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Child Weight Gain Trajectories 
Linked To Oral Microbiota 
Composition
Sarah J. C. Craig   1,2, Daniel Blankenberg   3,11, Alice Carla Luisa Parodi4, Ian M. Paul1,5, 
Leann L. Birch6, Jennifer S. Savage7,8, Michele E. Marini7, Jennifer L. Stokes5, 
Anton Nekrutenko3, Matthew Reimherr1,9, Francesca Chiaromonte1,9,10 & 
Kateryna D. Makova1,2

Gut and oral microbiota perturbations have been observed in obese adults and adolescents; less is 
known about their influence on weight gain in young children. Here we analyzed the gut and oral 
microbiota of 226 two-year-olds with 16S rRNA gene sequencing. Weight and length were measured 
at seven time points and used to identify children with rapid infant weight gain (a strong risk factor 
for childhood obesity), and to derive growth curves with innovative Functional Data Analysis (FDA) 
techniques. We showed that growth curves were associated negatively with diversity, and positively 
with the Firmicutes-to-Bacteroidetes ratio, of the oral microbiota. We also demonstrated an association 
between the gut microbiota and child growth, even after controlling for the effect of diet on the 
microbiota. Lastly, we identified several bacterial genera that were associated with child growth 
patterns. These results suggest that by the age of two, the oral microbiota of children with rapid 
infant weight gain may have already begun to establish patterns often seen in obese adults. They also 
suggest that the gut microbiota at age two, while strongly influenced by diet, does not harbor obesity 
signatures many researchers identified in later life stages.

One in three children in the United States are overweight or obese1. An association between this phenotype and the 
microbiota (a collection of microorganisms)2 of the host has been shown in multiple studies (reviewed in3). The most 
striking evidence of this phenomenon comes from mice: germ-free mice inoculated with the microbiota of obese mice 
were shown to develop obesity, whereas their littermates inoculated with the microbiota of lean mice did not4,5. Relative 
to lean mice, obese mice displayed an increase in Firmicutes and a decline in Bacteroidetes6. Similar patterns have been 
observed in humans; the gut microbiota of obese adult and adolescent individuals also displayed low diversity7,8 and an 
elevated Firmicutes-to-Bacteroidetes (F:B) ratio7–9. However, these gut microbiota alterations are not universally linked 
to obesity3,10,11. Study results frequently depend on the methods used (e.g. 16S variable region analyzed, sequencing 
platform, or computational pipeline) and a number of co-factors that can affect gut microbiota − diet12,13, exposure to 
antibiotics14, the use of non-steroid anti-inflammatory drugs15, host genetics16–18, and age19. Some published reports 
investigated the connection between the gut microbiota and binary differences in outcomes of growth in young chil-
dren8. Importantly though, to our knowledge, no prior study explored the connection between the gut microbiota and 
the actual temporal trajectories of weight gain in young children. In particular the role of the gut microbiota during the 
earliest stages of weight gain − for neonates (from birth to one month), infants (1–12 months), and toddlers (12–24 
months) − remain underexplored. Weight gain trajectories vary greatly among children20, and thus may represent  
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a more informative phenotype than a binary outcome (stunted vs. normal, or obese vs. normal) and may increase 
statistical power in detecting associations between weight gain and microbiota.

In contrast to the many studies concerning the gut microbiota, very few studies explored the oral microbiota 
and its relationship with weight gain. These latter studies stem from the observed relationship between periodon-
tal disease prevalence and obesity in adults21,22. There is a body of literature investigating differences in the oral 
microbiota in relation to periodontal disease and dental caries23–27. Several studies directly investigating the rela-
tionship between oral microbiota and obesity, again through the lens of oral health, found differences in the oral 
microbiota composition of obese vs. lean adults and adolescents28,29. One such study of oral microbiota in adults 
pointed to the Bacteroidetes species, Tannerella forsythia, as having different prevalence in healthy-weight, over-
weight, and obese groups30. In adult women’s oral microbiota it was found that Selenomonas noxia, a Firmicutes 
species, can predict overweight status29. In adolescents’ oral microbiota, Zeigler and colleagues documented an 
increase of both Firmicutes and Bacteroidetes in obese compared to normal-weight individuals, with no signifi-
cant difference in the abundance between these two phyla28. As with the gut microbiota, to our knowledge, there 
has been no study investigating the relationship of the oral microbiota with the temporal growth trajectories of 
young children.

Early childhood is a time marked by dramatic microbiota changes31–35. A pivotal seeding of the child’s micro-
biota occurs during delivery. Infants delivered vaginally have oral and gut microbiota similar to their mothers’ 
vaginal microbiota35–37, while infants delivered via Cesarean section have oral and gut microbiota that resem-
ble their mothers’ skin microbiota38. Factors that could influence the composition of this influx are the moth-
er’s weight gain39, diabetes40, and smoking during pregnancy41. Nonetheless, differences in gut microbiota due 
to delivery mode might be erased by the mounting effects of other factors as early as six weeks after birth35. 
Diet is one such factor. The gut microbiota differs between breast- and formula-fed infants35, and the first year 
after birth also comprises other diet transitions affecting gut and oral microbiota33,42. For instance, high-fat and 
high-carbohydrate diets have been associated with high and low infant gut microbiota F:B ratios, respectively43. 
Aside from diet, antibiotics have been shown to influence weight. For instance, exposure to antibiotics in the 
first two years was associated with higher weight in later childhood14,44–46, but this link has been recently ques-
tioned47,48. Additionally, the use of acid-reducing drugs (proton pump inhibitors and histamine antagonists) 
have been associated with decreased gut microbiota diversity in adults and premature infants (<34 weeks gesta-
tion)49–51. These drugs are widely prescribed, however we are only now beginning to understand their potential 
effects on the adult microbiota, and know even less about their influence on a child’s developing microbiota. Early 
life transitions and their effects on the gut microbiota are often described as “chaotic”32 perhaps because they hap-
pen over a short period of time, or because there is not a specific order to their succession33. Nonetheless, within 
the first several years of life the children’s gut microbiota converge on a more “adult-like” composition18,19,34,52.

In this report we present results from comprehensive analyses of microbiota composition with a wealth of 
clinical, anthropometric, demographic, and behavioral variables collected on 236 mother-child dyads enrolled 
in the Intervention Nurses Start Infants Growing on Healthy Trajectories (INSIGHT) study53. Our goals for this 
study were to: (a) model children growth curves and examine their associations with oral and gut microbiota; (b) 
assess whether oral and gut microbiotas differ between children with rapid vs. non-rapid infant weight gain; (c) 
investigate whether there is any relationship between a mother’s oral microbiota and her child’s weight trajectory, 
and (d) analyze whether diet and other factors have an impact on oral and gut microbiota and/or the growth of 
the child. Our results demonstrated significant associations between the oral microbiota, as established at age 
two, and rapid weight gain during the first two years after birth. We also provided evidence for significant effects 
of diet on the gut microbiota, which may modulate growth trajectories in children. Finally, we pioneered the use 
of functional data analysis (FDA) techniques in microbiota studies; these techniques allow us to fully leverage the 
complex, multifaceted phenotypic dynamics of the surveyed individuals.

Results
Oral and gut microbiota profiling.  From the 279 families recruited in INSIGHT that had complete longi-
tudinal anthropometric and behavioral measurements over the first two years after birth53, we collected samples 
from 236 mother-child dyads (specifically, oral samples for 229 mothers and 225 children, and stool samples 
for 200 children; see Supplementary Fig. S1 for a graphical summary and a flowchart) at the child’s two-year 
clinical research lab visit. Key characteristics of the study population are summarized in Table 1. For our oral 
and stool samples, we sequenced the variable regions 3 and 4 of the 16S rRNA gene and analyzed the data with 
custom Galaxy54 workflows (see Methods). After filtering and controlling for quality (see Methods), we retained 
215 maternal oral, 214 child oral, and 189 child stool samples (Supplementary Fig. S1). 151,771,821 total reads 
were retained after quality control with an average of 243,224 reads per sample and a range of 100,626–1,898,073 
reads among samples. Each read was classified using the GreenGenes database, and, for each sample, ecological 
diversity measurements (α-diversity − a measure of species richness and evenness within a single sample, and 
β-diversity − a measure of species differences between samples55, see Methods) were calculated from rarefied 
phylum level classifications using the Vegan package56.

While variability among individuals was high, oral and gut microbiota samples showed distinct differences 
in composition at the phylum level: namely, abundance of Fusobacteria and absence of Verrucomicrobia in the 
oral microbiota, and an opposite pattern in the gut microbiota (Supplementary Fig. S2A). These results are largely 
consistent with prior studies exploring the composition of healthy, adult gut57 and oral58 microbiota. In gen-
eral, the oral microbiota (Supplementary Fig. S2A) was comprised largely of Firmicutes, with moderate levels 
of Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria. The gut microbiota presented high levels of 
both Firmicutes and Bacteroidetes, with lower levels of Verrucomicrobia, Actinobacteria, and Proteobacteria 
(Supplementary Fig. S2A). Both types of microbiota had low levels of bacteria belonging to the TM7 and ‘Other’ 
phyla. Using a test of equal proportions (Pearson’s chi-squared test), significant differences were found in the 
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proportion of Bacteroidetes (p = 1.1 × 10−14), Firmicutes (p = 2.9 × 10−3), Proteobacteria (p = 8.7 × 10−6), and 
Verrucomicrobia (p = 2.0 × 10−5) between the child gut microbiota and the mother oral microbiota. Additionally, 
there were significantly different proportions of Bacteroidetes (p = 2.2 × 10−6), Proteobacteria (p = 7.1 × 10−6), 
and Verrucomicrobia (p = 2.2 × 10−5) between child gut microbiota and child oral microbiota. However, no sig-
nificant differences in the proportions of any bacterial phyla were observed between maternal and child oral sam-
ples. Using non-metric multidimensional scaling (NMDS) to visualize the distances among the three microbiota 
types (Supplementary Fig. S2B), we found that there was some overlap between oral and gut microbiota commu-
nities, but gut samples largely clustered together and away from oral samples (mother and child), and children’s 
oral samples formed a tighter cluster than maternal oral samples. These results corroborate the significant differ-
ences in proportions between child gut/mother oral and child gut/child oral microbiotas.

Growth curves and their relationship with the microbiota.  Since the outcome measurement recom-
mended by American Academy of Pediatricians for children under two years of age is weight-for-length59, growth 
curves were constructed based on this ratio (later called growth index) measured at seven time points during 
the first two years after birth (see Methods). This set of longitudinal observations (Fig. 1a and Supplementary 
Fig. S3) was then processed with FDA techniques60: the growth indexes of all children were pooled to estimate 
population-level curve parameters (mean and covariance functions), and smooth individual growth curves 
were constructed forming best linear unbiased predictors of the missing segments (see Methods). These curves 
were monotonously increasing (Supplementary Fig. S3B), highlighting fast growth rate over the first two years 
after birth. Because each child may hit growth spurts at a slightly different age20, we aligned the curves based 
on their dominant shapes (Fig. 1b). The alignment procedure had only minor effects on the curves (compare 
Supplementary Fig. S3B and Fig. 1b) but allowed us to focus on variation in the amplitude of the curves (i.e. 
growth index on the vertical axis), while reducing variation in their temporal phasing (i.e. time on the horizontal 
axis). The functional regressions we utilized in this study can be thought of as a more general, non-parametric 
alternative to a mixed effect model − which captures the longitudinal nature of the data, and in fact does so with-
out making specific assumptions on the form of the mean relationship, and of the intraindividual dependence 
structure of the observations. This approach is more general and can be more effective than classic multivariate 
mixed model analyses when the data exhibit complex temporal dynamics61.

To evaluate associations between children’s weight gain and the microbiota information, we started by 
applying FDA regression techniques (see Methods). Using children’s growth curves (Fig. 1b) as the response 

Children with rapid infant weight 
gain (CWGa ≥ 0), N = 104

Children without rapid infant 
weight gain (CWG < 0), N = 122)

Children

Gender: Number (%) of males 53 (51) 67 (55)

Gestational age: weeks (S.D.) 39.59 (1.17) 39.46 (1.22)

Birth weight: kg (S.D.) 3.44 (0.44) 3.41 (0.41)

Birth length: cm (S.D.) 51.03 (2.39) 50.73 (2.26)

Mothers

Age (years): mean (S.D.) 28.87 (4.40) 29.20 (4.75)

Pre-pregnancy BMI: mean (S.D.) 25.78 (5.55) 25.41 (5.03)

Gestational Weight Gain: mean (S.D) 15.73 (5.91) 14.46 (6.33)

Annual household income N (%)

<$10,000 3 of 99 (1.4) 4 of 118 (1.8)

$10,000–$24,999 5 of 99 (2.3) 9 of 118 (4.2)

$25,000–$49,999 12 of 99 (5.5) 10 of 118 (4.6)

$50,000–$74,999 29 of 99 (13.4) 34 of 118 (15.7)

$75,000–$99,999 26 of 99 (12) 22 of 118 (10.1)

$100,000 or more 24 of 99 (11) 39 of 118 (18.0)

Ethnicityb N (%)

Black 4 (3.9%) 5 (4.1%)

White 98 (94%) 111 (91%)

Native Hawaiian or Pacific Islander 0% 1 (0.8%)

Asian 1 (1%) 4 (3.3%)

Other 1 (1%) 1 (0.9%)

Maternal Education N (%)

HS graduate or less 10 (9.6%) 6 (4.9%)

Some college 28 (26.9%) 27 (22.1%)

College graduate 40 (38.5%) 51 (41.8%)

Graduate degree + 26 (25.0%) 38 (31.2%)

Table 1.  Description of the study population. aCWG is conditional weight gain (see text for more details). 
bEthnicity was self-reported.
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we ran functional regressions, each with a single scalar predictor − children’s oral α-diversity, oral F:B ratio, 
gut α-diversity or gut F:B ratio; and mothers’ oral α-diversity or oral F:B ratio. These functional regressions 
produce regression coefficient curves − as opposed to scalar regression coefficients. Estimated coefficient curves 
above/below the zero line suggest negative and positive associations respectively. Significance of associations can 
be measured through p-values (see Supplementary Table S1) and also gleaned by whether the zero line is con-
tained within a curve’s 95% confidence band. Our results suggest that low microbial diversity and high content of 
Firmicutes relative to Bacteroidetes in the mouth of a two-year-old are markers of elevated growth indexes during 
the first two years after birth − the estimated coefficient curves were negative and positive, respectively, with con-
fidence bands that did not contain the zero line (Fig. 2b,e), and p = 4.1 × 10−2 for diversity and p = 1.5 × 10−3 for 
F:B ratio (Choi test62, Supplementary Table S1). Conversely, estimated coefficient curves for the gut were closer 
to the zero line (Fig. 2a,d) and p-values were large (p = 0.27 for diversity and p = 0.72 for F:B ratio, Choi test62, 
Supplementary Table S1), suggesting that α-diversity and F:B ratio in the gut of a two-year-old are not signifi-
cantly associated with his/her growth trajectory from birth to two years. Interestingly, α-diversity, but not the F:B 
ratio, of mothers’ oral microbiota were significantly associated with their children’s growth curves (p = 1.8 × 10−2, 
Choi test62, Fig. 2c,f, and Supplementary Table S1). In fact, the α-diversities of children’s and mothers’ oral micro-
biota were significantly correlated (R = 0.20, p = 3.0 × 10−3), and the corresponding estimated regression coeffi-
cient curves had similar shapes (Fig. 2b,c).

Rapid infant weight gain and its relationship with the microbiota.  To complement the analyses 
based on growth curves, we associated the binary quantification of rapid vs. non-rapid infant weight gain, as 
defined by Conditional Weight Gain (CWG) scores, a measure commonly used in pediatric research63,64, to the 
microbiota information. Children’s CWG scores were computed from weight gain between birth and six months, 
corrected by length at these two time points63,64 (see Methods). A CWG score ≥0 indicates weight gain that 
was faster than average and was used to define rapid infant weight gain64 − a predictor of obesity later in life65. 
In our cohort, 104 children had rapid infant weight gain between birth and six months (CWG ≥ 0) and 122 
did not (CWG < 0). Notably, the former had a significantly greater weight at two years of age than the latter 
(p = 4.6 × 10−13, Mann-Whitney one-tailed t-test; Supplementary Fig. S4).

To test for associations between CWG scores and microbiota, we assessed whether the microbiota of children 
with rapid infant weight gain possessed the obesity signatures previously found in the gut microbiota of older 
obese children and adults (see Introduction) – namely, lower diversity and higher F:B ratio than non-rapid infant 
weight gain children. This was indeed the case for the oral microbiota (p = 0.049 and p = 0.019, respectively, 
one-tailed Mann-Whitney U test; Fig. 3b,e) but, interestingly, not for the gut microbiota (p = 0.78 and p = 0.33, 
respectively; Fig. 3a,d). Next, we tested whether mothers of children with rapid vs. non-rapid infant weight gain 
had significantly different oral microbiota α-diversities and F:B ratios. Again we found that diversity was signif-
icantly lower in mothers of children with rapid infant weight gain (p = 0.036, Fig. 3c), but the F:B ratio was not 
significantly higher (p = 0.093, Fig. 3f). The patterns in these analyses were consistent with those in the growth 
curves analyses, but the latter provided stronger significance assessments (Supplementary Table S1), demon-
strating the effectiveness of FDA techniques − which incorporate longitudinal information in a richer and more 
nuanced fashion.

Potential co-factors and their roles.  Many factors could affect children’s microbiota and their relation-
ships with weight gain. Based on the anthropometric and behavioral data at our disposal53, we considered a 
total of 17 potential confounders − gender, exposure to antibiotics and acid-reducing medication during the 
first two years after birth, delivery mode (vaginal vs. C-section), INSIGHT intervention53, maternal gestational 
diabetes, gestational weight gain, smoking during pregnancy, family income, and eight diet categories at age 

Figure 1.  Growth curves construction. (a) Example growth curve. Points: observed weight-for-length ratios 
(i.e. growth indexes); line: estimated growth curve. (b) Final aligned growth curves for all children studied.
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two (see Methods). The effect of each non-diet factor on microbiome measurements (children’s oral and gut 
α-diversity and F:B ratio at two years of age) were first tested individually and were found to be non-significant 
(Supplementary Table S2). Two multiple regressions on diet-related variables confirmed strong effects of diet on 
both gut α-diversity and gut F:B ratio (overall p = 2.6 × 10−3 for α-diversity regression and p = 1.7 × 10−7 for the 
F:B ratio regression; Supplementary Table S3). Two multiple regressions on diet-related variables on oral F:B ratio 
and α-diversity were not significant (Supplementary Table S3). Thus, diet at age two had marked effects on the gut 
microbiota (on both α-diversity and F:B ratio) at the same age but not on oral microbiota.

We also performed variable selection for multiple regressions comprising all 17 potential covariates men-
tioned in the previous paragraph (Supplementary Tables S2 and S3). Notably, only diet-related variables were 
selected by the procedure, and only in regressions for the gut microbiota (no covariates were retained in regres-
sions for the oral microbiota). Fitting regressions restricted to the selected diet-related variables, we explained 
as much as 21% of the variability in gut F:B ratio (overall p = 9.5 × 10−9), with vegetable and meat consumption 
as significant positive and negative predictors, respectively, and a more modest 5.9% of the variability in gut 
α-diversity (overall p = 3.8 × 10−3), with vegetable and fruit consumption as significant negative and positive 
predictors, respectively (Table 2).

Functional regressions of our growth curves on diet-related variables did not indicate any significant effects 
(p-values all above 0.090; Supplementary Table S4). Nevertheless, because of its strong effects on the gut micro-
biota at age two, diet may be a modulator of the gut microbiota’s relationship with weight gain. To assess this, 
we repeated the two functional regressions of growth curves on gut microbiota − one regression for α-diversity 
and one for F:B ratio − adding diet-related covariates with significant effects on the microbiota (from the pre-
vious variable selection procedure, see Table 2). Notably, gut α-diversity became a significant positive predic-
tor of growth curves when considered together with diet (p = 0.020, Choi test62; Supplementary Table S5 and 
Supplementary Fig. S5A), while gut F:B ratio remained non-significant (p = 0.48, Choi test62; Supplementary 
Table S6 and Supplementary Fig. S5B).

Weight gain and microbiota composition: Influential taxa.  Next, we went beyond α-diversity and 
F:B ratio summary measures, which were computed at the coarse phylum level, and considered microbiota com-
position at a finer resolution to identify bacterial genera associated with a child’s weight gain. We computed 
genus-level, normalized abundances for the same 214 children’s oral microbiota, 189 children’s gut microbiota, and 
215 mothers’ oral microbiota used for the analyses in the previous sections. Because many of these abundances 

Figure 2.  Oral and Gut microbiota’s relationships with growth curves. Estimated regression coefficient curves 
expressing the associations of growth curves with (a) children’s gut α-diversity, (b) children’s oral α-diversity, 
(c) mothers’ oral α-diversity, (d) children’s gut Firmicutes-to-Bacteroidetes ratio, (e) children’s oral Firmicutes-
to-Bacteroidetes ratio and (f) mothers’ oral Firmicutes-to-Bacteroidetes ratio. Each curve is accompanied by a 
point-wise confidence band92.
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were very low or highly collinear, we implemented a procedure to aggregate them into taxonomic groups (below 
we refer to these also as bacterial groups, or simply groups), leveraging the phylogeny of bacterial genera (see 
Methods; about 25% of the groups comprised just one bacterial genus, but 75% aggregated two or more genera 
that were either very scarce or highly correlated). We obtained 75, 77, and 79 taxonomic groups for children’s 
oral, children’s gut, and mothers’ oral microbiota, respectively (Supplementary Table S7). Based on the resulting 
aggregated abundances, and separately for the three microbiota, we used FLAME (Functional Linear Adaptive 
Mixed Estimation; a novel FDA methodology recently developed by our group)62,66 to identify taxonomic groups 
that were the best predictors of children’s growth curves (Supplementary Table S8).

In the children’s gut microbiota FLAME detected a group from the Proteobacteria phylum with a negative 
effect (Group 61), three Firmicutes groups with positive effects (Groups 23, 26, and 41) and one Bacteroidetes 
group with a positive effect (Group 12; Fig. 4a). In the children’s oral microbiota FLAME detected a group of 
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Figure 3.  Oral and Gut microbiota’s relationships with conditional weight gain. Notched box-plots contrasting 
α-diversity and Firmicutes-to-Bacteroidetes (F:B) ratio in two-year-old children with rapid (CWG ≥ 0) vs. non-rapid 
(CWG < 0) weight gain, and in their mothers. (a,d) for the gut microbiota in children with rapid (N = 90) vs. non-
rapid (N = 99) weight gain; (b,e) for the oral microbiota in children with rapid (N = 97) vs. non-rapid infant weight 
gain (N = 117); (c,f) for the oral microbiota in mothers of children with rapid infant weight gain (N = 102) vs. mothers 
of children without rapid infant weight gain (N = 113). All p-values were obtained using one-tailed Mann-Whitney U 
tests, significant p-values are shown in bold. Outliers were not plotted but were included in the statistical tests.

Response Covariate Coefficient estimate T-value* P-value Adjusted R-squared

Gut F:B ratio
vegetables 15.0 6.21 5.08 × 10−9

meats −18.8 −3.28 1.28 × 10−3

Overall model 9.45 × 10−9 20.79%

Gut α-diversity
vegetables −0.0769 −3.22 1.57 × 10−3

fruit 0.0543 2.63 9.52 × 10−3

Overall model 3.76 × 10−3 5.94%

Table 2.  Associations detected in multiple linear regressions for children’s gut microbiotas’ Firmicutes-to-
Bacteroidetes ratio and α-diversity. Each multiple regression comprised 17 potential covariates, but only diet-
related ones were retained by variable selection procedures. Coefficient estimates and significance (p-values) 
are shown, together with overall model significance and R-squared, for the regressions restricted to the selected 
diet-related covariates. *Test statistic of a null hypothesis that a covariate’s coefficient is equal to zero.
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Bacteroidetes (Group 13) and a group of Actinobacteria (Group 5) having, respectively, positive and negative 
effects (Fig. 4b). Two groups were detected in the mothers’ oral microbiota (Fig. 4c) − one Firmicutes group with 
a positive effect (Group 28) and one Fusobacteria group with a negative effect (Group 53).

We also used the Linear Discriminant Analysis (LDA) effect size tool, LEfSe67, to identify taxonomic groups 
that were most informative for separating children with rapid vs. non-rapid infant weight gain (Supplementary 
Table S8). In the children’s gut microbiota, LEfSe detected two discriminant bacterial groups; an Actinobacteria 
group associated with non-rapid infant weight gain and a Firmicutes group associated with rapid infant weight 
gain (Groups 4 and 46; Fig. 4d). In the children’s oral microbiota, LEfSe detected several discriminant groups 
associated with non-rapid infant weight gain, belonging to the Bacteroidetes and Firmicutes phyla (Groups 14, 
21, 25, 33, 35, and 45; Fig. 4e). LEfSe did not identify any groups separating children with rapid vs. non-rapid 
infant weight gain in their mothers’ oral microbiota.

Discussion
Our results demonstrated that, for our study population, a child’s oral microbiota, as analyzed at age two, was 
associated with weight gain during the first two years after birth. In particular, it displayed the decreased diversity 
and increased F:B ratio typically observed in the gut microbiota of obese adolescents and adults7. This conclusion 
was supported by sophisticated FDA techniques leveraging longitudinal information on weight gain in the first 
two years after birth, and confirmed by standard statistical tests based on a binary phenotype (rapid vs. non-rapid 
infant weight gain). Notably, links between the oral microbiota and a child’s weight gain trajectory have not been 
previously demonstrated for this age group, nor for a healthy population. These results suggest that the associa-
tion between the oral microbiota and the temporal pattern of weight gain in early childhood might be stronger 
and more consequential than previously thought, and thus requires further characterization.

Why does the oral microbiota carry markers of rapid infant weight gain in children? Some studies have 
pointed to potential mechanisms linking periodontal disease and obesity, including increased oxidative stress68, 
low-grade systemic inflammation and insulin resistance69,70, and higher gingival crevicular fluid TNF-ɑ22,71. 
Goodson and colleagues29 hypothesized that the oral microbiota could (a) affect the gastrointestinal tract to 
increase metabolic efficiency, resulting in increased fat storage; (b) affect leptin or ghrelin levels, resulting in 
increased appetite and food consumption; and/or (c) affect TNF-α and adiponectin pathways, resulting in insu-
lin resistance and increased fat storage. Gingival inflammation and decrease in salivary secretion rate were also 

Figure 4.  Identification of influential taxonomic groups. Estimated regression coefficient curves for taxonomic 
groups affecting growth curves, as identified by FLAME66 in (a) children’s gut microbiota, (b) children’s oral 
microbiota, (c) mothers’ oral microbiota. The zero line (dashed) corresponds to no effect. Linear Discriminant 
Analysis scores for taxonomic groups distinguishing children with rapid vs. non-rapid infant weight gain, as 
identified by LEfSe67 in (d) children’s gut microbiota, (e) children’s oral microbiota. See Supplementary Table S8 
for a list of genera belonging to each group identified by FLAME and LEfSe.
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observed in children with obesity, without distinct microbial profiles when compared to normal weight peers72. 
Deciphering causal mechanisms through which the oral microbiota might affect weight gain is outside the scope 
of this study, especially since we linked microbiota assayed at age two with growth trajectories prior to that age 
and we have not collected data on oral health/disease. However, the associations we detected should be studied 
further using data collected longitudinally not just for body size, but also for the microbiota. If confirmed in such 
a study and for other populations, the relationships we gleaned between the oral microbiota and weight gain could 
lead to a non-invasive clinical screen to identify children who are at a particular risk of developing obesity later 
in life. These at-risk children could be closely monitored and be the primary candidates for obesity-prevention 
interventions53.

We also detected a significant association between mothers’ oral microbiota diversity and their children’s 
growth curves, suggesting the presence of a familial (genetic and/or household) microbiota signature linked to 
the dynamics of weight gain in early childhood. This too should be explored further, collecting and analyzing 
longitudinal data on the oral microbiota of parents and children. Also, data on oral cavity diseases should be col-
lected in such future studies, as these conditions may be linked with microbiota and obesity.

In contrast to the oral microbiota, we found that a child’s gut microbiota at age two was not significantly 
associated with weight gain during the first two years after birth. At first, this appeared surprising, as several 
studies have linked obesity to decreased diversity and increased F:B ratio in the gut microbiota (see Introduction). 
However, while an increased F:B ratio is a common marker of obese gut microbiota described in several papers5,9 
and reviews3,10, some studies found no change in Bacteroidetes, increased Bacteroidetes in overweight and lean 
individuals, or increased Firmicutes in lean patients after gastric bypass (reviewed in3,10). Moreover, the obesity 
signatures of decreased diversity and increased F:B ratio may become pronounced only at later stages of gut 
microbiota development. This may suggest that the oral microbiota is established with potential signatures of 
obesity earlier than the gut microbiota. We also note that, despite the lack of significant associations between gut 
microbiota summary measures and growth curves (or binary weight gain outcome), we did find specific gut taxo-
nomic groups associated with early childhood weight gain. For instance, FLAME identified a Bacteroidetes group 
and three Firmicutes genera groups in the gut as positively associated with children’s growth curves. These could 
be pioneers in setting up changes leading to a dysbiosis of gut microbiota associated with increased weight − a 
hypothesis that should be investigated in future studies.

We collected data on a large number of factors potentially affecting a child’s gut and oral microbiota (see 
Supplementary Table S2), but with the notable exception of diet-related variables for which we found strong 
effects on the gut microbiota, their effects were non-significant or they were inconclusive. This could have been 
due, at least partially, to the small number of subjects in some of the conditions considered. Another potential 
explanation is that the microbiota were characterized at the age of two, while most factors (except for current 
diet information) were measured at earlier time points − so their effects might have diluted over time. As already 
mentioned above, sampling the microbiota at multiple time points during early childhood should alleviate this 
limitation in future studies and will allow us to further exploit FDA to analyze longitudinal information not only 
on growth curves, but also on microbiota development.

Interestingly, diet-related variables at the age of two did not show significant associations with growth trajec-
tories between birth and two years (no significant association was detected when regressing growth curves on 
diet categories; Supplementary Table S4). However, perhaps because of the diet variables’ strong effects on the gut 
microbiota (Table 1), they appear to modulate the relationship between weight gain and the gut microbiota − when 
adding diet-related variables in a joint regression with the gut microbiota, α-diversity became a significant posi-
tive predictor of child growth trajectories (F:B ratio remained non-significant) (Supplementary Tables S5 and S6).  
In other words, if we compared the gut microbiota of children with the same diet, children who gain weight 
more rapidly would harbor greater microbial diversity. Thus, a diversity signature in the gut microbiota appears 
to emerge in our data when controlling for diet, albeit with a sign opposite to the one most commonly identified 
in the literature − and also opposite to the one we detected in the oral microbiota. We presently do not have an 
explanation for this finding. FLAME identified a Bacteroidetes group in the gut as positively associated with chil-
dren’s growth curves, and using linear regression we found that meat consumption had a negative effect on gut 
F:B ratio (which could be due to a positive association with Bacteroidetes in the denominator). Additionally, meat 
consumption was significant in the joint functional regression of growth curves on gut F:B ratio and diet-related 
variables (even though F:B ratio alone was not). The data on this subject are contradictory in the literature. While 
some researchers found that a high animal protein diet increased gut Firmicutes abundances73,74, others found 
that individuals with a “Western diet” (high in animal protein) have increased gut Bacteroidetes abundances12,75. 
Without question, diet has an important role in shaping the gut microbiota composition and its relationship with 
body weight. However, more data and more detailed studies are needed on the establishment of the gut microbi-
ota from birth through childhood, and how this relationship affects child growth patterns.

We used two methods to identify influential taxa and it is interesting to note that the taxonomic groups identi-
fied by FLAME and LEfSe differed. This could potentially be due to inherent methodological differences between 
FLAME (a tool that selects groups using high-dimensional function-on-scalar regressions) and LEfSe (a tool 
using Linear Discriminant Analysis on differentially abundant groups). Alternatively, these incongruences could 
be due to the very different ways in which the weight gain phenotype were encoded (binary outcome vs. temporal 
change); and therefore there may be a biological explanation of why bacteria influencing the shape of the growth 
curves might in fact differ from those discriminating between the microbiota of children with rapid vs. non-rapid 
infant weight gain. This will require further examination in future studies, as our sequencing data did not allow 
resolution at the species or strain level, and the functional capacity of the microbiota was unknown.

The use of FDA techniques afforded us the opportunity to associate longitudinal information (growth curves 
derived from weight and length collected at multiple time points during the first two years after birth) with micro-
biota measures at the age of two, which, to our knowledge, has not been done before. We used FDA in addition to 
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more traditional statistical analyses based on a binary phenotype (rapid vs. non-rapid infant weight gain). While 
results on the relationship between growth and microbiota diversity and F:B ratio were consistent between the 
two approaches, growth curves captured weight gain in a richer fashion than the binary phenotype – leading 
to stronger results significance. Growth curves also led to additional insights. For instance, a larger number of 
taxonomic groups were found to be significantly associated with growth curves using FLAME than with rapid 
vs. non-rapid infant weight gain phenotypes using LEfSe. Our study demonstrated the effectiveness of FDA tech-
niques linking children’s weight gain trajectories and microbiota characterization. This suggests that even greater 
effectiveness could be achieved in similar studies with longitudinal information also on the microbiota, and indi-
cates the potential of such techniques in a variety of other ‘omics’ applications (e.g.76).

Methods
Study population.  We collected microbiota information on 236 mother-child dyads recruited from the 
279 families involved in the INSIGHT study53 (Supplementary Fig. S1). These dyads included full-term single-
tons born to primiparous mothers in Central Pennsylvania, and were predominantly of European descent64. The 
INSIGHT study collected clinical, anthropometric, demographic, and behavioral variables on children and moth-
ers53 (Table 1). Parents completed questionnaires reporting children’s dietary intake and exposure to medications. 
Children’s weight and length were measured at birth, 3–4 weeks, 16 weeks, 28 weeks, 40 weeks, 1 year, and 2 
years. For children attending visits before two years, length was measured using a recumbent length board (Shorr 
Productions). After two years, standing height was measured with a stadiometer (Seca 216).

Microbiota sample collection.  Buccal samples were collected by research staff of the Penn State Hershey 
Pediatric Clinical Research Office at the child’s two-year clinical research center visit. Information was mailed to 
participants prior to the visit instructing them to not eat or drink anything, not use tobacco products, and not 
brush their teeth/use mouthwash for two hours prior to buccal swab collection. Ten sterile cotton swabs were each 
rubbed for 20 seconds against the inside cheeks of children or mothers. The cotton swabs were placed in tubes 
containing slagboom buffer77. Samples were stored in the Pediatric Clinical Research Office and transported from 
the Hershey Medical Campus to the University Park Campus where they were processed.

Within two days before the two-year visit, stool samples were collected by parents in stool collection tubes, 
wrapped in freezer packs, and frozen immediately in the home freezer. They were then brought, packed on ice, 
to the clinical research site by the parents and stored at −20 °C. Samples were finally transported in coolers on 
ice from the Hershey Medical Campus to the University Park Campus where they were stored at −80 °C until 
processing.

Sample DNA extraction, library preparation, and DNA sequencing.  Genomic DNA (gDNA) was 
extracted from samples using the MoBio PowerSoil DNA isolation kit (Qiagen). The manufacturer’s directions 
were followed with modifications implemented based on the protocol established by the Human Microbiome 
Project. These included two heating steps (65 °C and 90 °C for 10 minutes each) prior to bead beating. To control 
for contamination in the DNA from this stage, a blank ‘sample’ (containing only MoBio Bead Buffer) was sub-
jected to the entire DNA extraction protocol and library preparation. Contamination was never detected via gel 
electrophoresis, Qubit, or Bioanalyzer.

Library preparation for sequencing of the 16S rRNA gene followed the Illumina protocol ‘16S Metagenomic 
Sequencing Library Preparation’ (Illumina part# 15044223 Rev.B; https://support.illumina.com/downloads/ 
16s_metagenomic_sequencing_library_preparation.html). Briefly, the variable regions 3 and 4 of the 16S rRNA 
gene were amplified using PCR (16S_ampliconPCR_For: TCGTCGGCAGCGTCAGATGTGTATAAGAGA 
CAGCCTACGGGNGGCWGCAG and 16S_ampliconPCR_Rev: GTCTCGTGGGCTCGGAGATGTGTAT 
AAGAGACAGGACTACHVGGGTATCTAATCC, PCR conditions are given in the Illumina protocol). The PCR 
product was isolated using a magnetic bead procedure (Agencourt AMPure XP, Beckman Coulter). Subsequently, 
Illumina Nextera XT indexes were added and an additional magnetic bead purification was performed. Each 
library was quantified using a fluorometer (Qubit, ThermoFisher Scientific) and analyzed for correct size on 
a BioAnalyzer (Agilent). As a positive control, a synthetic mock community DNA pool78 was amplified and 
sequenced alongside the experimental samples. To control for contamination in the amplification or library 
preparation steps, a blank sample was added to all of the library preparation steps. Contamination was never 
detected via gel electrophoresis, Qubit, or Bioanalyzer.

An equimolar pool of 48 libraries with a 25% PhiX spike-in was sequenced on an Illumina MiSeq (v3 chemis-
try, 2 × 300 reads). Demultiplexing was performed using the Illumina software. FASTQ files were retrieved to be 
used in downstream analyses.

Sequence analysis.  Sequences were first examined using FastQC79 and a multi-sample report was generated 
for textual and graphical views using Galaxy tools80 and MultiQC81, respectively. FASTQ manipulation filters80 
were then applied to remove low-quality sequences. Sequences were trimmed using a sliding window approach. 
To both the 5′ and 3′ ends of the sequences, we applied a cutoff of minimal mean PHRED score of 20 within a 
window of 5 bases, step size of 1. Quality was reassessed after trimming.

We then merged/joined our forward and reverse paired-end reads into a single contig using a two-step pro-
cess. First, we used fastq-join from the ea-utils package82–84 to merge overlapping forward and reverse reads into a 
single read. This process aligns read pairs and merges overlapping regions based upon user-specified parameters 
of mismatch percentage and minimum alignment length; we utilized 8% and 6 bases, respectively. To prevent 
the loss of non-mergeable reads, we performed a second joining operation, using the FASTQ Joiner tool85,86 
and inserted a string of 5 ambiguous nucleotides (“NNNNN”) between the pairs. We next removed chimeric 
sequences. We used VSearch87 with the uchime_denovo algorithm to create a list of non-chimeric sequences.

https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
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Non-chimeric reads were classified individually into taxa. We utilized Kraken88 with a customized data-
base containing only 16S rRNA gene sequences, based on GreenGenes89. Once Kraken had assigned taxa-kmer 
counts to individual reads, we utilized a custom abundance reporting tool (https://github.com/blankenberg/
Kraken-Taxonomy-Report) to report abundances across samples at specified ranks, along with a phylogenetic 
tree that was pruned to contain the terminal nodes that are present in at least one of the samples and the con-
nected internal nodes.

Statistical analyses.  Diversity measures and tests.  Rarefaction and α-diversity calculations were per-
formed using Vegan56. Rarefaction was used to normalize the read count across samples - which were all rarefied 
to 100,000 reads. To compute summary measures of diversity for each microbiota sample, we used the Inverse 
Simpson α-diversity formula on the phylum level abundance counts (Shannon Diversity Index, Simpson, and 
Inverse Simpson measures were all highly correlated; see Supplementary Table S9), as computed in Vegan56. The 
Firmicutes-to-Bacteroidetes (F:B) ratio was calculated separately for gut and oral microbiota of each child, and 
for oral microbiota of each mother, by taking the total count of the number of reads assigned to the Firmicutes 
phylum divided by the total count of the number of reads assigned to the Bacteroidetes phylum. To test for dif-
ferences in the proportion of each bacterial phyla between microbiota types (child gut, child oral, mom oral) we 
used prop.test from the base stats package in R (calculates Pearson’s chi-squared test). For this test we took the 
average of all individual proportions (calculated as the proportion of reads assigned to that phyla) multiplied by 
the number of subjects to obtain the “probability of successes”, and to calculate “failures” we took the number of 
individuals less the “probability of successes”. We compared all possible combinations of the microbiota types 
(child gut vs. child oral, child gut vs. mom oral, child oral vs. mom oral, and child gut vs. child oral vs. mom oral) 
and reported Bonferroni-corrected p-values for these 24 tests. Non-metric Multidimensional Scaling analysis, 
using the Bray-Curtis dissimilarity matrix as the β- diversity measure, was also performed using Vegan56. See 
Supplementary Fig. S6 for a detailed schematic of the computational workflow.

Weight outcome and calculation of the the Conditional Weight Gain score.  Per the American Academy of 
Pediatrics90, growth measured by weight-for-length is the recommended practice in the United States for children 
less than two years of age, and BMI becomes the recommended/standard outcome for children who are older 
than two years. Since we are characterizing child growth from birth to two years, we chose the weight-for-length 
ratio as our outcome59. At each time point when weight and length were collected (see above), we computed the 
ratio of weight to length (later referred to as growth index). Additionally age- and gender-specific weight- and 
length-for-age z-scores (WAZ and LAZ, respectively) were determined using the World Health Organization 
gender-specific child growth standards91.

Conditional weight gain (CWG) z-scores were then computed for each child using age- and gender-adjusted 
anthropometrics at birth and six months63,64. Briefly, CWG z-scores were computed as standardized residuals 
from a linear regression of WAZ at six months on WAZ at birth, using LAZ and precise age at six months visit 
as covariates. The CWG z-score, therefore, represented the variability of child weight gain explained neither by 
length at birth and six months nor by gender. By construction, the CWG z-scores had mean 0 and standard devi-
ation of 1. Moreover, in practice these scores were approximately normally distributed. Positive CWG z-scores 
indicated weight gain that was above the average weight gain, i.e. rapid infant weight gain.

Construction of growth curves.  The growth indexes calculated above were analyzed longitudinally using tools 
from Functional Data Analysis (FDA)92 alongside the fda package in R. In particular, individual growth curves 
were constructed using PACE60, a procedure that pools information across subjects to more accurately assemble 
the curves (Supplementary Fig. S3). The PACE software is freely available for R, and we used it with its default set-
tings. After the curves were assembled, we represented them using 102 cubic spline functions with evenly spaced 
knots, so that subsequent FDA methods could be applied. Growth curves were also temporally aligned, using the 
register.fd function in R, before further analyses were conducted (Fig. 1b).

Association between growth curves and microbiota summary measures.  We assessed the association between 
growth curves and α-diversity, as well as the F:B ratio, of gut and oral microbiota fitting Function-on-Scalar 
Linear Models93. These were six low-dimensional functional regressions (the growth curve response, i.e. the 
function, was regressed on a single scalar predictor: α-diversity or F:B ratio), and were carried out in R using 
code we wrote based on our previous publication93. The outcome of these functional regressions were estimated 
regression coefficient curves, which we obtained using a penalized least squares approach imposing a penalty 
on the second derivative of the parameter. In each case, the smoothing parameter was set at 10,000, but results 
were robust against this choice (especially the p-values; see below). The additional smoothing enforced by the 
penalization was especially useful in terms of producing interpretable estimates. The shape of each estimated 
coefficient curve indicates how the relationship evolves along the time dimension, with amplitude (distance from 
zero) and sign (positive or negative) representing strength and direction. Significance of each regression was 
determined as described in62, based on three measures which utilize different types of weighted quadratic forms 
(note that these were not separate statistical tests, only different ways of determining significance in the same 
regression). The first, denoted as L2, employs a simple L2 norm (squared integral) of the parameter estimate. 
The second, denoted as PCA, uses principal components to reduce the dimension of the parameter and then 
applies a Wald-type test. The last, denoted as Choi, incorporates a weighting scheme into the PCA test so that 
more principal components can be included, resulting in a test that is in between the PCA and L2 tests, and thus 
we believe is the preferred measure. We reported results from Choi in the main text, but the results for all three 
measures of significance can be found in the Supplement. Code is available at: (https://github.com/mreimherr/
Insight_Microbiome_Simulation.git).

https://github.com/blankenberg/Kraken-Taxonomy-Report
https://github.com/blankenberg/Kraken-Taxonomy-Report
https://github.com/mreimherr/Insight_Microbiome_Simulation.git
https://github.com/mreimherr/Insight_Microbiome_Simulation.git
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Testing potential co-factors.  We tested a wide variety of maternal, health, and behavioral co-factors (gathered 
by the INSIGHT study)53 − a total of 17 (see below) − for effects on the children’s microbiota, and the rela-
tionships of the microbiota with children’s weight gain. Maternal gestational weight gain, diabetes during preg-
nancy, mode of delivery, and gender of the child (4 co-factors) were obtained from electronic medical health 
records. Maternal smoking during pregnancy, family income, child exposure to antibiotics or acid reducing med-
ications (4 co-factors), were obtained from maternal recall surveys. Intervention group was determined by the 
INSIGHT study (1 co-factor). First, considering these (non-diet) co-factors one at a time, we tested whether gut 
and oral microbiota diversity and (separately) F:B ratio differed between their categories using non-parametric 
Mann-Whitney U and Kruskal-Wallis tests implemented in R (Supplementary Table S2). Specifically, we tested 
the hypotheses that children with rapid infant weight gain would have (1) a lower diversity and (2) a greater F:B 
ratio than children without rapid infant weight gain.

We also obtained information on a child’s diet at two years as reported by parents using an Infant Food 
Frequency Questionnaire. This questionnaire included 121 food and drink items. Parents reported how often 
their child had each item in the past week (0, 1, 2–3, or 4–6 times per week, and 1, 2, 3, 4–5, 6 or more times per 
day). These data were then distilled into a 10-item summary, each item with the corresponding number of weekly 
consumptions. The items included: sugar-sweetened beverages, milk, dairy (excluding milk), fruit, vegetables, 
vegetables excluding potatoes, snacks, sweets, meats, and fried foods. We looked at correlations between the con-
sumption frequencies to identify whether any of the items could be removed (we used the R package Rstats and 
the graphical package corrplot)94. A correlation cut off of 0.7 was employed, eliminating food categories ‘milk’ and 
‘vegetables excluding potatoes’ that were highly correlated with other variables. As a result, eight diet categories 
were retained (8 co-factors). Consumption frequencies for the remaining eight food categories were then used as 
predictors in four multiple linear regressions for the microbiota summary measures (four regressions in all, for 
diversity and F:B ratio in children’s oral and gut microbiota; Supplementary Table S3). This was performed using 
the lm function of the Rstats package.

Next, we used the bestglm package in R95 to select the best subset of predictors for a multiple linear regression. 
This was performed again for four regressions (diversity and F:B ratio in children’s oral and gut microbiota), this 
time considering 17 covariates at our disposal, as listed in Tables S2 and S3. The covariates selected by bestglm 
were then used as predictors in restricted linear regression fits (results are reported in Table 2 for gut microbiota 
α-diversity and F:B ratio, for which only diet-related covariates were retained; no covariates were retained by 
bestglm for the oral microbiota summary measures).

Given the prominent effects of diet-related covariates, especially on the gut microbiota (Tables S3 and 2), we 
also assessed their relationship with weight gain. Specifically, we ran a multiple functional regression for children 
growth curves (between birth and age two) against food consumption frequencies at age two (Supplementary 
Table S4; we used the same eight food categories considered in Supplementary Table S3). Finally, we assessed 
whether diet-related covariates could modulate the relationship between weight gain and the gut microbi-
ota. Specifically, we repeated the two functional regressions of children growth curves on gut α-diversity 
(Supplementary Table S5) and gut F:B ratio (Supplementary Table S6), in each case adding the diet-related covar-
iates retained by bestglm (Table 2). Similar to what we did for the functional regressions for growth curves against 
microbiota summary measures (see our explanation at the end of the section on ‘Association between growth 
curves and microbiota summary measures’ of the Methods), statistical significance for these functional regres-
sions was determined with three measures: L2, PCA, and Choi62. We reported Choi results in the main text, but 
retained PCA and L2 results in the supplement.

Identification of influential taxonomic groups.  To mitigate sparseness and collinearity in our bacterial abun-
dance data, we merged low-abundance or highly correlated genus-level abundance counts into abundances of 
taxonomic groups. We implemented a two-stage procedure which utilized phylogenetic relationships – merging 
abundances only for neighboring nodes along the phylogenetic tree created from the Kraken taxonomic report 
tool in Galaxy88. First, moving upwards along the tree, we merged a node with its neighbor if its abundance was 
less than five counts in more than 90% of the samples in the data set. When such a merger occurred, the counts 
from the two nodes were summed. Next, considering the merged abundances produced by the first stage and 
moving upwards along the tree, we merged neighboring nodes if their abundances showed a correlation in excess 
of 0.7 across the samples in the data set. When such a merger occurred the counts were averaged. Notably, this 
procedure allowed us to tailor the level of resolution of our analyses to the data: branches of the phylogenetic 
tree where genera were scarcely observed or highly correlated were lumped together, while finer resolution was 
maintained for branches where genera were more abundant and diversified in their behavior across the samples. 
The procedure was applied, separately, to abundance data from the three microbiota samples (child gut, child 
oral and mother oral). Supplementary Table S7 contains a complete list of all taxonomic groups obtained in each 
microbiota sample.

To identify taxonomic groups with the strongest associations with weight gain, we considered the merged 
taxonomic group abundances as scalar predictors in functional regressions for growth curves using FLAME 
(Functional Linear Adaptive Mixed Estimation)66. Separately, we considered the merged taxonomic group abun-
dances as features in Linear Discriminant Analysis for rapid vs. non-rapid infant weight gain (based on CWG 
scores) using LEfSe (Linear Discriminant Analysis Effect Size)67. These were high-dimensional analyses (each 
comprised a number of predictors corresponding to the number of taxonomic groups found in a given microbi-
ota sample). The FLAME functional regressions were carried out using methods and R code from66. Estimates 
and p-values were computed using standard methods from FDA (see github repository link below for code) 
as described in92. FLAME simultaneously selected important predictors and captured their effects as estimated 
regression coefficient curves. It can be thought of as a generalization of the adaptive LASSO96 to functional/longi-
tudinal outcomes. In particular, a Sobolev kernel was used in the penalty to produce smooth estimates while also 
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carrying out variable selection. The tuning parameters were chosen via cross validation, as discussed in66,96. Code 
and examples for carrying out the two-stage abundance merger procedure and all of the FDA methods utilized 
here can be found at https://github.com/mreimherr/Insight_Microbiome_Simulation.git. Standalone code for 
FLAME is available at: http://personal.psu.edu/~mlr36/codes.html.

Data Sharing.  Raw microbiota reads were deposited in SRA under BioProject number PRJNA420339. 
Phenotype information was deposited under dbGaP Study number phs001498.v1.p1. All code used is either 
already public (http://personal.psu.edu/~mlr36/codes.html) or available at GitHub (https://github.com/mreim-
herr/Insight_Microbiome_Simulation.git). 16S rRNA gene analysis pipeline tools and pipeline are available in 
the Galaxy platform (usegalaxy.org). The three relevant Galaxy workflows are https://usegalaxy.org/u/sjcarna-
hancraig/w/16s-qc-3, https://usegalaxy.org/u/sjcarnahancraig/w/kraken-classification, https://usegalaxy.org/u/
sjcarnahancraig/w/vegan-rarefacation−alpha-diversity.

Ethics statement.  This study was approved by Penn State University Institutional Review Board 
(PRAMS034493EP) and all methods were performed in accordance with all relevant guidelines and regulations. 
Informed consent was received from mothers prior to collection of biological samples and phenotypic, demo-
graphic, health, and diet information.
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