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Simple Summary: Longfin smelt Spirinchus thaleichthys is an imperiled estuarine species in California,
USA. A captive culture program is currently being developed; however, prior to this study, longfin
smelt have only fed on live prey in the hatchery. Here, we report on our first successful attempt to
wean cultured juveniles onto a dry commercial pellet feed. A subset of F1 fish was switched to a
mixed diet of reduced Artemia and dry feed for 62 days, with growth, survival, and body condition
compared between feeding treatments. Our results highlight that juvenile longfin smelt can utilize
dry feeds while maintaining a healthy body condition.

Abstract: The rapid decline of longfin smelt Spirinchus thaleichthys, a threatened euryhaline forage
fish in California, is a serious concern for scientists and resource managers. To recover and conserve
this species, a captive culture program was initiated, focusing on the collection, captive rearing and
breeding of wild broodstock, and the rearing of their offspring. Although progress has been made in
the collection of broodstock and the production and culturing of larvae, no studies have evaluated the
rearing of juvenile life stages in captivity. The present study examines methodological considerations
for culturing F1 juvenile longfin smelt, specifically, the first efforts toward weaning juveniles to a
dry commercial pellet feed. Cultured juvenile longfin smelt were fed live Artemia only or co-fed
Artemia and dry feed for 62 days, and the effects of feed type on juvenile survival, growth, body
condition, and fatty acid profiles were examined. No significant differences were observed between
feeding treatments, despite an 80% reduction in Artemia in the co-feeding treatment. Furthermore,
examination of fish stomach contents at the end of the trial confirmed the transition to dry feed.
This is the first study to indicate successful feeding by longfin smelt on dry commercial pellets, and
suggests that juvenile longfin smelt can be fully weaned onto dry feeds. Results of this study are
critical for closing the lifecycle of longfin smelt in captivity and developing a successful conservation
culture program for this imperiled species.

Keywords: Osmeridae; ex situ conservation; diet; fatty acids; anadromous fish

1. Introduction

The rapid decline of longfin smelt Spirinchus thaleichthys, a threatened euryhaline
forage fish in California, is a serious concern for scientists and resource managers [1]. As
one strategy to help recover and conserve this species, the Fish Conservation and Culture
Laboratory (FCCL) at the University of California, Davis, has been working to develop a
captive culture program for longfin smelt [2,3]. To maximize the success of these efforts,
studies examining longfin smelt under captive conditions are needed. Although recent
studies have helped identify suitable rearing conditions for newly hatched larvae [4,5], no
published studies have examined the collection of broodstock, spawning of broodstock, or
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the rearing of juvenile and adult life stages in captivity. The incorporation of dry feeds into
the diets of cultured populations is a critical step in closing the lifecycle and establishing a
robust captive culture program [6]; however, previous attempts at weaning longfin smelt
to dry feeds at any life stage have been unsuccessful.

Here, we examined the responses of cultured F1 juvenile longfin smelt to commercial
dry pellet feed. Fish received either Artemia alone or a mixed diet of reduced Artemia plus
dry pellets, thus allowing us to explore the effects of each feed type on juvenile survival,
growth, body condition, and fatty acid profiles. Results of this study will provide key
information to support the development of a successful longfin smelt culture program that
can be used to conserve this imperiled species.

2. Materials and Methods
2.1. Broodstock Collection, Spawning, and Larviculture

During the 2019–2020 spawning season (November 2019–March 2020), 264 live wild
mature (fork length = 90.1 ± 11.2 mm) longfin smelt were collected and transported from
the San Francisco Estuary to the FCCL (Table S1). All fish were quarantined and given a
3-day prophylactic antibiotic treatment (Pennox 343, Animal Health International, Ceres,
CA, USA) in standing water with aeration (20 NTU, 10 ppt, and 12 ◦C). After quarantine,
fish were measured, tagged, and consolidated in 400-L broodstock holding tanks. The
stocking density for each tank was set to be 50 adult fish per tank. The tanks received
500 mL d−1 live adult brine shrimp Artemia franciscana (Artemia International, Fairview,
TX, USA) as feed. Ripe individuals were strip-spawned following established protocols [4]
to produce multiple crosses of cultured F1 longfin smelt. The eggs were fertilized and
incubated in pre-treated source water from the California Aqueduct (Contra Costa County,
CA, USA) with a salinity of 0.4 ppt and temperature of 12 ◦C. Larvae were hatched after
a 16-day incubation period and held in 2 ppt at 12 ◦C and fed rotifers Brachionus plicatilis
(L-type) with a size of about 210 µm (Reed Mariculture, Pasadena, CA, USA) and newly
hatched, unenriched Artemia nauplii. As fish grew, surviving larvae and juveniles with the
same age from multiple crosses were pooled together.

2.2. Experimental Design

At 160 days post hatch (dph), 228 juvenile F1 longfin smelt (fork length = 34.3 ± 3.6 mm)
were randomly assigned to nine 400-L juvenile rearing tanks (38 fish per tank). Tanks were
arranged in groups of 3, with each group plumbed to a separate recirculating aquaculture
system (2 systems; 3 tanks per system). Both systems were controlled to have the same
environmental conditions to match conditions commonly experienced by juvenile longfin
smelt (temperature = 12 ◦C; salinity = 5 ppt). Juveniles were held for a 7-day acclimation
period, during which all fish were fed newly hatched, unenriched Artemia nauplii.

After the acclimation period, each tank was randomly assigned to one of two feeding
treatments. Treatment 1 (Artemia, ART) continued to receive live newly hatched, unenriched
Artemia nauplii at 500 mL per day (~2250 nauplii mL−1), provided as 5 × 100 mL feedings
per day. Treatment 2 (dry feed + Artemia, DFA) consisted of a combined diet of 1 g per day
dry commercial feed (Biovita Starter mash crumble, Bio-Oregon, Longview, WA; provided
as 0.25 g feedings 4 times per day) and 100 mL Artemia provided only once at the end of
each day (Table 1). Thus, Treatment 2 reflected an 80% reduction in Artemia relative to the
ART treatment, with dry feed providing supplemental nutrition. All live Artemia were
grown on site, and all the fish tanks were siphoned 3 times a week to remove feces and
uneaten food and checked daily for any mortalities. The study was carried out for 62 days,
after which 10 fish were sampled from each tank for further analysis (see Section 2.3).

After the 62-day feeding trial was completed and subsampled, the remaining fish
from each treatment were consolidated into separate 400-L tanks. The ART group contin-
ued to be fed Artemia only while the DFA group was transitioned to 100% dry feed (DF,
without Artemia). Survival in both tanks was monitored for an additional 66 days (from
229–295 dph), with survival in the ART and DF treatments being assessed at the end of the
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trial. All fish were then further consolidated into a single tank and fed dry feed only, and
the feeding study was completed.

Table 1. Experimental design of the 62-day feeding experiment.

Feed Treatment Nfish Feed Quantity Frequency

1. Artemia a (ART) 114 500 mL 100 mL; 5 × daily
2. Dry feed b +
Artemia (DFA)

114 1.0 g (dry feed) +
100 mL (Artemia)

0.25 g; 4 × daily
100 mL 1 × daily

a Live adult Artemia franciscana; b a commercial dry feed (Biovita Starter mash crumble).

2.3. Size, Condition, and Tissue Analysis

At the end of the 62-day feeding trial, 30 individuals from each treatment (10 fish per
tank) were sampled, euthanized with 500 mg L−1 buffered tricaine methanesulfonate (MS-
222, IACUC Protocol #21353), and their fork lengths (FL, in cm) and body weights (BW, in g)
were measured using a measuring board and electronic balance (PW124, Adam Equipment,
Inc., Oxford, CT, USA), respectively. Fulton’s condition factor (K) was then calculated from
BW and FL using the formula of Froese [7]. Muscle tissue from these was then collected
from several fish from each tank and pooled (to a total of 3 g wet mass) for fatty acid
and dry matter analyses. The profiling of different fatty acids was done at the UC Davis
Fiehn lab (https://metabolomics.ucdavis.edu/; accessed on 27 May 2021) using ultra-high
pressure liquid chromatography (UPLC) following the methods of Matyash et al. [8]. Each
component of fatty acid was estimated as a percentage of the total lipid content.

2.4. Statistical Analysis

All analyses and plotting were done using R version 4.0.2 [9]. The assumptions
of normality and homogeneity were checked with the Shapiro–Wilk test and Levene’s
test, respectively, using the ‘onewaytests’ package. Variations between feed treatments in
survival, growth, condition factor, and fatty acids were examined with t-tests. Significance
was defined as p < 0.05.

3. Results and Remarks
3.1. Weaning Success, Survival, Growth, and Condition

Dry feed was regularly observed in the guts of the juvenile longfin smelt collected
at the end of the 62-day feeding trial, confirming that fish were consuming pellet feed.
Survival rates were 79.82 ± 4.88% and 82.58 ± 3.45% for DFA and ART, respectively, and
did not differ significantly among treatments (t-test; p = 0.96, Figure 1A). The survival of
ART and DF groups at 66 days after the trial was 96.6% and 100.0%, respectively. Similarly,
no differences were observed between treatments in fork length (t-test, p = 0.17, Figure 1B),
weight (t-test; p = 0.21, Figure 1C), nor K-value (t-test; p = 0.82, Figure 1D). Thus, juvenile
longfin smelt were successfully transitioned onto dry feed, with survival, growth, and body
condition of these fish similar to those fed a live-feed only diet.

3.2. Fatty Acid Profile of Artemia and Dry Pellet Feeds

Dry feed contained higher amounts of saturated fatty acids (SFAs) and polyunsatu-
rated fatty acids (PUFAs) than live Artemia even though live Artemia contained a relatively
higher percentage of saturated fatty acids in its total fatty acids (Figure 2; Table S2). The
ratios of n3:n6 were higher in newly hatched Artemia (3.32, while it was 0.16 in dry feed),
whereas EPA:ARA and DHA:EPA were higher in dry feed (34.05 and 1.41, respectively,
while they were 1.76 and 0.05, respectively, in Artemia). Essential fatty acids are crucial for
the survival, development, and physiology of fish larvae [10–12], and high levels of DHA
are often related to growth and body condition [13–15]. DHA level in the dry feed used in
this study was higher than in the newly hatched Artemia (21.52% and 0.08%, respectively).
Therefore, including of dry feed may be a good strategy to better meet the nutritional
requirements of the fish [16,17].

https://metabolomics.ucdavis.edu/
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3.3. Fatty Acid Profile of Juvenile Muscle Tissues

Dry matter mass (% wet weight) of muscle tissue from juvenile longfin smelt did
not appear to differ between feeding treatments (t-test; p = 0.73). Regarding the essential
fatty acids, fish in the DFA group had slightly higher levels of DHA than the ART group
(Figure 2), though insignificant (Figure 3; Table S3). In aggregate, these results indicate that
juvenile longfin smelt weaned on dry feed were able to meet their nutritional requirements
and maintained similar tissue and fatty acid compositions when compared to the fish fed
live prey alone. Given that longfin smelt exhibit a migratory life history, it remains crucial
that we continue exploring their optimal rearing conditions and nutritional requirements as
they experience ontogenetic physiological changes throughout their development [18–20].
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