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Abstract: Estrogen receptors (ERs) are a group of compounds named for their importance in both
menstrual and estrous reproductive cycles. They are involved in the regulation of various processes
ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear
receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular
and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and
tissues, and they control key physiological functions in various organ systems. Estrogens attract
great attention due to their wide applications in female reproductive functions and treatment of
some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER
ligands published in international journals patented between 2013 and 2015. The broad physiological
profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands
as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor,
subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse
side effects, based on the different distributions and relative levels of the two ER subtypes in different
estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly
promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory,
and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved
in the regulation of many complex physiological functions in humans. Selective estrogen ligands
are highly promising targets for treatment of some types of cancer, as well as for cardiovascular,
inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of
ER ligands based on small molecules indicate that many different structural scaffolds may provide
high-affinity compounds, provided that some basic structural requirements are present.
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1. Introduction

1.1. Estrogen

Estrogens are a group of compounds named for their importance in both menstrual and estrous
reproductive cycles. They are primary female sex hormones. Estrogens readily diffuse across the cell
membrane. Inside the cell, they bind and activate estrogen receptors.

Estrogen Receptor Subtypes

Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and
tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and
tissues, and they control key physiological functions in various organ systems such as reproductive,
skeletal, cardiovascular, and central nervous systems. ERα is mainly expressed in the mammary gland,
uterus, ovary (thecal cells), bone, male reproductive organs (testes and epididymis), prostate (stroma),
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liver, and adipose tissue. In contrast, ERβ is predominant in the prostate (epithelium), bladder,
ovary (granulosa cells), colon, adipose tissue, and immune system. However, both subtypes are
markedly expressed in the cardiovascular and central nervous systems. Estradiol and hormone
replacement therapies target both the ERs, but this often leads to an increased risk of breast and
endometrial cancers, and thromboembolism. Also, selective estrogen receptor modulators (SERMs),
structurally, are various compounds that interact with intracellular estrogen receptors in different
target organs as ER agonists or antagonists [1]. Ideal SERMs would possess antagonist activity
in the mammary gland and uterus, and agonist activity in other target tissues that benefit from
estrogen-like actions such as the cardiovascular, skeletal, and central nervous systems [2]. Alternatively,
subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse
side effects, based on the different distributions and relative levels of the two ER subtypes in the
different estrogen target tissues mentioned above [3].

1.2. Potential Clinical Applications of Estrogens

1.2.1. Cancer

The role of ERs in many cancers such as breast cancer, prostate cancer, and colorectal cancer has
been extensively studied. Suppression of estrogen production in the body is a treatment for breast
cancer. Especially in breast cancer, activation of ERα by estrogens is considered to be responsible
for enhanced proliferation, whereas this is counteracted by the presence of ERβ, which exerts
an anti-proliferative effect [4].

1.2.2. Neuropathies

Estrogen directly influences brain function through estrogen receptors located on neurons in
multiple areas of the brain. There is considerable evidence that indicates the important role of
estradiol in the central nervous system (CNS) for different kinds of diseases, including pathologies
associated with depression, anxiety, and Alzheimer’s disease. At neuronal synapses, estrogen increases
the concentration of neurotransmitters such as serotonin, dopamine, and norepinephrine. It affects
their release, reuptake, and enzymatic inactivation [5]. A recent study reported that aged female mice
responded favorably to estrogen administration and exhibited greater anti-anxiety and antidepressant
behavior [6].

1.2.3. Cardiovascular Disease

Estrogen has a number of effects on cardiovascular function and disease. The regular production
of estrogens in pre-menopausal women places them at a lower risk for cardiovascular disease relative
to men. However, this cardioprotective effect vanishes after menopause [7]. Several mechanisms
are involved in this cardioprotective role such as the effects of estrogen on lipoprotein levels,
vasomotor function, LDL oxidation, coagulation, and collagen and elastin synthesis [8].

1.2.4. Osteoporosis

Osteoporosis is a major health problem associated with estrogen deficiency in postmenopausal
women. Many studies have indicated that estrogens play an important role in bone homeostasis,
not only in women but also in men [9]. Estrogen replacement therapy (ERT) is clinically used to
prevent osteoporosis.

2. Estrogen Receptor Ligands

ERs are nuclear transcription factors that are involved in the regulation of many complex
physiological functions in humans. The term SERM describes synthetic ER ligands that display
tissue-selective pharmacology. This concept was first described in 1990 [10]. As anti-estrogens,
they oppose the action of estrogens in certain tissues while mimicking the action of endogenous
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estrogens in others. Over the past few years, many reviews have covered the progress in the
development of estrogen receptors [11–15]. We herein provide an overview and update of compounds
that have been recently reported as estrogen receptor ligands, with a particular focus on their potential
clinical applications.

3. Steroidal Ligands

Zhang et al. reported a new series of 11β-ether-17α-ethinyl-3,17ß-estradiol that demonstrates
strong ER antagonist activity. The ethers were particularly interesting as they were highly active
anti-estrogens that were more stable than other substituents. Among these ethers, compounds 1 and 2
(Figure 1) bind very strongly to both ERα and ERβ [16].
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CombretastatinA4 is one of these compounds that induce apoptosis and act as an antiangiogenic 
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and among them, compound 3 (Figure 1) was the most active in both MCF-7 and MDA-MB-231 cells 

with IC50 7.5 μM and 5.5 μM [18]. 
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Nucleoside analogues showed an important role in the development of antitumor drugs [19–21]. 

Among them, C6-aminopurine derivatives had a wide range of biological properties and displayed 
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analogues, compound 4 (Figure 1) showed the best results on the MCF-7 cell line [27]. However, 

compound 5 (Figure 1) displayed only moderate anticancer activity against the MCF-7 cell line [28]. 

Figure 1. Steroidal Ligands.

Combretastatin A4 analogues on a steroidal framework were reported to have anti-breast cancer
properties. Recently, natural compounds have increasingly been used in traditional medicines.
Combretastatin A4 is one of these compounds that induce apoptosis and act as an antiangiogenic
agent [17]. Twenty-two analogues were synthesized by the Combretastatin A4 steroidal framework
and among them, compound 3 (Figure 1) was the most active in both MCF-7 and MDA-MB-231 cells
with IC50 7.5 µM and 5.5 µM [18].

Recently, Huang et al. reported two new series of novel C6-piperazine-substituted purine
steroid–nucleosides and C6-cyclo secondary amine-substituted purine steroid-nucleoside analogues.
Nucleoside analogues showed an important role in the development of antitumor drugs [19–21].
Among them, C6-aminopurine derivatives had a wide range of biological properties and displayed
antitumor activity [22–24]. In addition, piperazine derivatives showed a broad spectrum of biological
activities, such as anticancer activity [25,26]. Therefore, these analogues were synthesized and
evaluated for their anticancer activity. Among C6-piperazine-substituted purine steroid–nucleosides
analogues, compound 4 (Figure 1) showed the best results on the MCF-7 cell line [27]. However,
compound 5 (Figure 1) displayed only moderate anticancer activity against the MCF-7 cell line [28].
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Bandyopadhyay et al. [29] also reported a new series of 2- and 4-nitroestradiol derivatives.
They showed that compound 6 (Figure 1), as well as a known ER-targeting drug, 4-hydroxytamoxifen
(4-HT), reduced the viability of ER-positive and ER-negative cells with similar efficacy. The toxicity
exhibited by 6 was slightly better than 4-HT, with an IC50 value of approximately 2 µM in breast cancer
cells. These data indicate that selective novel nitroestradiol compounds effectively cause cytotoxicity
in breast cancer cells and their cytotoxicity might occur in an ER-independent manner.

4. Non-Steroidal Ligands

4.1. 2,3-Diaryl Isoquinolinone

A new series of 2,3-diaryl isoquinolinone derivatives were reported as anti-breast cancer agents
targeting ERα and vascular endothelial growth factor receptor 2 (VEGFR-2). ERα is responsible for
estrogen-induced proliferation in breast cancer in which angiogenesis plays an important role in both
local tumor growth and distant metastasis in many cancers [30]. Therefore, Tang et al. [31] reported
a new series of compounds with characteristics of both selective estrogen receptor modulators and
VEGFR-2 inhibitors. It was anticipated for these compounds with dual targets to gain more efficiency
as anti-breast cancer agents with fewer side effects. VEGFR-2 inhibitors possessing an indol-2-one
scaffold, such as sunitinib and YM231146, bear some structural similarities with SERMs (Figure 2).
All compounds possess an aromatic scaffold and flexible side chain with a tertiary amine substituent
on the end. Based upon that, 2,3-diaryl isoquinolinone derivatives were synthesized and evaluated.
Among these series, compounds 7 and 8 (Figure 3) had the best affinity for ERα and the inhibition
rates were as potent as tamoxifen. The results of a VEGFR-2 kinase inhibition assay showed that
these derivatives had moderate-to-strong inhibitory activities compared with sunitinib. Compound 8
showed the best results for both ERα and VEGFR-2 kinase inhibition.
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4.2. Diphenylmethane Skeleton and Related Analogues

Maruyama et al. [32,33] have shown that the diphenylmethane skeleton can have a steroid
role. Bisphenol A has estrogenic activity and bisphenol AF and HPTE have agonist activity for
ERα with antagonist activity for ERβ (Figure 4). Therefore, these compounds would bind to ERα
in a similar manner to 17β-estradiol, but selectively for ERβ. Many analogues of bisphenol A were
also synthesized and their agonist and antagonist activities were evaluated. Results showed that
longer linear alkyl chains at the central carbon decreased the agonistic activities for both ERα and
ERβ, but increased the antagonist activities for both ERα and ERβ. Among these series, compound 9
(Figure 4) displayed potent ERα-antagonist activity with a 28-fold selectivity over ERβ. As described,
central alkyl chains were critical for potent ER antagonistic activities, indicating that the hydrophobicity
at the central moiety is important for strong antagonistic activity. On the other hand, sila-substitution
(C/Si exchange) of existing drugs is an attractive approach to find new drug candidates. Because
silicon-containing analogues are more lipophilic and larger in molecular size than their carbon
analogues [34–37], a new series of sila-analogues were synthesized with the aim of increasing
hydrophobicity or molecular size. However, both sila-analogues 10 and 11 (Figure 4) showed decreased
activities compared with carbon derivatives [38].

Also, in 2015 Ohta et al. [39] reported the diphenylamine skeleton as ER antagonist candidates
containing a basic alkylamino side chain on one of the two phenol groups of the diphenylamine
agonist core structure. The results indicated that compounds with cyclic alkylamine showed higher
ER-antagonistic activity than the corresponding acyclic derivatives in a cell proliferation assay using
the MCF-7 cell line. Compound 12 showed the highest antiestrogenic activity (IC50 = 1.3 × 10−7 M),
being 10 times more potent than tamoxifen.

Sci. Pharm. 2016, 84, 409-427 413 

 

Figure 3. 2,3-Diaryl isoquinolinone derivatives. 

4.2. Diphenylmethane Skeleton and Related Analogues 

Maruyama et al. [32,33] have shown that the diphenylmethane skeleton can have a steroid role. 

Bisphenol A has estrogenic activity and bisphenol AF and HPTE have agonist activity for ERα with 

antagonist activity for ERβ (Figure 4). Therefore, these compounds would bind to ERα in a similar 

manner to 17β-estradiol, but selectively for ERβ. Many analogues of bisphenol A were also 

synthesized and their agonist and antagonist activities were evaluated. Results showed that longer 

linear alkyl chains at the central carbon decreased the agonistic activities for both ERα and ERβ, but 

increased the antagonist activities for both ERα and ERβ. Among these series, compound 9 (Figure 

4) displayed potent ERα-antagonist activity with a 28-fold selectivity over ERβ. As described, central 

alkyl chains were critical for potent ER antagonistic activities, indicating that the hydrophobicity at 

the central moiety is important for strong antagonistic activity. On the other hand, sila-substitution 

(C/Si exchange) of existing drugs is an attractive approach to find new drug candidates. Because 

silicon-containing analogues are more lipophilic and larger in molecular size than their carbon 

analogues [34–37], a new series of sila-analogues were synthesized with the aim of increasing 

hydrophobicity or molecular size. However, both sila-analogues 10 and 11 (Figure 4) showed 

decreased activities compared with carbon derivatives [38]. 

Also, in 2015 Ohta et al. [39] reported the diphenylamine skeleton as ER antagonist candidates 

containing a basic alkylamino side chain on one of the two phenol groups of the diphenylamine 

agonist core structure. The results indicated that compounds with cyclic alkylamine showed higher 

ER-antagonistic activity than the corresponding acyclic derivatives in a cell proliferation assay using 

the MCF-7 cell line. Compound 12 showed the highest antiestrogenic activity (IC50 = 1.3 × 10−7 M), 

being 10 times more potent than tamoxifen. 

HO OH  

CF3F3C

HO OH  HO OH

CCl3

 
Bisphenol A Bisphenol AF Bisphenol HPTE 

HO OH

n-Pr n-Pr

Me Me  

Si

HO OH

Et Et

Me Me  

Si

HO OH

n-Bu n-Bu

Me Me  
9 10 11 

N

n-C6H13

O

N

HO  
12 

Figure 4. Diphenylmethane skeleton analogues. 

4.3. Deoxybenzoin Analogues 

Estrogenic effects of three substituted deoxybenzoins were reported by Chandrasekharan et al. 

[40]. These compounds were designed as CMPD3 (13, Figure 5), CMPD6 (14, Figure 5), and CMPD9 

Figure 4. Diphenylmethane skeleton analogues.

4.3. Deoxybenzoin Analogues

Estrogenic effects of three substituted deoxybenzoins were reported by Chandrasekharan et al. [40].
These compounds were designed as CMPD3 (13, Figure 5), CMPD6 (14, Figure 5), and CMPD9
(15, Figure 5) which possess –COOH, –(CH2)4–CH3, and –CH3 substitutions, respectively, on the 2′
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position of the 2,4-dihydroxyphenyl ring of deoxybenzoin. Results showed that all three compounds
increased the proliferation of the MCF-7 cell line and showed similar affinity for both ERα and
ERβ receptors.
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4.6. Triphenylethylene Coumarin

Novel triphenylethylene–coumarin hybrid derivatives containing different types and increasing
numbers of amino ethoxy side chains were reported and evaluated in 2013 [44]. These derivatives
were subjected to anti-proliferative tests against five tumor cells and tamoxifen were used as
a positive control. The derivatives displayed a broad-spectrum and good anti-proliferative activity.
Between these compounds (19–22, Figure 8), compound 19 showed the best results. Therefore,
these observations suggested that: (1) the number of the amino alkyl chain on 3,4-diphenylcoumarin
had considerable impact on anti-proliferative activity, and two side chains were more preferable for
this activity; (2) the weaker basic amino group on the side chain indicated a detrimental influence on
anti-proliferative activity.
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Also, in 2015, Smith et al. [45] patented some compounds that have a coumarin scaffold as
estrogen receptor modulators. The general structure of 23 showed estrogen receptor antagonist activity
and can also be an estrogen receptor degrader.
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4.7. Combination of Anti-Estrogen and Receptor Tyrosine Kinase (RTK) Inhibitors

A combination of anti-estrogen and receptor tyrosine kinase (RTK) inhibitors was patented
as a useful agent for the treatment of cancer by Novartis. Receptor tyrosine kinases (RTKs) are
transmembrane polypeptides that regulate developmental cell growth. A combination of fulvestrant
with RTK inhibitors such as compound 24 (Figure 9) displayed significant improvement in the
treatment of proliferative diseases [46].
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4.8. 1,1,2-Triarylolefine Derivatives

A group of 1,1,2-triarylolefines were patented as estrogen receptor antagonists (25, Figure 10).
Most of the synthesized compounds of this group had high anti-estrogenic effects with minimal or no
estrogen receptor agonist activity [47].

Sci. Pharm. 2016, 84, 409-427 416 

 

4.8. 1,1,2-Triarylolefine Derivatives 

A group of 1,1,2-triarylolefines were patented as estrogen receptor antagonists (25, Figure 10). 

Most of the synthesized compounds of this group had high anti-estrogenic effects with minimal or 

no estrogen receptor agonist activity [47]. 

R2

B

(R4 )n

C

(R5 )P

R1

A

(R3 )m  
Ring A, B, C: indanyl, indenyl, naphtyl, 5- or 6-membered monocyclic heteroaryl 

R1: tetrazole, optionally substituted piperidinyl 

R2: halogen, -NO2, -CN 

R3: halogen, -NO2, -CN, -OH, -OR, -CO2R 

25 

N

N
H

R3

R5

R2

R1

R4

F

B

C

 
Ring B and C: phenyl, naphtyl, 5-membered monocyclic heteroaryl 

R1: -C(=O)-Z, carboxylic acid bioisostere (Z = OH, OR, -NR) 

R2: C1–C6 alkyl, C1–C6 fluoroalkyl 

R3: H, alkyl or halogen 

R4: H, halogen, -CN, -OH, -OR  

R5 and R6: H, C1–C4 alkyl or halogen 

26 

Figure 10. 1,1,2-Triarylolefine. 

Relating to the patent mentioned above, some new compounds were patented by Smith et al. as 

estrogen receptor modulators in 2015 [48,49]. This patent with formula 26 (Figure 10) showed that 

these compounds diminished the effects of estrogen at estrogen receptors and are useful for the 

treatment ER-related diseases. These compounds were tested in different cells related to estrogen and 

were tested in a clinical trial, demonstrating good results and high affinity to the estrogen receptor. 

4.9. Aptamer Modulators of Estrogen Receptors 

Shi Hua et al. [50] patented a nucleic acid aptamer molecule that includes a domain that binds 

to an estrogen receptor. Examples of aptamer molecules include those that bind to ERα and those 

that bind to ERβ. These compounds have a high affinity to the estrogen receptor; therefore, this 

strategy can be used for patients that have estrogen-dependent cancer. 

 

Figure 10. 1,1,2-Triarylolefine.

Relating to the patent mentioned above, some new compounds were patented by Smith et al.
as estrogen receptor modulators in 2015 [48,49]. This patent with formula 26 (Figure 10) showed
that these compounds diminished the effects of estrogen at estrogen receptors and are useful for the
treatment ER-related diseases. These compounds were tested in different cells related to estrogen and
were tested in a clinical trial, demonstrating good results and high affinity to the estrogen receptor.

4.9. Aptamer Modulators of Estrogen Receptors

Shi Hua et al. [50] patented a nucleic acid aptamer molecule that includes a domain that binds to
an estrogen receptor. Examples of aptamer molecules include those that bind to ERα and those that
bind to ERβ. These compounds have a high affinity to the estrogen receptor; therefore, this strategy
can be used for patients that have estrogen-dependent cancer.
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5. Tamoxifen Analogues

A new series of novel tamoxifene analogues were evaluated for their anti-proliferative activity
on breast cancer (MCF-7) and their activity was comparable or even higher than tamoxifen.
These derivatives maintained the triarylethylene skeleton of tamoxifen having OH groups at the para
position of the phenyl rings of tamoxifen and substituted the side chain of tamoxifen with an amide side
chain. One of the most active compounds in this series, such as 27 (Figure 11), had anti-proliferative
activity about four times higher than tamoxifen [51].

Recently, prodigiosene (Figure 12) conjugates of the tamoxifen analogue (29, Figure 11) and
estrone (28, Figure 11) were reported. Prodigiosenes constitute a class of tripyrrolic compounds
based on the natural product prodigiosin that share a common 4-methoxypyrrolyldipyrrin core unit.
They have demonstrated anticancer activities [52,53]. Conjugating prodigiosenes to a molecule that
already possesses selectivity toward the tumor should help to deliver the drug at a specific site [54–63].
Between these two compounds, the prodigiosin conjugates with the tamoxifen analogue (29, Figure 11)
displayed excellent growth inhibition against the ER-positive cell line MCF-7, with better activity than
tamoxifen itself against this cell line [64].
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Another class of antagonists is the selective estrogen receptor down-regulators (SERDs). This class
of compounds binds to ER and induces the rapid down-regulation of ER [65–68] and they have no
agonistic activity in any tissues. SERDs are divided into two groups based on their chemical structures.
One is steroidal compounds, such as fulvestrant (Figure 12), which has a steroidal structure with
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a long alkyl side chain at the 7α position of the 17ß-estradiol core [68–70]. The other group contains
non-steroidal compounds, such as GW5638 (Figure 12). The structure of GW5638 is similar to tamoxifen
and contains an acrylic acid side chain extending from the triphenylethylene core [71]. Shoda et al. [72]
reported the design and synthesis of tamoxifen derivatives that induced down-regulation of the ER.
Accordingly, a new series of tamoxifen derivatives with long alkyl chains was designed. Among them,
compound 30 (Figure 11) had a strong antagonist effect.
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In this regard, a series of novel fluorescent tamoxifen derivatives (FLTX1) were also reported as
unique and SERM-like. Compound 31 (Figure 11), as a novel fluorescent (FLTX1), specifically labels
intracellular tamoxifen-binding sites, including ERα, and displays unique pharmacological properties
both in vitro and in vivo. FLTX1 exhibits the potent anti-estrogenic properties of tamoxifen in breast
cancer cells without the estrogenic agonistic effect on the uterus [73].

Malo-Forest et al. [74] reported fluorinated derivatives of tamoxifen. The activities of these
fluorinated analogues are similar or better than tamoxifen and among them, compound 32 (Figure 11)
was the most active on the MCF7 cell line. In particular, as opposed to tamoxifen, both geometrical
isomers behave similarly. This behavior may be due to in vitro isomerization of the compounds.

Abdellatif et al. [75] also showed that replacement of the dimethylamino group in tamoxifen
for piperazino or N-methylpiperazino and by changing the ethyl group by methyl substitution of
the phenyl ring with a fluorine atom had excellent anti-proliferative activity on the MCF-7 cell line.
Among these derivatives, compound 33 (Figure 11) showed the best results.

Cho et al. [76] patented compositions and methods for covalently bonding a polycarboxylic fatty
acid and SERD as shown in Scheme 1. The conjugated compounds are useful for increasing solubility
of the SERD as well as targeting the SERD to a solid tumor. Compounds have been shown to be
interestingly efficacious against tamoxifen-resistant tumors. Currently, there is only one approved
drug that binds to estrogen receptors for use in patients suffering from tamoxifen-resistant cancer.
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Preferably, the SERD is selected from the group consisting of compound 34 (Figure 13). In this
group, results showed that compound 35 had the best activity, being even more potent than fulvestrant.
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6. Carborane Analogues

Carboranes are man-made compounds that have no counterparts in nature. Their unique bonding,
structure, and properties predetermine them to be used and tested in many applications. During the
last decade it has been shown that 17α-substituted arylestradiol sharing a lipophilic aromatic moiety
displayed high affinity for binding to ERα and ERβ receptors [61,77–83]. As a result, Sedlak et al. [84]
reported a new series of 17α-(carboranylalkyl)estradiols as ligands for estrogen receptors α and β.
Results showed that all of the tested compounds (Figure 14) had estrogenic activity, although none
of them were able to fully activate either ER like 17β-estradiol. Relative transcription activity (RTA)
is shown in Table 1. Results also showed that compound 37a is 30 times more selective for ERα than
ERβ and it is the most potent ligand for ERα among the tested compounds. They also showed that
the length and the position of the double bond in the alkenyl linker are important for the affinity of
the ligand to the receptor. Smaller carborane groups require shorter linkers to efficiently activate ERs.

A new series of fluorinated carboranyl phenols were also reported as ERβ selective ligands.
Compound 38 (Figure 15) in this series displayed 8.5-fold greater selectivity for ERβ. Therefore,
introduction of a fluorine atom at the 9-position of the m-carborane cage reduced the ERα binding
affinity [85].
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Table 1. Activation of steroid receptors by carboranyl compounds.

Compound RTA(%) ERα RTA(%) ERβ

Agonist 100 100
36a 24 26
36b 52 35
36c 20 16
36d 53 43
37a 58 40
37b 71 63
37c 16 14
37d 31 27
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Figure 15. Fluorinated carborane as ERβ selective.

Ogawa et al. [86] designed and synthesized novel estrogen receptor modulators containing
various hydrophobic bent-core structures. Previously discovered m-carborane derivative (39, Figure 16)
displayed ER partial agonistic activity in ERα trans activation assays. In this series, compounds with
pseudo cyclic, tetrahydropyrimidinone, m-benzene, adamantine, and 9,10-dimethyl-m-carborane
were synthesized. Among them, compound 44 with a 9,10-dimethyl-m-carborane cage showed
a greater ER-binding affinity than compound 39 with two methyl groups into the m-carborane cage.
Compound 39 had an increase of Hansch hydrophobic value (π value) [87,88].
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affinity [85]. 
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Ogawa et al. [86] designed and synthesized novel estrogen receptor modulators containing 

various hydrophobic bent-core structures. Previously discovered m-carborane derivative (39, Figure 

16) displayed ER partial agonistic activity in ERα trans activation assays. In this series, compounds 

with pseudo cyclic, tetrahydropyrimidinone, m-benzene, adamantine, and 9,10-dimethyl-m-

carborane were synthesized. Among them, compound 44 with a 9,10-dimethyl-m-carborane cage 

showed a greater ER-binding affinity than compound 39 with two methyl groups into the m-

carborane cage. Compound 39 had an increase of Hansch hydrophobic value (π value) [87,88]. 
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7. Metal Complexes

Estrogenic steroid conjugates possessing metal chelates at the 17α-position represent an attractive
delivery vector as a targeting strategy [89–92]. In this regard, Zhang et al. synthesized a new
series of estrogen-derived metal complexes and applied the squaramide structure as the core of
the metal binding unit. Results showed that all of the compounds in this series were agonists on ERα.
Compared to the neutral free ligand (45, Figure 17), the binding affinity of compound 46a–c for ERα
increased, while the binding affinity of 46a–c for ERβ all decreased [93].
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Recently, new ferrocenyl compounds with different alkyl chain lengths were synthesized and
evaluated against hormone-dependent breast cancer cells. Seven new ferrocenyl compounds having
different chain lengths (suberic, adipic, succinic) were synthesized and all of them displayed strong
anti-proliferative activity against hormone-dependent and independent breast cancer cell lines.
Interestingly, among this series, compound 47, having a succinimide group (Figure 18), was the
most active compound against hormone-dependent MCF-7 breast cancer cells, presumably owing to
an antagonist effect on ERα [94].
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In 2014, some thiosemicarbazone ligands and their rhenium(I) carbonyl complexes were
synthesized, characterized, and their estrogen receptor binding affinities were determined
(48, Figure 19). In general, all compounds displayed values of less than 50% for binding affinity
for both estrogen receptor subtypes.

The results indicated that the type of halogen on the rhenium atom does not seem to have
an effect on the affinity of the complex for the receptor, but the hydroxyl group at the para position of
phenyl ring plays a positive role. In any case, the nature of the R3 and R5 groups seems to be more
significant [95].
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8. Conclusions

Since activation of ERα is associated with proliferative responses in the mammary gland
and in the uterus, the development of selective ERα antagonists or selective ERα ligands with
mixed tissue-selective agonist/antagonist activity is a promising strategy for the production of
new therapeutic agents. In contrast, the therapeutic potentials of ERβ agonists for the treatment
of other pathologies such as prostate cancer or cardiovascular diseases attract researchers to develop
selective ERβ agonists as safe and efficacious drugs. This review provides an overview and update of
compounds that have been recently reported as estrogen receptor ligands, with a particular focus on
their structure-activity relationships and their potential clinical applications. The compounds were
classified based on chemical structure in steroidal and non-steroidal ligands. Atypical ER ligands
including carborane analogues and estrogenic metal complexes were also described.

SERMs are compounds that exhibit tissue-specific estrogen receptor agonist or antagonist
activity [2]. They represent a diverse group of molecules with varying levels of estrogen agonist and
antagonist activity in different tissues. With unique and different patterns of ER subtype expression
seen in the breast, bone, CNS, and cardiovascular system, ER ligands including SERMs can exert
a wide range of physiological effects related to both pathological and therapeutic processes. The most
important clinical successes achieved in the ER ligand field over the past decades mainly involve
SERMs or ERα antagonists which are used in the treatment of estrogen-related cancers such as breast
cancer, osteoporosis, and cardiovascular diseases [47]. The classical treatment in ER-positive breast
cancer is oral tamoxifen as a first-generation SERM. However, over time or by chance mutation,
ER-positive breast cancer not only becomes resistant to tamoxifen, as tamoxifen becomes an agonist
which induces proliferation. Unlike SERMs like tamoxifen, SERDs are not ER agonists which limit side
effects throughout the body such as endometrial hyperplasia or uterotrophy and bone demineralization
which make them much more tolerable therapies. Unfortunately, there is only one approved hormonal
estrogen receptor-targeted medication for tamoxifen-resistant cancer, the SERD fulvestrant. Due to
solubility issues of fulvestrant, it has to be prepared in oil and used as an IM injection which is
extremely painful and unpleasant for patients. Therefore, there is a need to develop new SERDs
with oral activity as alternative treatment for patients suffering from tamoxifen-resistant cancers.
Conjugation of a SERD and a polycarboxylic fatty acid is a good strategy to form fatty acid-drug
conjugate compounds. The conjugate compounds are useful for increasing solubility of the SERDs
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as well as targeting the SERD to solid tumors. In particular, the compounds have been shown to
be interestingly efficacious against tamoxifen-resistant tumors. The authors believe that in the near
future, several new SERDs will be introduced in this field for the treatment of tamoxifen-resistant
cancers. In fact, new orally bioavailable SERDs hold promise as a next generation therapy for the
treatment of ER-positive breast cancer as monotherapy as well as in combination with agents that
target other pathways involved in endocrine-resistant states. In addition to SERDs, a great deal of
attention is presently being paid to ERβ agonists. Recently, a remarkable rise of interest in developing
ER modulators displaying the same beneficial effects of estrogens without the adverse side effects
was observed after the discovery of a second ER subtype, ERβ. Therefore, the recent literature has
focused on selective ERβ ligands as highly promising targets for the treatment of some types of
cancer, as well as for cardiovascular and inflammatory bowel diseases. Because of the high therapeutic
potential of ERβ ligands, we should expect that in the coming years more ERβ-selective agonists will be
launched in the market for the treatment of different pathologies such as breast cancer, prostate cancer,
colorectal cancer, cardiovascular diseases, and neurodegenerative diseases.
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