,

0.7207 and 0.7170 were exposed outside.

Toxicity of the antigenic epitopes was accomplished by the ToxinPred tool. All the exam-

ined epitopes reported to be non-toxic. Hydrophilic epitopes were subjected to assessment

for electricity using AllerTopv2.0. KEADDNDHEPQISPGGLEPPSEKHFR and

DGTPMISGPCPKDGQPS demonstrated no allergenicity while PFRNGYMEPTLGQ,

PITHTTPNIPPS and LSFPDPGLRPQ were predicted as potential allergens as summarized

in Table 4. Based on the antigenicity, surface accessibility and allergenicity 2 epitopes

KEADDNDHEPQISPGGLEPPSEKHFR and DGTPMISGPCPKDGQPS spaning region 324–

349 and 252–268 respectively were finally selected for vaccine model construction.

T cell epitope prediction

NetCTL server and IEDB T cell epitope prediction tools were used to predict T cell epitopes of

HTLV-1Tax protein. Among the 94 MHC class I epitopes predicted based on combined score

64 epitopes wear selected with IC50 value less than 200nm. 15 epitopes among them we are

found to interact with multiple which were selected for antigenicity assessment at threshold

level of 0.4. Epitopes with position 11–19, 151–159, 163–171, 178–186, 233–241, 297–305 and

307–315 were found antigenic (Table 3). LLFEEYTNI, QLGAFLTNV, LLFGYPVYV,

ITWPLLPHV, GLLPFHSTL peptide sequence were found immunogenic when analysed with

IEDB class I immunogenicity prediction tool. Immunogenic epitopes are listed in Table 4.

From the transmembrane topology determination of these immunogenic epitopes by

TMHMM server v. 2.0 it was found that all of these epitopes fulfills criteria of exomembrane

protein.

Table 2. Assessment of antigenicity score, transmembrane topology and toxicity of the antigenic B cell epitopes.

Start End Peptide Length Antigenecity TMHMM Toxicity

324 349 KEADDNDHEPQISPGGLEPPSEKHFR 26 0.7170 Outside No

252 268 DGTPMISGPCPKDGQPS 17 0.7207 Outside No

114 126 PFRNGYMEPTLGQ 13 0.9083 Outside No

51 62 EHQITWDPIDGR 12 1.3783 Inside No

93 104 PITHTTPNIPPS 12 0.9582 Outside No

131 141 LSFPDPGLRPQ 11 1.3581 Outside No

77 84 SFPTQRTS 8 0.7813 Inside No

https://doi.org/10.1371/journal.pone.0248001.t002
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Epitope conservancy, toxicity and allergenicity assessment

Epitope conservancy of the expected epitopes were tested by examining and matching all the

epitopes obtained from HTLV-1 Tax protein. Epitope sequence LLFEEYTNI, QLGAFLTNV,

LLFGYPVYV, ITWPLLPHV, GLLPFHSTL spaning 307–315,178–186, 11–19, 163–171, 233–

241 position of HLTV-1 Tax were found to show 100% conservancy as predicted by the IEDB

epitope conservancy prediction tool.

Toxicity was analysed by ToxinPred which indicated all 5 immunogenic epitopes as

non toxic. The Allergenicity test carried out by AllerTop v2.0 depicted LLFGYPVYV,

ITWPLLPHV and GLLPFHSTL as non allergen. These epitopes were also reported non toxic

by ToxinPred (Table 4).

Population coverage

As the different HLA alleles have different rates of occurrence in different ethnicities in the

world, the analysis of individuals coverage by the respective HLA alleles of the predicted T-

cell epitopes is an important part of an effective vaccine design. The population coverage

analysis showed maximum coverage in Mexico (90.21%) followed by England (89.88%),

South Africa (81.56%), North America (76.82%), South America (74.95%) and Japan

(70.92%). Very low population coverage of 1.20% was observed in the United Arab of Emir-

ates while it was more than 70% in three major parts of Asia, 70.48%, 71.78% and 74.53%

respectively in Southeast Asia, Northeast Asia and East Asia. Cumulative population distribu-

tion of HLA alleles for the selected T cell epitopes is pictured by Tableau Public online public

software in Fig 4.

Table 3. MHC class I epitopes based on their antigenicity, immunogenicity and epitope conservancy.

Epitopes Antigenicity score Immunogenicity score Epitope conservancy (%)

LLFEEYTNI 0.4534 0.26 100

QLGAFLTNV 0.4664 0.18 100

LLFGYPVYV 0.4126 0.09 100

ITWPLLPHV 0.6704 0.05 100

GLLPFHSTL 0.9387 0.01 100

VVCMYLYQL 0.6350 -0.28 100

IQYSSFHSL 0.8634 -0.29 100

https://doi.org/10.1371/journal.pone.0248001.t003

Table 4. Allergenicity, epitope conservancy and interacting MHC class I alleles for the immunogenic MHC class I epitopes.

Epitopes Interacting Class I alleles (IC50<200) Allergenicity Epitope conservancy

(%)

LLFEEYTNI HLA-A�02:02, HLA-A�02:01, HLA-A�02:06, HLA-A�02:11, HLA-A�02:16, HLA-A�02:12, HLA-A�02:03,

HLA-A�02:50, HLA-C�12:03, HLA-A�02:19, HLA-C�14:02, HLA-A�02:17.

Allergen 100

QLGAFLTNV HLA-A�02:02, HLA-A�02:01, HLA-A�02:06, HLA-A�02:03, HLA-A�02:11, HLA-C�12:03, HLA-A�02:19,

HLA-A�02:12, HLA-A�02:16.

Allergen 100

LLFGYPVYV HLA-A�02:02, HLA-A�02:01, HLA-A�02:06, HLA-A�02:11, HLA-A�02:16, HLA-A�02:12, HLA-A�02:19,

HLA-A�02:03, HLA-A�02:50, HLA-C�12:03, HLA-C�14:02, HLA-A�02:17, HLA-C�06:02, HLA-C�07:01.

Non-allergen 100

ITWPLLPHV HLA-A�02:06, HLA-A�02:01, HLA-A�02:16, HLA-A�02:11, HLA-A�02:50, HLA-C�12:03, HLA-C�14:02. Non-allergen 100

GLLPFHSTL HLA-A�02:02, HLA-A�02:01, HLA-A�02:16, HLA-A�02:11, HLA-A�02:50, HLA-C�03:03, HLA-A�02:12,

HLA-C�07:02, HLA-B�15:02, HLA-A�02:19, HLA-A�02:17, HLA-C�12:03, HLA-A�02:03.

Non-allergen 100

https://doi.org/10.1371/journal.pone.0248001.t004
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Molecular docking simulation of the HLA allele-peptide interaction

Binding energy achieved for the peptide ligand (Influenza Matrix Peptide) was -5.7 Kcal/mol.

A higher binding energy was acquired for our predicted epitopes ITWPLLPHV, LLFGYPVYV

and GLLPFHSTL as follows -8.8, -8.6 and -8.5 Kcal/mol which suggest profound interaction

between the predicted epitopes and HLA molecules. Analysis of the nonbonding interactions

of the Influenza Matrix Peptide interacted with the active site A:TYR27, A:GLN32, A:PRO235,

B:TYR426, B:SER452, B:ASP453, B:TYR463 and B:LEU465. T cell epitopes with the HLA-

A�0201 reveals that the selected compounds interacted mostly with A:Try27, A:Pro235 and B:

Tyr463 catalytic residues detected by Autodock Vina, as shown in Table 5 and Fig 5.

Multi-epitope vaccine construction

Three CTL epitopes (LLFGYPVYV, ITWPLLPHV and GLLPFHSTL) and two B cell epitopes

(KEADDNDHEPQISPGGLEPPSEKHFR, DGTPMISGPCPKDGQPS). B cell epitopes were

linked using GPGPG linkers while CTL epitopes by AAY linkers. A peptide adjuvant

PMISWPCPKD was selected based on immunogenicity and high molecular weight using Vax-

inPred server. The Adjuvant was added to N termini of the vaccine construct using EAAAK

linker. EAAAK linkers were used on both the terminals of the vaccine construct. Antigenicity

score of the Multi-epitope vaccine construct was 0.57 as predicted by VaxiJen v2.0 server. A

schematic diagram of 109 aa long multi-epitope vaccine is shown in Fig 6.

Structure prediction of multi-epitope vaccine

Primary and secondary structure analysis provides insight about stability of a peptide. Various

physicochemical parameters were determined by ExPASY’s ProtParam server. A high molecu-

lar weight of 11.523kDa is an indication of the antigenic nature of the vaccine construct. Theo-

retical pH is valuable in determining the buffer system for the vaccine purification process

Fig 4. Worldwide population coverage of the selected for the multi-epitope vaccine. Global distributions of the selected epitopes are

indicated by circles. Circle of different colors represents different ranges of population coverage.

https://doi.org/10.1371/journal.pone.0248001.g004
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which was computed 5.18 representing the slightly acidic nature of the vaccine. Number of

positively and negatively charged residues were found to be 8 and 13 respectively.

Assuming all cysteine residues are reduced, the extinction coefficient was 18450M-1cm−1

at 280 nm measured in water. The calculated half life was found 1 h in mammalian reticulo-

cytes (in vitro), while>10 h in E. coli (in vivo) and 30 min in yeast (in vivo). The instability

index was 38.16. Having an instability index below 40 classified the vaccine as stable. The ali-

phatic index was high and assessed to be 65.60 whereas the grand average of hydropathicity

(GRAVY) was -0.367. A high aliphatic index supports the thermostability of the designed

Table 5. Non-bonding interactions of three T-cell epitope ligands and an Influenza Matrix Peptide with HLA-A�0201.

Legends Bonds [Donor. (Distance, Å). Acceptor] (Bond type)

Hydrogen Bond Electrostatic Bond Hydrophobic Bond

LLFGYPVYV A:ARG6:HH11 (2.300):LEU2:O (HB)

A:ARG6:HH12 (2.378):TYR5:OH (HB)

A:TYR27:HH (2.187):VAL7:O (HB)

A:GLN32:HN (2.147):VAL9:O1 (HB)

A:GLY237:HN (2.983):TYR8:O (HB)

A:GLY239:HN (2.319):TYR8:O (HB)

B:LYS458:HN (2.966):LEU1:O (HB)

B:TYR467:HH (2.328):TYR8:OH (HB)

:VAL9:O1 (3.381) A:ASP30:O (HB)

:TYR5:OH (3.319) A:ASP29:O (HB)

A:ARG6:CD (3.297):TYR5:OH (CHB)

A:THR31:CA (3.301):VAL9:O1 (CHB)

A:ASP30:OD2 (3.789):PHE3 (Pi-Anion) :LEU1:CD2 (3.812) A:TYR113 (Pi-

Sigma)

B:TYR467 (5.311):TYR8 (Pi-Pi Stacked)

A:ALA211 (4.904):PRO6 (A)

A:PRO235 (4.589):PRO6 (A)

A:PRO235 (4.365):VAL7 (A)

B:LYS458 (4.867):LEU1 (A)

B:LYS458 (4.180):LEU2 (A)

:VAL7 (4.979) B:LEU465 (A)

A:PHE241 (5.039):PRO6 (Pi-A)

B:TYR426 (5.412):PRO6 (Pi-A)

B:TYR463 (5.200):VAL7 (Pi-A)

ITWPLLPHV A:ARG6:HH11 (2.792):HIS8:O (HB)

A:TYR27:HH (2.216):TRP3:O (HB)

A:GLN32:HN (2.281):THR2:OG1 (HB)

A:GLU212:HN (2.545):VAL9:O2 (HB)

B:TYR463:HH (2.132):LEU6:O (HB)

:THR2:OG1 (3.371) A:ASP30:O (HB)

:VAL9:N (3.296) A:ASP30:OD1 (HB)

:VAL9:O2 (3.342) A:ASP30:OD1 (HB)

A:ASP30:CA (3.338):LEU5:O (CHB)

A:THR31:CA (3.542):THR2:OG1 (CHB)

B:TYR467 (5.495):TRP3 (Pi-Pi Stacked)

:TRP3 (4.502) B:TYR467 (Pi-Pi Stacked)

A:ALA49 (5.108):ILE1 (A)

A:PRO50 (5.198):ILE1 (A)

A:ALA211 (5.155):LEU5 (A)

A:PRO235 (4.422):PRO4 (A)

A:PRO235 (5.145):LEU5 (A)

B:LYS458 (5.007):PRO7 (A)

:PRO4 (5.006) B:LEU465 (A)

A:TYR27 (5.433):LEU6 (Pi-A)

A:PHE241 (5.371):LEU5 (Pi-A)

B:TYR426 (5.493):PRO4 (Pi-A)

B:TYR463 (4.805):PRO4 (Pi-A)

B:TYR463 (5.333):LEU5 (Pi-A)

:HIS8 (4.403) A:ALA211 (Pi-A)

GLLPFHSTL A:GLY1:HT3 (2.059):LEU9:O2 (HB)

A:SER2:HN (1.961):LEU9:O2 (HB)

A:ARG6:HH12 (2.532):SER7:OG (HB)

A:THR233:HN (2.685):LEU2:O (HB)

A:THR233:HG1 (2.336):GLY1:O (HB)

A:LYS243:HZ3 (2.532):GLY1:O (HB)

B:SER457:HG (2.571):LEU3:O (HB)

B:LYS458:HN (2.406):HIS6:NE2 (HB)

:LEU3:N (3.215) A:GLU232:OE1 (HB)

:LEU9:O1 (3.365) A:ASP29:OD1 (HB)

:THR8:OG1 (3.190) A:ASP30:OD1 (HB)

A:TYR27:HH (3.000):PHE5 (Pi-Donor

HB)

:SER7:OG (3.513):HIS6 (Pi-Donor HB)

:GLY1:N (3.609) A:GLU212:OE2 (Salt Bridge) B:TYR463 (5.312):PHE5 (Pi-Pi Stacked)

A:PRO210 (4.398):LEU9 (A)

A:ALA211 (4.254):PRO4 (A)

:PHE5 (4.024) A:PRO235 (Pi-A)

Influenza Matrix

Peptide

A:TYR27:HH (1.971):ILE702:O (HB)

A:GLN32:HN (2.086):GLY701:O (HB)

B:SER452:HG (2.305):LEU703:O (HB)

:GLY701:N (5.208) B:ASP453:OD1 (Attractive

Charge)

A:PRO235 (4.034):LEU703 (A)

B:LEU465 (4.753):ILE702 (A)

B:TYR426 (5.443):LEU703 (Pi-A)

B:TYR463 (4.861):LEU703 (Pi-A)

(Pose predicted by AutoDock Vina where, HB = Conventional Hydrogen Bond, CHB = Carbon hydrogen bond, A = alkyl, Pi-A = Pi-Alkyl).

https://doi.org/10.1371/journal.pone.0248001.t005
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Fig 5. Molecular docking of selected T cell epitopes with HLA-A�0201. (A) shows interaction of LLFGYPVYV and HLA-A�0201 (B)

shows interaction of ITWPLLPHV and HLA-A�0201 (C) shows interaction of GLLPFHSTL and HLA-A�0201 and (D) shows

interaction of Influenza Matrix Peptide and HLA-A�0201.

https://doi.org/10.1371/journal.pone.0248001.g005
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vaccine while a negative GRAVY score represents its hydrophilic nature. Secondary structure

of the vaccine was assessed by SOPMA server using 109 aa long sequence. It predicted that

25.69%, 4.59%, 4.59% and 65.14% amino acids are involved in α-helix, extended strand, β-

turn, and random coil, respectively. A probability score graph of frequency of helix, strand,

turn, and coil at each amino acid position in the secondary structure of the final vaccine con-

struct. Tertiary structure of the multi-epitope vaccine prediction by I-tasser which is an

ordered approach for the prediction of protein structure and function. It identifies structural

templates from the PDB by multiple threading approach LOMETS. Structure generated by the

I-tasser is shown in Fig 7.

Fig 6. A diagrammatic representation of the final multi-epitope vaccine peptide. The 109-amino acid long peptide sequence containing

an adjuvant (blue) at the N-terminal end linked with the multi-epitope sequence through an EAAAK linker (garnet). T cell epitopes are

linked with the help of AAY linkers (orange) while the B cell epitopes are linked using GPGPG linkers (dark grey).

https://doi.org/10.1371/journal.pone.0248001.g006

Fig 7. Tertiary structure of the multi-epitope vaccine. Red, orange and yellow color indicate EAAAK, AAY and

GPGPG linkers respectively. B cell epitopes are shown in green while T epitopes in blue. A 10 mer adjuvant is

visualized by gray color.

https://doi.org/10.1371/journal.pone.0248001.g007
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Disulfide engineering, codon adaptation, and in silico cloning of the

vaccine construct

Disulfide engineering was done through Disulfide by Design 2 (DbD2) which predicted a total

of 20 pairs of residues for the probable disulfide bonds formation (Table 6) But, after consider-

ing the Chi3 value between −87 and +97 and the energy score less than 4 kcal/mol only 4 pairs

of residue pairs were selected for making disulfide bonds.

JCat server was used for the adaptation of codon usage of the designed vaccine constructs

for E. coli K12. An optimized codon sequence of 329 nucleotides was provided by JCat. The

percentage of the GC-content of 50.78% and CAI of 1.0 of the optimized codon sequence

ensured that the vaccine construct was highly expressed in E. coli K12. The improved DNA

sequence was translated into our vaccine protein appropriately and GC-content increased to

58.10% for E. coli K12.

Later on, the adapted codon sequence was cloned into the E. coli pET SUMO vector and E.

coli strain DH5 alpha was selected as host. A 5970 bp recombinant vector was obtained after

TA cloning of vaccine DNA sequence (Fig 8).

Molecular docking of the multi-epitope vaccine with immune receptor

TLR4
The docking of vaccine-receptor was performed using Patchdock server for evaluating the

complex formation of the our vaccine construct with an immune receptor such as TLR4 and

their binding affinity. The PatchDock server provided 20 docking complexes. Among the com-

plexes, we selected only the docking complex with the highest negative Atomic Contact Energy

(ACE) value for analysis. The ACE value of the selected docking complex was -247.59 which

Table 6. Possible disulfide bond between the residues of the vaccine construct.

Residue 1 Residue 2 Bond

Chain Seq AA Chain Seq AA X3 kcal/mol ∑ B-factor

A 2 ALA A 99 PRO -67.47 5.50 5.17

A 2 ALA A 101 LEU +114.49 3.48 4.10

A 3 ALA A 102 PRO -73.27 3.51 4.13

A 4 ALA A 99 PRO -76.90 3.79 6.36

A 5 LYS A 103 HIS +81.03 3.37 6.01

A 13 PRO A 16 GLU +83.62 6.42 4.34

A 13 PRO A 74 PHE +122.24 1.95 4.61

A 24 PRO A 26 ILE +95.00 4.47 5.63

A 24 PRO A 27 SER +119.72 3.94 5.31

A 26 ILE A 31 PRO +118.95 4.74 4.57

A 27 SER A 86 LEU -61.55 3.42 4.60

A 28 GLY A 51 GLU -85.03 2.64 5.08

A 32 LYS A 38 GLY +114.69 1.93 6.06

A 52 PRO A 55 SER +123.75 6.02 5.12

A 70 ALA A 74 PHE +107.47 3.56 5.03

A 73 LEU A 108 ALA +78.29 5.00 4.98

A 77 PRO A 104 VAL +104.13 5.34 5.83

A 80 VAL A 93 ALA +87.23 6.55 5.90

A 94 ALA A 98 TRP +84.33 5.61 5.64

A 98 TRP A 100 LEU +120.55 7.58 4.13

https://doi.org/10.1371/journal.pone.0248001.t006
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indicates spontaneous binding between the vaccine component and TLR-4. The selected dock-

ing complex is illustrated in Fig 9 along with molecular surface interaction as well as some

bonding interactions. The elaborate interface residues between the vaccine component and

TLR-4, bonding interactions and their distance are in the supplementary table (Table 1). The

proper protein-protein docking between the vaccine component and TLR-4 will activate

immune cascades for destroying the viral antigens 26.

Discussion

HTLV-I is the prime causative agent leading to a disabling inflammatory disease HAM/TSP

and an aggressive malignancy named Adult T cell Leukemia. To date no effective vaccine and

treatment is available for HTLV-1 infection. Our study is focused on development of an effec-

tive vaccine against HTLV-1 Tax protein which plays a major role in viral pathogenesis. While

the CTL response unique to Tax is a common occurrence in many HTLV-1-carriers, Tax pro-

tein is a major antigenic target for HTLV-1-specific CTLs [57]. Tax protein is the first HTLV-1

protein to be expressed in an infected cell [1]. It was reported as a potential immunotherapeu-

tic target against HAM/TSP and ATL [109]. HBZ is another HTLV-1 protein which also plays

an important role in viral infectivity surged with survival and growth of leukemic cells [110].

Fig 8. Cloning of the multi-epitope vaccine coding sequence in to pET-SUMO vector. Here the multi-epitope vaccine coding sequence of 329 bp is

indicated by red color and pET-SUMO vector by black. A recombinant vector of 5970 bp is generated after insertion of the target nucleotide sequence.

https://doi.org/10.1371/journal.pone.0248001.g008
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Despite the fact HBZ performs an essential role in the proliferation of HTLV-1-infected cells,

it could additionally provide a unique mechanism that lets them evade immune recognition

[111]. Antigenicity prediction of Tax and HBZ using VaxiJen server at threshold 0.4 regarded

Tax protein as probable antigen with score of 0.461 while HBZ as non antigen with score of

0.3063. These contrasting facts show that Tax is a potential candidate for vaccine design albeit

HBZ is a potential drug target.

A physico-chemical analysis of the protein sequence was done by the Expasy server’s Prot-

Param tool. It revealed an instability index of 48.9, which denotes, this protein will be unstable

in vitro because a value over 40 is considered unstable [70]. Interestingly this protein was also

predicted to have a high aliphatic index; it is the total volume occupied by aliphatic side chains

Fig 9. Molecular docking of multi epitope vaccine (MEV) with immune receptor (TLR4). (A) Whole Docked of MEV-TLR4

complex where MEV is purple and adjuvant colored red, chain A and B of TLR4 colored green and blue respectively. (B) Closer look

of the main docking site. (C) Main interacting racedues and there interactions.

https://doi.org/10.1371/journal.pone.0248001.g009
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and higher value is considered a positive factor for increased thermostability. Along with high

extinction coefficient and negative GRAVY, the extents of other parameters imply the stability

of the protein.

Results generated by secondary structure analysis tool PSIPRED and SOPMA showed the

HTLV-1 Tax protein is adorned with 17.85% alpha helix and 54.96% random coils along with

5.26% extended strands and 21.53% beta turns. The abundance of coiled regions is an indica-

tion of higher conservation and stability of the model.

Tertiary structure of a protein determines its function and stability. To date no tertiary

structure for HTLV-1 Tax is available in Protein Data Bank. We have generated a 3D structure

of Tax protein using Phyre2 server and PS2 server with 75% reliability. Often 3D structures

generated by bioinformatics tools contain significant local distortions, including unphysical

phi/psi angles, and steric clashes irregular H-hydrogen bonding networks, which make the

structure models unfit for high-resolution analysis of functions. Refinement of the modeled

structures can bring up a solution of this problem [78,112]. Best model predicted by 3Drefine

was selected after refinement based on having the highest 3D score and least RMSD. After

refinement the protein model was validated by ERRAT, Verify3D, PROCHECK. ERRAT

interpreted the overall quality of the model with the quality factor 78.313; this score represents

the proportion of the protein that falls below the rejection limit of 95%. Verify 3D shows

63.49% of the residues have 3D-1D score above 0.2 whereas a good quality model required

80% of the residues to have 3D-1D> = 0.2. Ramachandran plot, a plot of the dihedral angles—

phi (φ) and psi (ψ)—of the amino acids contained in a peptide, generated by PROCHECK

illustrates that 75.7% of the amino acid fall within the most favored region and 17.4% in addi-

tional allowed region. Analysis based on 118 structures of resolution of minimum 2.0 Ang-

stroms and R-factor less or equal to 20%, a good quality model should have over 90% of its

residues in the most favoured regions.

Most B cell epitopes are discontinuous epitopes, epitopes composed of amino acid residues

residing in different regions of the protein, which are arranged together by the folding of the

protein chain [113,114]. These residue groups cannot be isolated in the same conformation

from the antigen [114]. As per concern linear B cell epitopes for HTLV-1 tax are curated for

IEDB. Bepipred linear epitope prediction method was used to predict 13 B cell epitopes.

Among the predicted epitopes 7 of them exhibited antigenicity. From our data, we see that

only 2 epitopes were present inside while other 5 epitopes were found outside. These 5 epi-

topes, KEADDNDHEPQISPGGLEPPSEKHFR, DGTPMISGPCPKDGQPS, PFRNGY-

MEPTLGQ, EHQITWDPIDGR, PITHTTPNIPPS, LSFPDPGLRPQ were assessed for toxicity

and allergenicity which led as to select 2 non-allergenic and non-toxic B cell epitopes as poten-

tial vaccine candidate.

Once the proteins enter the host antigen-presenting cells (APC) of the, they are processed

and then the T cell epitopes are proteolytically cleaved from the protein, and represented by

the MHC molecules on the surface of APCs, exposing them to the receptors of T cells [114].

MHC class I molecules represent endogenous antigens such as intracellular bacterial, viral and

tumor inducing proteins while MHC class II represent epitopes from the exogenous proteins.

HTLV-1 Tax is preferentially produced endogenously in the cytoplasm of a host cell and local-

ized in the cytoplasm with fewer speckle-like dots in the nucleus [115]. Induction of virus-spe-

cific CD8+ cytotoxic T lymphocytes (CTL) by MHC class I presented peptide is required for

effective viral clearance [116]. MHC classI binding T cell epitopes were by NetCTL server and

IEDB server. 94 MHC class I T cell epitopes were selected based on combined score from

which 48 epitopes were extracted with IC50 less than 200nm. The lower the IC50 value the

higher their binding affinity with the HLA molecules. About 16 epitopes interacted with more

than 5 HLA alleles. Epitopes those which interacted with�5 MHC HLA-alleles are most likely
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to be potential vaccine candidates [117,118]. Antigenicity assessment with VaxiJen server at

threshold 0.4 mined 7 epitopes to be antigenic and among them 5 were immunogenic. Epitope

conservancy was found 100% for all 5 epitopes as predicted by IEDB server. Toxicity and

allergenicity evaluation of the epitopes rendered all selected epitopes to be non-toxic but only

3 of them are non allergenic. Efficiency of a multiepitope vaccine greatly relies on precise inter-

action between epitopes and HLA alleles. MHC class I alleles having interaction with LLFGYP-

VYV, ITWPLLPHV and GLLPFHSTL were searched for population coverage. From our study

the highest population coverage was recorded for Mexico (90.21%) followed by England

(89.88%) and South Africa which is located in Sub Saharan Africa. South America and North

America showed population coverage of 74.95% and 76.82% respectively while in Japan it was

slightly lower (70.92%). East Asia, North East Asia and South Asia had population coverage

just above 70%. Cameroon, a country of central Africa exhibited 71.39% population coverage

while UNited Arab of Emirates was found with the lowest percentage (1.2%) of coverage. The

major HTLV-1 highly endemic regions are the sub-Saharan Africa, South America Southwest-

ern part of Japan, the Caribbean area, Australo-Melanesia and foci in the Middle East [119].

Age, ethnicity, mode of transmission are important factors influencing variation in population

coverage [119].

Previous study of vaccine designing on HTLV-1 partially aligns with our study in that they

have selected epitopes LLFGYPVYV, QLGAFLTNV and GLLPFHSTL as potential candidates

for multivalent vaccine [l] but differ in that QLGAFLTNV was excluded from our vaccine as it

was found allergenic. Instead, a non-allergenic T cell epitope ITWPLLPHV was assigned to be

a part of our designed vaccine.

Docking simulation was carried out on AutoDock to assess the binding efficiency of the

selected T cell epitopes to HLA molecules. The epitopes were docked with HLA-A�0201 com-

plexed with a peptide with the carboxyl-terminal group substituted by a methyl group. The

peptide had binding energy of -5.0Kcal/mol with the HLA molecules whereas our selected T

cell epitopes ITWPLLPHV, LLFGYPVYV and GLLPFHSTL showed higher binding energy,

-8.8 Kcal/mol, -8.6 Kcal/mol, -8.5 Kcal/mol respectively suggesting satisfactory binding accu-

racy of the predicted epitopes. The ITWPLLPHV is stabilized by twelve hydrogen bonds,

eleven hydrophobic bonds and one electrostatic bond while interacting with the receptor pro-

tein. It also forms hydrogen bonds with catalytic residue A:Tyr27 and hydrophobic interaction

with A:Pro235 and B:Tyr463. ITWPLLPHV interacts through ten hydrogen bonds with the

catalytic residue A:Tyr27 and B:Tyr463 and fifteen hydrophobic interactions with the catalytic

residue A:Pro235 and B:Tyr463. GLLPFHSTL forms thirteen hydrogen bonding interactions

with catalytic residue A:Tyr27, one electrostatic and four hydrophobic interactions observed

with the catalytic residue A:Pro235 and B:Tyr463. Two potential B cell epitopes and three T

cell epitopes were selected for multi-epitope vaccine construction. A suitable adjuvant was

selected using the VaxinPad tool based on antigenicity. B cell epitopes were linked using

GPGPG linker while MHC class I epitopes were joined by AAY linker. EAAK linkers were

added with N -termini and C -termini of vaccine construct. These linkers are widely used in

multi-epitope vaccine construction [120–122]. Vaccine construct with highest antigenicity

among multiple combinations of these epitopes and linkers was selected for further investiga-

tion. The vaccine construct was tested for allergenicity by AllerTop 2.0 and AllergenFP which

declared the vaccine construct as non-allergen. An important insight was gained from the

physicochemical properties and secondary structure analysis of the protein performed by Prot-

Param and SOPMA tools. It was found stable with instability index 30.57, negative GRAVY

score (-0.367) and high aliphatic index are indications of the stability of the vaccine construct.

Results generated by secondary structure prediction tool SOPMA showed the vaccine struc-

ture is dominated by 25.69% alpha helix and 65.14% random coils. The abundance of coiled
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regions indicates higher conservation and stability of the model [70,71,123]. As no suitable

homologous template for homology modelling was not available for the vaccine construct pep-

tide sequence ab initio modelling was executed using the I-Tasser tool to predict its 3D struc-

ture. Disulfide engineering was done at several positions on the vaccine tertiary structure.

Disulfide bonds increase the stability of the protein [124].

Codon optimization was carried out in order to achieve high-level expression of our recom-

binant vaccine protein in E. coli (strain K12). Both the GC content (58.10%) and the codon

adaptability index (1.0) were favourable for increased expression of the protein in bacteria.

After codon adaptation the protein nucleic acid sequence was cloned in pET SUMO by TA

cloning and expressed in E. coli strain DH5 alpha. DH5 alpha is a E. coli strain which allows

easy selection of transformed colonies by blue-white screening. Again pET SUMO contains

His Tag sequence at the 5’ end of the vaccine sequence which allows easy purification of the

desired protein.

Moreover, it is necessary to know the immune response of TLR4 against the vaccine pro-

tein. TLR4 is known to activate innate immunity against HTLV-1 as reported in several studies

[125,126]. It has been widely demonstrated that TLR4 plays an important role in the recogni-

tion of endogenous molecules which are released by necrotic cells and injured tissues [127].

These molecules activate an intense proinflammatory response through interaction with TLR4

[128]. To assess the binding affinity between the vaccine and TLR4 a molecular docking was

performed and analysis of the result showed good binding affinity between them. A high bind-

ing affinity to TLR4 supports the acceptability of our predicted multi-epitope vaccine.

Conclusion

Although the approaches in our study to predicting HTLV-1 TAX protein based epitopes and

construction of a multi epitope vaccine were all in all in silico, the insights and outcome gained

from the study can provide an elementary ground for expediting investigations related to

designing and constructing epitope based vaccine against HTLV-1 in a wet lab and take it to in
vitro studies from there. Further studies involving extensive laboratory assays and techniques

might also render a higher a higher frequency and array of HLA molecules in terms of detect-

ing the epitopes within the Tax protein.
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