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Astroglia or astrocytes, the most abundant cells in the
brain, are interposed between neuronal synapses and
microvasculature in the brain gray matter. They play a
pivotal role in brain metabolism as well as in the regula-
tion of cerebral blood flow, taking advantage of their
unique anatomical location. In particular, the astroglial
cellular metabolic compartment exerts supportive roles in
dedicating neurons to the generation of action potentials
and protects them against oxidative stress associated with
their high energy consumption. An impairment of normal
astroglial function, therefore, can lead to numerous neuro-
logical disorders including stroke, neurodegenerative dis-
eases, and neuroimmunological diseases, in which
metabolic derangements accelerate neuronal damage. The
neurovascular unit (NVU), the major components of
which include neurons, microvessels, and astroglia, is a
conceptual framework that was originally used to better
understand the pathophysiology of cerebral ischemia. At
present, the NVU is a tool for understanding normal brain
physiology as well as the pathophysiology of numerous
neurological disorders. The metabolic responses of
astroglia in the NVU can be either protective or deleteri-
ous. This review focuses on three major metabolic com-
partments: (i) glucose and lactate; (ii) fatty acid and
ketone bodies; and (iii) D- and L-serine. Both the benefi-
cial and the detrimental roles of compartmentalization
between neurons and astroglia will be discussed. A better
understanding of the astroglial metabolic response in the

NVU is expected to lead to the development of novel
therapeutic strategies for diverse neurological diseases.
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INTRODUCTION

Astroglia are one of the three types of glial cells in the
brain: astroglia (astrocytes), oligodendroglia (oligodendro-
cytes), and microglia.1–3 Astroglia are the most abundant
cells in the human brain and outnumber neurons by a fac-
tor of 1.4 in the human cerebral cortex.4,5 In addition,
their unique anatomical location, which is interposed
between neurons and cerebral microvessels and was
depicted more than 100 years ago in a sketch by a legend-
ary neuropathologist, Santiago Ramón y Cajal, has been
attracting the attention of many neuroscientists.6 In fact,
neurons do not have any direct contact with microvessels
despite their strict dependence on a continuous supply of
glucose and oxygen from outside the brain through the
cerebral blood flow. In contrast, 99% of the surfaces of
brain capillaries are covered by astroglial foot processes
(end-feet), indicating that all essential materials supplied
from the cerebral circulation must interact with astroglia
before reaching the neurons.7 The other side of the
astroglial end-feet envelopes synapses in the brain cortex.
Thus, synapses composed of presynaptic and postsynaptic
neurons as well as astroglial end-feet are known as tripar-
tite synapses.4,5,8,9 Moreover, astroglial cells are connected
to each other via gap junctions with connexin 43 channels,
forming a functional syncytium overall.10–12

The cardinal roles of astroglia in tripartite synapses are
the maintenance of normal synaptic function through met-
abolic support by taking advantage of their anatomical
location, which is interposed between synapses and
microvessels.13,14 Accumulating evidence supports the
notion that astroglia are also key players in the regulation
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of cerebral blood flow.15–20 The neurovascular unit (NVU)
is a conceptual framework that was originally used to
better understand the pathophysiology of cerebral
ischemia.21–23 Now, the NVU is a tool that can be used to
understand normal brain physiology as well as the patho-
physiology of numerous neurological disorders.24–29 Con-
versely, the malfunction of astroglia in the NVU
(i.e., “astrogliopathy”)30–34 induces neuronal dysfunction,
leading to various neurological disorders including
cerebrovascular disease (e.g., stroke and small vessel
disease-like Binswanger’s disease and cerebral autosomal-
dominant arteriopathy with subcortical infarct and leu-
koencephalopathy [CADASIL]/35 cerebral autosomal
recessive arteriopathy with subcortical infarct and leu-
koencephalopathy [CARASIL]),36,37 neurodegenerative
disease (e.g., Alzheimer’s disease,38,39 Parkinson’s
disease,40,41 and amyotrophic lateral sclerosis [ALS]),42–44

and neuroimmunological disease (e.g., multiple sclerosis
[MS],45–48 and neuromyelitis optica spectrum disorder
[NMOSD]).49,50 This review will focus on the supportive
roles of astroglia in the NVU from the perspective of three
major metabolic compartments with neurons: (i) glucose
and lactate; (ii) fatty acid and ketone bodies (KBs); and
(iii) D- and L-serine.

GLUCOSE AND LACATE

Oxidative metabolism of glucose is mandatory for
generating action potentials

The adult human brain weighs approximately 2% of the
total body weight and consumes 25% of the total body
glucose consumption and 20% of the oxygen consumption.
More precisely, the cerebral metabolic rate of glucose con-
sumption (CMRglc) and oxygen (CMRO2) in the adult
brain is 31 pmol/100 g/min and 156 pmol/100 g/min,
respectively.51,52 The ratio of CMRO2/CMRglc at resting
state is approximately 5.5, which is close to 6.0, the theo-
retical stoichiometry for the complete oxidation of glucose
with oxygen (C6H12O6 + 6O2 ! 6CO2 + 6H2O). The mea-
sured data indicate that almost all glucose is metabolized
oxidatively except for the consumption of some additional
glucose for non-oxidative metabolism. In fact, the brain is
strictly dependent on glucose for its energy produc-
tion.51,52 High CMRO2 and CMRglc levels produce ATP
efficiently with a ratio of 6.0, driving Na+,K+-ATPase to
maintain a steep ionic gradient across the cellular mem-
brane. When an action potential is generated, a rapid
influx of Na+ and a slow efflux of K+ follow. The func-
tional activation of the brain is locally related to glucose
consumption, indicating that glucose utilization in the
whole brain reflects mainly the neuronal consumption of
glucose.

Glucose utilization by astroglia

Using fluorescently labeled glucose analogs, the cellular
uptake of glucose can be evaluated in the brain cortex
in vivo.53,54 Glucose uptake occurs in neurons and
astroglia via different glucose transporters (GLUTs), that
is, GLUT3 and GLUT1, respectively (Fig. 1).55,56 Since
GLUT1 is also expressed in endothelial cells in brain cap-
illaries, glucose supplied by the cerebral circulation can
cross the blood–brain barrier (BBB). The congenital defi-
ciency of GLUT1 induces intractable seizures beginning in
infancy as well as mental retardation because of the
unavailability of glucose to neural cells arising from lim-
ited glucose transportation through the endothelium.57,58

Surprisingly, the brain has almost no storage of glucose,
and glucose must be supplied continuously via the blood
circulation.53,54 More precisely, astroglia contain small
amounts of glucose in the form of glycogen granules in
their cell bodies.59 Glycogen is degraded by a glycogen
phosphorylase (glycogenolysis), which is the astroglia-
specific enzyme, forming glucose-1-phosphate (G1P).60

G1P then enters the glycolytic metabolic pathway in
astroglia (Fig. 2). A total amount of glycogen content
measured in the brain can maintain its function for only
3 min, based on the CMRglc.

61 If glucose derived from
astroglial glycogen was available for neurons, it would be
of some help. Unfortunately, G1P cannot cross the cell
membrane because of its low lipid solubility. Instead, lac-
tate or pyruvate, the end-products of glycolysis, can exit
astroglia via monocarboxylate transporter 1 (MCT1) and
MCT4; they can then re-enter neurons via
monocarboxylate transporter 2 (MCT2), which is utilized
as an energy source for neuronal tricarboxylic acid (TCA)
cycle substrates (Fig. 1).62–64 Not only glycogen-derived
lactate/pyruvate, but also lactate/pyruvate from blood-
supplied glucose can be transferred to the neurons
(Fig. 2).65 If this intercellular compartmentalization
between neurons and astroglia operates in the resting
and/or activated brain, the measured CMRglc would reflect
mainly astroglial glucose utilization, since neurons utilize
lactate derived from astroglia. This hypothetical model,
termed the “astrocyte-neuron lactate shuttle hypothesis
(ANLSH)”, was originally proposed by Pellerin and
Magistretti in 1994 based on data obtained using cultured
cells66 and was supported by our findings67,68 but has
remained controversial for more than a quarter of a
century.69,70

Aerobic glycolysis in astroglia

Astroglia seem to be more strictly dependent on glucose,
and their metabolism, at least in cultured astroglia in vitro,
seems to be more glycolytic than that in cultured neurons.71

In fact, astroglia can survive if mitochondrial oxidative

© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of
Neuropathology.

122 S Takahashi



metabolism is inhibited, while neurons cannot.72 Glucose
uptake or utilization (phosphorylation by hexokinase [HK])
can be quantified using cultured astroglia and neurons
in vitro and in vivo using modern molecular techniques,73

while the quantitation of oxygen consumption is more

difficult. However, importantly, the importance of the
ANLSH is the capacity for lactate production by astroglia
irrespective of an adequate supply of oxygen, that is, aero-
bic glycolysis. Although under cerebral ischemia, both
astroglia and neurons produce large amounts of lactate that

Fig. 1 Metabolic compartment of glucose between astroglia and neurons in the neurovascular unit (NVU). Astroglia are interposed
between microvessels and neuronal synapses, forming the NVU. Glucose supplied from outside the brain can be transported to and uti-
lized by both astroglia and neurons (red lines). Glucose utilization by cultured astroglia (2–3 pmol/μg protein: red line) is two times
higher than that in cultured neurons (1 pmol/μg protein: red broken line), and astroglia produce lactate even under normoxic conditions
(aerobic glycolysis). Neuronal activation induces glutamate release from the pre-synaptic nerve terminal; the glutamate is then taken up
by astroglia, and this uptake, in turn, accelerates glucose consumption, leading to further lactate release. Lactate, then, serves as an
energy substrate for neurons (astrocyte-neuron lactate shuttle hypothesis, ANLSH). The basal pentose-phosphate pathway (PPP) flux
measured in cultured astroglia is approximately seven times higher than that in cultured neurons. Neuronal activation induces astroglial
glycolysis, leading to increased flux to the PPP. Increases in NADPH in astroglia serve as a redox regulator that maintains the reduced
form of glutathione. ① Na+,K+-ATPase. ② Glucose transporter 1 (GLUT1). ③ Glucose transporter 3 (GLUT3). ④ Monocarboxylate
transporter 1 (MCT1) and MCT4 (astrocytic form). ⑤ MCT2 (neuronal form). ⑥ System N transporter (astrocytic form). ⑦ System A
transporter (neuronal form). ⑧ Na+-dependent glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST). ⑨ Fatty
acid-binding protein (FABP).

Fig. 2 Glycogen deposits in astroglia
are a potential source for lactate produc-
tion. An astroglia-specific enzyme, glyco-
gen phosphorylase, degrades glycogen
deposits in astroglia. In addition
to glucose-derived glucose-6-phosphate
(pink arrow), glycogen-derived glucose-
1-phosphate (green arrow) is metabo-
lized in a glycolytic pathway, producing
lactate. When astroglia are cultured
under high glucose conditions, the glyco-
gen content and lactate production both
increase.

© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of
Neuropathology.

Astroglia and neurovascular unit 123



accumulate in tissues, experimental data show that astroglia
in vitro produce a large amount of lactate under normal
(21%) oxygen environments.74 In similar environments, cul-
tured neurons produce less lactate from glucose. These phe-
nomena have led to the hypothesis that glucose supplied
from the cerebral circulation is taken up by mainly astroglia
taking advantage of their anatomical location and is metab-
olized in astroglia to produce lactate, which is exported to
neurons via MCT1 and 4. Neurons can technically utilize
both glucose and lactate, as they express both GLUT3 and
lactate transporter (MCT2). In contrast to GLUT1 defi-
ciency, the congenital deficiency of neuron-specific GLUT
has not been reported. Only a mouse model of
GLUT3-knockout (KO) has been reported to exhibit autism-
like phenotypes, suggesting that neurons can survive without
glucose under an environment where lactate is available.75 In
fact, neuronal lactate dehydrogenase (LDH) isozyme favors
the conversion of lactate to pyruvate, while astroglial LDH
isozyme favors the formation of lactate from pyruvate.76

Supporting this notion, in vitro studies show that glucose con-
sumption by neurons and that by astroglia are similar when
lactate is not available. However, interestingly, when both
glucose and lactate are available, cultured neurons preferen-
tially utilize lactate as the TCA cycle substrate.77–79

The ANLSH emphasizes that astroglial lactate produc-
tion is enhanced by glutamate stimulation in association
with neuronal activation.66 Glutamate released from acti-
vated pre-synaptic neurons is known to be rapidly taken
up by astroglia that envelop the synapse.80,81 The
astroglial uptake of glutamate is dependent on the Na+-
dependent glutamate transporter-1 (GLT-1) and gluta-
mate aspartate transporter (GLAST) (Fig. 1).80,81 Co-

transported Na+ and glutamate increase the intracellular
concentration of Na+ ([Na+]i), leading to the activation of
Na+,K+-ATPase; this, in turn, accelerates ATP production
in astroglia. Whether ATP production in astroglia is
dependent on glycolysis or the mitochondrial oxidative
metabolism of glucose continues to be a matter of long-
lasting debate.69,70,82,83 An in vitro experiment showed
that glutamate stimulation does, indeed, increase glucose
consumption and lactate production by astroglia
(i.e., aerobic glycolysis).66–68,74 The functional activation
of in vivo brain also induces transient increases in lactate
production locally in distinct lesions of an activated site
where glucose utilization is eventually increased.84,85 How-
ever, in vivo studies have not been able to determine the
origin of the lactate because of a lack of cellular resolu-
tion. Even though astroglia produce lactate from glucose,
astroglia are not necessarily devoid of mitochondrial func-
tion. Of note, glutamate that is taken up by astroglia can
also serve as a substrate of the TCA cycle after its conver-
sion to α-ketoglutarate, implying that increased lactate
production is not necessarily a reflection of solely glyco-
lytic activation and that oxidative metabolism can also be
activated using substrates other than glucose. Moreover,
glutamate-derived α-ketoglutarate can also produce lactate
during TCA cycle metabolism.86 Glutamate reportedly
inhibits the neuronal utilization of glucose,87 implying a
shift in the energy source from glucose to lactate (Fig. 3).

Dual roles of lactate

Irrespective of accumulating evidence supporting the
ANLSH, the fate of lactate, if it is really produced by

Fig. 3 Glutamate taken up by astroglia serves as an astroglial tricarboxylic acid (TCA) cycle intermediate, leading to lactate produc-
tion. Glutamate released from pre-synaptic neurons is taken up by astroglia and recycled back to neurons (glutamate-glutamine cycle).
Some of the glutamate in astroglia is converted to α-ketoglutarate, which enters the TCA cycle (red line) as an intermediate substrate,
leading to astroglial lactate production by malic enzyme. ① Na+,K+-ATPase. ② Glucose transporter 1 (GLUT1). ③ Glucose transporter
3 (GLUT3). ④ Monocarboxylate transporter 1 (MCT1) and MCT4 (astrocytic form). ⑤ MCT2 (neuronal form). ⑥ System N transporter
(astrocytic form). ⑦ System A transporter (neuronal form). ⑧ Na+-dependent glutamate transporter-1 (GLT-1) and glutamate aspartate
transporter (GLAST). ⑨ Fatty acid-binding protein (FABP)
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astroglia via a glutamate signal from activated neurons,
has remained a matter of controversy for more than
25 years.69,70 The original ANLSH followed by numerous
reports proposed that activated neurons consume lactate
produced by astroglia.66,88–94 A strong argument for this is
based on a kinetic property of MCT2 expressed in neu-
rons, which has a low kilometer value. The transportation
of lactate into neurons becomes saturated at a low concen-
tration of lactate, and neurons cannot utilize additional
lactate even if it is produced by activated astroglia.95–105

Conversely, whether neuronal ATP production is exclu-
sively dependent on the uptake of glucose by neurons
remains uncertain. The in vivo truth remains to be
clarified.

Another possible role of lactate is as a ligand of
hydroxycarboxylic acid receptor 1 (HCAR1) expressed in
neurons.106,107 HCAR1, a G-protein coupled receptor, sup-
presses neuronal excitability by increasing the intracellular
cAMP concentration. Irrespective of the origin of lactate,
direct evidence supports that extracellular lactate regulates
synaptic activity (i.e., mainly inhibitory effects) and that the
disinhibition of neuronal excitation can cause intractable epi-
lepsy. Assuming that lactate is mainly produced by astroglia,
the impairment of lactate production by astroglia can lead to
neuronal damage through hyper-excitation
(i.e., excitotoxicity). In fact, neuronal degeneration in ALS,
in which an unknown mechanism induces motor neuron
death, has been hypothesized to be induced by the impair-
ment of astroglial glutamate uptake as well as the hyper-
excitation of spinal motor neurons.108

Astroglial lactate production, especially that derived
from glycogen (i.e., glycogenolysis), has been implicated in
the formation of long-term memory.109,110 The exact
mechanism by which lactate consolidates memories has
not been elucidated and remains somewhat controver-
sial.103,111,112 Several experiments support the idea that
lactate produced in astroglia may serve as an energy
source for neuronal synapse remodeling and gene expres-
sion, but not for the TCA cycle.113 The role of lactate as a
ligand for HCAR1 remains to be elucidated.

Neuroprotective roles of astroglial glycolysis
and PPP

Of note, the functional activation of neurons increases glu-
cose utilization locally, and both neurons and astroglia
contribute to glucose consumption. We have focused on
the roles of glucose metabolism, especially glycolysis in
astroglia, from the perspective of their supportive aspects
in the protection of neurons against oxidative stress.30–34

Neuronal energy production is dependent on mitochon-
drial oxidative metabolism, which produces small amounts
of reactive oxygen species (ROS). Oxidative stress has

been implicated in the pathogenesis of numerous neuro-
logical disorders (i.e., stroke, ALS, Parkinson’s disease) as
well as normal aging of the brain.30–34 The glutathione sys-
tem acts as an intrinsic protective mechanism. Glutathione
peroxidase reduces ROS by converting it to H2O2 in con-
cert with the conversion of a reduced form of glutathione
(GSH) to an oxidized form (GSSG).30,114,115 The mainte-
nance of the GSH concentration is dependent on nicotin-
amide adenine dinucleotide phosphate (NADPH), a
product of the pentose-phosphate pathway (PPP), which is
a shunt pathway of glycolysis (Fig. 1).30,51,52 Therefore,
the influx to the PPP in glycolysis is an index of PPP activ-
ity and reflects the anti-oxidative function of many kinds
of cells. PPP flux is regulated by glucose-6-phosphate
dehydrogenase (G6PDH), which is a rate-limiting enzyme
of this shunt pathway.30,51,52 The basal influx to the PPP in
astroglia is approximately seven times as high as that in
neurons, suggesting that glycolysis has anti-oxidative roles
in astroglia.30,31

Increased glucose phosphorylation by HK leads to PPP
flux through the allosteric regulation of G6PDH. Thus, a
high glucose environment can activate PPP flux in
astroglia.30,31 In diabetic patients, a high plasma glucose
concentration is associated with a high glucose content in
the brain because of the facilitated diffusion of glucose by
GLUT1. Whether a high glucose level in the brain readily
increases glucose phosphorylation is debatable.30,31

Because the Km (Michaelis constant) of HK is low, in
clear contrast to glucokinase (GK) in the liver, glucose
phosphorylation becomes saturated at a low glucose con-
centration.51,52 The existence of high-Km HK in the brain
has been postulated. Our study showed that PPP flux
increases according to the glucose concentration in an
assay solution.30,31 These observations might reflect the
presence of high-Km GK, like HK, in the brain. If this is
true for in vivo brain, neuronal activation would induce
astroglial glucose utilization via glutamate, leading to
astroglial PPP activation. Importantly, the synthetic activ-
ity of glutathione, which consists of three amino acids, glu-
tamine, cysteine, and alanine, is higher in astroglia than in
neurons.116,117 As mentioned above, the glycolytic activity
as well as the PPP flux are dominant in astroglia, leading
to the anti-oxidative mechanism is astroglia.30,31 When
glutathione is synthesized, it must be transferred in a
reduced form.116,117 In addition, the reduced form of GSH
itself can exert an anti-oxidative role (see dopamine-
induced neurotoxicity).

Transcriptional regulation of PPP flux by the
Keap1/Nrf2 system

Another mechanism of PPP flux regulation is the tran-
scriptional control of a key PPP enzyme. The rate-limiting
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enzyme of PPP flux is G6PDH, and its transcription is
under the control of the transcriptional factor nuclear
factor-erythroid-2-related factor 2 (Nrf2).118,119 Nrf2 is
anchored by an adaptor protein of Kelchlike ECH-
associated protein 1 (Keap1) in the cytosol. As a complex,
Keap1/Nrf2 is degraded constantly by the proteasome sys-
tem, and Nrf2 is not in an active state in terms of tran-
scriptional control. When cells are exposed to various
stress, a conformational modification of Keap1 or Nrf2
occurs and results in dissociated Nrf2 being released and
binding to the antioxidant response element (ARE),
where it initiates the transcription of anti-stress response
proteins including G6PDH.118–121 Importantly, glutathione
synthesis enzymes are also under the regulation of the
Keap1/Nrf2 system. Astroglial glycolysis and its shunt
pathway, the PPP, seem to play an important role in
protecting neurons against oxidative stress through the
Keap1/Nrf2 system.30,31

Dopamine released from dopaminergic neurons is
known to be auto-oxidized to form dopamine quinone and
ROS, which, in turn, damage neurons. Astroglia releases
GSH and reduces dopamine-induced ROS toxicity in
Nrf2-depenent manners. We have found that astroglia
protect neurons against dopamine exposure by reducing
ROS, while astroglia prepared from Nrf2-KO mice are
incapable of such activity.34 An in vivo model supports the
notion that Nrf2-KO mice are susceptible to a Parkinson’s
disease-like phenotype and that an Nrf2 activator can
modify the progression of Parkinson’s disease.34

Neuro-inflammation plays a cardinal role in the patho-
genesis of stroke.33,122–124 During the early phase of
stroke, ischemic cell damage makes neurons release vari-
ous kinds of molecules, such as damage-associated molec-
ular pattern, which, in turn, act as Toll-like receptor
4 (TLR4) ligands. Microglia in which TLRs are expressed
abundantly produce various pro-inflammatory cytokines,

accelerating neuronal damage. Nitric oxide (NO) is
thought to be one of the molecules that plays a pro-
inflammatory role.122–124 Such actions of microglia switch
astroglia from acting as neuroprotectors to acting as neu-
rodamagers.125 However, we found that upon stimulation
with lipopolysaccharide (LPS), a classical TLR ligand,
microglia produce NO that diffuses into astroglia, activat-
ing the PPP through the S-nitrosylation of Keap1, which
facilitates Nrf2 translocation to the nucleus and triggers
G6PDH transcriptional activation.33

FATTY ACID AND KB

KBs produced from fatty acids serve as energy
substrates for neurons

Fatty acids and KBs form the second metabolic compart-
ment between neurons and astroglia (Fig. 4).126–131 KBs, con-
sisting of acetoacetate (AA), acetone, and β-hydroxybutyrate
(BHB), are alternative substrates for glucose. KBs, rather
than glucose, are the main energy substrates in the brains of
infants. KBs and lactate share the same MCTs. In adults,
KBs are produced in the liver under reduced glucose avail-
ability, such as starvation and insulin resistance. KBs pro-
duced in the liver are transported into the brain where they
are utilized by neurons as well as glial cells as substrates for
the TCA cycle. After being taken up by neural cells via
MCT1 or MCT2, KBs are converted to acetyl-CoA; a fur-
ther metabolic process subsequently occurs in the TCA cycle
(Fig. 5). In contrast to lactate or pyruvate, which must also
be converted to acetyl-CoA by pyruvate dehydrogenase
complex (PDHC) before entering the TCA cycle, KBs do
not require PDHC activity. PDHC is a key enzyme in glu-
cose metabolism that links glycolysis and the TCA cycle.
Despite being of vital importance, PDHC is susceptible to
oxidative stress (Fig. 5).32,132,133 Therefore, neurons are not
capable of utilizing lactate, which accumulates during

Fig. 4 Ketone bodies (KBs) produced
by astroglia serve as energy substrates
for neurons. Fatty acids supplied from
the blood are transported to astroglia in
the brain, generating KBs; these KBs
can fuel neurons as a tricarboxylic acid
(TCA) cycle substrate (red line). ①

Na+,K+-ATPase. ② Glucose transporter
1 (GLUT1). ③ Glucose transporter
3 (GLUT3). ④ Monocarboxylate trans-
porters 1 (MCT1) and MCT4 (astrocytic
form). ⑤ MCT2 (neuronal form). ⑥ Sys-
tem N transporter (astrocytic form). ⑦

System A transporter (neuronal form). ⑧
Na+-dependent glutamate transporter-1
(GLT-1) and glutamate aspartate trans-
porter (GLAST). ⑨ Fatty acid-binding
protein (FABP).
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cerebral ischemia, after reperfusion (re-oxygenation) because
of PDHC impairment, with ROS being produced in associa-
tion with the resupply of O2 to damaged tissue.

In contrast, KBs, for which PDHC is not required to
enter the TCA cycle, can serve as energy substrates for
the mitochondrial TCA cycle in neurons after re-oxygena-
tion. In addition, KBs play neuroprotective roles in several
different ways.32,126–128 More importantly, KBs can be sup-
plied from inside the brain: astroglia are capable of gener-
ating KBs and together form a metabolic compartment
with neurons (Fig. 4).32,126–128 KBs are produced from
fatty acids as well as an amino acid (leucine).134 The main
sources of KB production are long-chain fatty acids. We
have evaluated KB production from palmitic acid in
astroglia, compared with that in neurons, and our results
suggested that KB produced in astroglia can serve as an
alternative energy substrate for the TCA cycle in
neurons.32

Astroglia produce KBs that act on neurons
through transporters and receptors

Fatty acids are bound to albumin in the blood, and only
free fatty acids can cross the BBB.135,136 Although the
brain levels of soluble fatty acids have not been reported,
fatty acids have long been known to be BBB permeable.
Neural cells also reportedly express fatty acid-binding pro-
teins (FABPs) that take up free fatty acids.137–140 Long-
chain fatty acids (> 12 carbons) such as palmitic acid
(PAL, 16 carbons), a predominant fatty acid in the body,
are then metabolized to produce long-chain fatty acid
acyl-CoA. Fatty acid acyl-CoA is then transported into

mitochondria by carnitine palmitoyltransferase I (CPT-I),
which exists in the outer membrane of mitochondria and
undergoes β-oxidation. Because astrocytes envelop
microvessels in the brain, they are likely to be the main
site of fatty acid metabolism in the brain (Fig. 6).7

The initial step is β-oxidation, and we measured KB
production using 14C-labeled palmitic acid. Long-chain
fatty acids (e.g., PAL) are an important source for KB
production.132,133 Although FABP is reportedly expressed
in the endothelium and helps with the transportation of
fatty acids into the brain, the kinetic properties of the
transportation of long-chain fatty acids into the brain
remains a topic of debate. Another source of KB produc-
tion in the brain is amino acids. Leucine can be converted
to KB.134

KB production by astroglia is regulated by AMP-
dependent kinase (AMPK), an energy sensor in cells
(Fig. 7). When astroglia are exposed to hypoxia and/or
hypoglycemia, KB production by astroglia is stimulated by
metformin, an oral diabetic drug. Guzmán and Blázquez126

reported that AMPK regulates astroglial ketogenesis by phos-
phorylating acetyl-CoA carboxylase (ACC), thereby inhibiting
ACC activity and reducing cytosolic malonyl-CoA—a
major physiological inhibitor of CPT-I (a rate-limiting
enzyme of fatty acid metabolism). In fact, 5-amino-1-β-D-
ribofuranosylimidazole-4-carboxamide (AICAR), a cell-
permeable analog of AMP that activates AMPK,141

enhances ketogenesis in astroglia. Because AMPK is a
sensor of AMP/ATP and acts as an indicator of the energy
reserve in cells, Guzmán and Blázquez126 speculated that
hypoxia/ischemia may stimulate astroglial ketogenesis;
they proved that chemical hypoxia induced by 1 mmol/L

Fig. 5 Ketone bodies (KBs) are a bet-
ter energy source for neurons after
ischemia/reperfusion. During ischemia/
hypoxia, both lactate and KBs are gener-
ated in astroglia. The malfunction of the
pyruvate dehydrogenase complex (PDHC)
as a result of reperfusion injury enables
neurons to utilize KBs, rather than lactate,
as a more efficient tricarboxylic acid (TCA)
cycle substrate.
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of NaN3, which inhibits cytochrome oxidase and thus the
mitochondrial respiratory chain,142 for 1 h did indeed
enhance ketogenesis in cultured astroglia.143

We previously reported that hypoxia and/or hypoglyce-
mia enhances astroglial KB production in vitro and that
metformin, an AMPK activator, also induces KB produc-
tion in astroglia (Fig. 7).32 Moreover, neurons that had
been exposed to hypoxic conditions exhibited reduced oxi-
dative capacities for lactate and pyruvate, while the oxida-
tion of BHB was preserved, suggesting astroglial

metabolic support through KB production under ischemia/
reperfusion.32 Even without the presence of long-chain
fatty acids, astroglia are capable of producing KBs from
leucine, although the physiological relevance of this mech-
anism remains to be determined.

BHB as a ligand for HCAR2

The recent discovery that BHB acts as an endogenous
ligand for hydroxycarboxylic acid receptor 2 (HCAR2)

Fig. 6 Ketone body (KB) production
by astroglia. A long-chain fatty acid
(palmitic acid) is transported into hepa-
tocytes in the liver, generating acetyl-
CoA through β-oxidation; acetyl-CoA,
in turn, serves as a tricarboxylic acid
(TCA) cycle substrate. Astroglia are
equipped with a similar metabolic activ-
ity and are capable of generating KBs.
As KBs are not utilized in the TCA
cycle of astroglia, they are transported
out through monocarboxylate trans-
porters (MCTs).

Fig. 7 Regulation of ketone body
(KB) production by astroglia. Hypoxia
and/or hypoglycemia activates adenosine
monophosphate-dependent kinase
(AMPK), which phosphorylates and
inhibits acetyl-CoA carboxylase.
Decreases in malonyl-CoA disinhibit car-
nitine palmitoyltransferase I (CPT-I),
leading to increased KB production. Both
5-amino-1-β-D-ribofuranosylimidazole-
4-carboxamide (AICAR) and metformin
activate AMPK and induce increases in
KB production in astroglia.
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has expanded the role of BHB beyond that of a mere
energy substrate.144–146 An experimental ischemic model
showed that the activation of HCAR2 reduced the infarct
volume, and this beneficial effect was lost in animals with
the genetic deletion of HCAR2.145 Interestingly, HCAR2
was expressed mostly in peripheral blood cells. Astroglia-
derived BHB can activate HCAR2 in brain cells more effi-
ciently, and accumulating evidence suggests that microglia
in the brain also express HCAR2.147

AMINO ACID AND D-/L-SERINE

Glutamate and NMDA receptor co-agonists

Glutamate plays a cardinal role in synaptic function
through glutamate receptors in postsynaptic neurons.
Especially, the N-methyl-D-aspartate (NMDA) receptor
can act as a double-edged sword. The NMDA receptor is
necessary for normal memory function, and NMDA defi-
cits can induce psychiatric disorders. In contrast,
overstimulation of the NMDA receptor induces Ca2+

influx and leads to neuronal death, that is, excitotoxicity.
These two faces of the glutamate-NMDA receptor’s
nature make it difficult to use NMDA antagonists as neu-
roprotective agents against stroke and neurodegenerative
diseases, even though NMDA blockers do exert strong
neuroprotection.148,149 Another aspect of the NMDA
receptor is the discovery of co-agonists that work in con-
cert with glutamate.150–155 At present, two different co-
agonists have been identified: D-serine and glycine. The
former acts as a co-agonist of glutamate in synaptic
NMDA receptors, and the latter acts in extra-synaptic
NMDA receptors.154

D-serine is converted from L-serine in pre-
synaptic neurons

D-serine is an enantiomer of L-serine and is thought to be
converted from L-serine by serine racemase (SRR).156–159

SRR is almost exclusively expressed in pre-synaptic neu-
rons, indicating that pre-synaptic neurons release both glu-
tamate and D-serine into the synaptic cleft and modulate
postsynaptic function (Fig. 8).155,156 Of note, L-serine is
more abundant in astroglia than in neurons. The de novo
synthesis of L-serine occurs exclusively in astroglia, and its
synthetic pathway branches at glycolysis, implying the
presence of another metabolic compartment between neu-
rons and astroglia (Fig. 8).157–159

Following the first report of the effect of SRR deletion
on ischemic brain damage,160 we have evaluated the neu-
roprotective effect of the elimination of D-serine in a
mouse ischemic stroke model.161 SRR-KO mice exhibited
smaller infarct volumes and better functional recovery,
compared with control mice, after experimental middle

cerebral artery occlusion and reperfusion, indicating that
D-serine deletion can, at least in stroke, be used as a neu-
roprotective strategy.161 However, L-serine deletion does
not necessarily enable neuroprotection.

De novo synthesis of L-serine in astroglia and
possible neuroprotection

L-serine is produced in astroglia from the glycolytic path-
way via enzyme 3-phosphoglycerate dehydrogenase
(3PGDH).157–159 The astrocyte-specific knockout of this
enzyme dramatically reduces L-serine in the brain and
probably also reduces D-serine in neurons. Using the mid-
dle cerebral artery occlusion (MCAO) model, the effect of
reducing L-serine on the stroke volume was evaluated.
Surprisingly, the infarct volume was not significantly
reduced, suggesting an opposite function, that is,
neuroprotection, of L-serine (unpublished data). In fact,
Wang et al.162 found that L-serine infusion reduced the
infarct volume in a mouse MCAO model, and they specu-
lated that this action of L-serine may be dependent on a
vasodilatory effect, since L-serine increases cerebral blood
flow.163 Furthermore, a neuro-restorative role of L-serine,
in addition to its neuroprotective role, has been
postulated.164

SUMMARY AND UNSOLVED ISSUES

Metabolic interaction between astroglia and
neurons

Accumulating evidence indicates astroglial metabolic sup-
ports through at least three compartments under both nor-
mal physiological as well as pathophysiological conditions.
The cardinal metabolic compartments are as follows:
(i) glucose and lactate; (ii) fatty acids and KBs; and
(iii) D- and L-serine. Of note, most available evidence is
based on in vitro studies using rodent neural cell cultures.
A major criticism is that rodent neurons and astroglia
might not be an appropriate model for human brain
cells.165 In particular, the high glycolytic metabolic activity
with lactate production might be a characteristic of rodent
cell cultures only. Recent technology utilizing induced-
pluripotent stem cells (iPSCs) has enabled us to evaluate
human neurons and astroglia in vitro. Thus far, only a lim-
ited number of studies have focused on the metabolic
compartments between these types of cells.166 We recently
induced cortical astroglia and spinal motor neurons from
iPSCs prepared from normal healthy adults and measured
the glycolytic activities of both cell types. So far, the
astroglial glycolytic capacity seems to be higher than the
neuronal capacity (unpublished data). Further confirma-
tion of these findings using in vivo human brain studies is
warranted.
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Compartmentalization between oligodendroglia
and astroglia

In the white matter of the brain, the axons of neurons are
myelinated by oligodendrocytes, which enable saltatory
conduction. Similar to the gray matter of the brain, small
vessels are completely covered by astroglial end-feet.7

Thus, substrates for energy production as well as structure
construction must be supplied through the astroglia to the
oligodendroglia. More precisely, at Ranvier nodes, where
the ionic flux is most active, the astroglial end-feet are in
direct contact with axons.167,168 Assuming that axons uti-
lize lactate preferentially as an energy substrate for the
TCA cycle, how lactate is supplied to the axons is an inter-
esting and unsolved issue: is lactate supplied by oligoden-
droglia or astroglia? Astroglia can supply lactate directly
at Ranvier nodes, similar to their actions at tripartite syn-
apses. However, a recent report has elucidated that oligo-
dendroglia metabolize glucose glycolytically to produce
lactate.169,170 Glucose supplied from microvessels can be
used as a direct substrate for oligodendroglia to support
neuronal energy metabolism.9,171,172 The CMRglc in the
white matter is much less than that in the gray matter, and
the exact contributions of astroglia, oligodendroglia, and
neurons (axons) to CMRglc and the pathways of glucose
transport to oligodendroglia and neurons remain to be
solved.

The fate of KBs produced in astroglia in the white mat-
ter should be evaluated from the perspective of myelin
formation. KBs can be utilized in lipid synthesis for the
cell membrane.173–175 Membrane formation is dependent
on cholesterol, which can be supplied directly from
astroglia as KBs. A dysfunction in cholesterol trafficking
has been implicated in memory impairment.175 How
astroglial metabolic support is needed for myelination by
oligodendroglia remains to be elucidated.176

Energy metabolism in microglia

Microglia are the last type of glial cells in the brain.
Although the origin of this type of glial cells seems to dif-
fer from that of other glial cells, microglia reside in the
brain during the early developmental stage and play a piv-
otal role in the immunological response of the brain by
regulating synaptic pruning and scavenging damaged neu-
rons.177,178 As mentioned in previous chapters, microglia
have a strong influence on astroglial responses of either a
harmful or beneficial nature.33,125 We have examined the
interaction between astroglia and microglia via NO. Upon
stimulation by LPS, a classical ligand of TLR4, microglia
are activated to produce NO which, in turn, induces neu-
roprotective astroglia through the Keap1/Nrf2 system.33

Moreover, LPS stimulation activates NADPH oxidase
(NOX), which is highly expressed in microglia. In fact,
microglia have a strong capacity to produce ROS and,
therefore, the anti-oxidative system should also be
equipped to protect itself. A limited number of studies
have revealed that the microglial PPP is active probably to
keep the glutathione system active, as in astroglia. Our
observations suggest that the microglial PPP flux is as high
as the astroglial one (unpublished data), suggesting a high
glycolytic metabolism in microglia.

Another issue to be solved is how microglial energy pro-
duction is regulated in the light of physiological and patho-
physiological aspects.179,180 Namely, microglia can be
ameboid in shape and can travel upon various stimulations.
The physical movement of cells requires more energy than
that of cells in a quiescent state. Whether microglia utilize
glucose in the extracellular space or lactate or KBs is an
interesting question that remains to be answered. Fatty
acids could be another candidate, as cardiac and skeletal
muscles preferentially utilize fatty acids over glucose. The
alteration of MCT expression in microglia has been

Fig. 8 D- and L-serine form amino acid
compartmentalization between neurons
and astroglia. The de novo synthesis of
L-serine occurs in the astroglial glyco-
lytic pathway. L-serine is transported to
neurons, where it is converted to D-
serine by serine racemase (SRR) and
acts as a co-agonist of N-methyl-D-
aspartate (NMDA) receptors (red line).
① Na+,K+-ATPase. ② Glucose trans-
porter 1 (GLUT1). ③ Glucose trans-
porter 3 (GLUT3). ④ Monocarboxylate
transporter 1 (MCT1) and MCT4 (astro-
cytic form). ⑤ MCT2 (neuronal form). ⑥
Astrocytic Na+-independent asc-type
amino acid transporter-1 (ASCT-1). ⑦

ASCT-2.
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reported, indicating that lactate or KBs may also be energy
substrates for microglial energy metabolism.181
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