
METHODOLOGY ARTICLE Open Access

DPDDI: a deep predictor for drug-drug
interactions
Yue-Hua Feng1, Shao-Wu Zhang1* and Jian-Yu Shi2*

* Correspondence: zhangsw@nwpu.
edu.cn; jianyushi@nwpu.edu.cn
1Key Laboratory of Information
Fusion Technology of Ministry of
Education, School of Automation,
Northwestern Polytechnical
University, Xi’an 710072, China
2School of Life Sciences,
Northwestern Polytechnical
University, Xi’an 710072, China

Abstract

Background: The treatment of complex diseases by taking multiple drugs becomes
increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk
of unanticipated adverse effects and even unknown toxicity. DDI detection in the
wet lab is expensive and time-consuming. Thus, it is highly desired to develop the
computational methods for predicting DDIs. Generally, most of the existing
computational methods predict DDIs by extracting the chemical and biological
features of drugs from diverse drug-related properties, however some drug
properties are costly to obtain and not available in many cases.

Results: In this work, we presented a novel method (namely DPDDI) to predict DDIs
by extracting the network structure features of drugs from DDI network with graph
convolution network (GCN), and the deep neural network (DNN) model as a
predictor. GCN learns the low-dimensional feature representations of drugs by
capturing the topological relationship of drugs in DDI network. DNN predictor
concatenates the latent feature vectors of any two drugs as the feature vector of the
corresponding drug pairs to train a DNN for predicting the potential drug-drug
interactions. Experiment results show that, the newly proposed DPDDI method
outperforms four other state-of-the-art methods; the GCN-derived latent features
include more DDI information than other features derived from chemical, biological
or anatomical properties of drugs; and the concatenation feature aggregation
operator is better than two other feature aggregation operators (i.e., inner product
and summation). The results in case studies confirm that DPDDI achieves reasonable
performance in predicting new DDIs.

Conclusion: We proposed an effective and robust method DPDDI to predict the
potential DDIs by utilizing the DDI network information without considering the
drug properties (i.e., drug chemical and biological properties). The method should
also be useful in other DDI-related scenarios, such as the detection of unexpected
side effects, and the guidance of drug combination.

Keywords: Drug-drug interaction, DDI prediction, Graph convolution network (GCN),
Feature extraction, Deep neural network
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Background
By taking advantage of the synergistic effects caused by drug-drug interactions (DDIs),

the combinational treatment of multiple drugs for complex diseases are popular now-

adays [1]. However, unexpected DDI can also trigger side effects, adverse reactions, and

even serious toxicity, leading patients in danger [2]. As there exists increasing needs of

multi-drug treatments, the identification of DDIs is more and more urgent. Neverthe-

less, it is expensive and time-consuming to detect DDIs among a large scale of drug

pairs both in vitro and in vivo. To assist the screening of DDIs, computational ap-

proaches have been developed to deduce candidate drug-drug interactions.

Existing computational methods can be roughly classified into two categories: text

mining-based and machine learning-based methods. The text mining-based methods

discover and collect annotated DDIs from scientific literatures, electronic medical re-

cords [3, 4], insurance claim databases and the FDA Adverse Event Reporting System

[5]. They are quite useful in building DDI-related databases. However, those methods

cannot detect unannotated DDIs, and cannot give alerts to potential DDIs before a

combinational treatment is made [2]. In contrast, machine learning-based methods pro-

vide a promising way to identify unannotated potential drug-drug interactions for

downstream experimental validations.

Usually, machine learning-based methods consist of the feature extractor and the su-

pervised predictor. The feature extractor represents drugs in a form of feature vector

according to drug properties, such as chemical structure [2, 6–14], targets [2, 8–11],

Anatomical Therapeutic Chemical classification (ATC) codes [8–10, 12], side effects [8,

9, 11, 13, 14], medication and/or clinical observations [11].

The supervised predictor is usually implemented by classification algorithms, such as

KNN [12], SVM [12], logistic regression [2, 8, 10], decision tree [10], naïve Bayes [10]),

and network propagation methods, such as reasoning over drug-drug network structure

[6–8], label propagation [13], random walk [11, 15], probabilistic soft logic [9, 10]) or

matrix factorization [14]. Usually, the predictor first trains a model with both feature

vectors/similarity matrices and annotated DDI labels, then deduces potential DDIs with

the well-trained model. Most methods utilize a single predictor [2, 5–8, 13–16], while

some of them integrate multiple predictors [10, 12].

In general, the performance of existing approaches heavily relies on the quality of

handcrafted features derived from the drug properties. However, some drug properties

may not always be available. One common solution is to remove the drugs that lack a

certain drug property, which results in small-scale pruned datasets and thus is not

pragmatic and suitable in the real scenario [17]. In addition, some handcrafted drug

features may not be precise enough to represent or characterize the property of drugs,

which may jeopardize the construction of a robust and accurate model for link

prediction.

As one of the most popular graph embedding methods, Graph Convolution Network

(GCN) provides a promising way to predict DDIs when some properties of drugs are

not available. Inspired by the traditional convolutional neural networks (CNNs) operat-

ing on regular Euclidean data like images (2D grid) and text (1D sequence) [18], GCN

formulates convolution on an irregular graph in non-Euclidean domains, then aggre-

gates information about each node’s neighborhood to distill the network into dense

vector embedding without requiring manual feature engineering [19]. The dense vector
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embedding, also called low-dimensional representations, are learned to preserve the

structural relationships between nodes (e.g., drugs) of the network, and thus can be

used as features in building machine learning models for various downstream tasks,

such as link prediction [17]. Recently, the GCN has been applied to the field of drug

development and discovery [20], such as molecular activity prediction [21], drug side

effect prediction [22], drug target interactions prediction [23].

In this work, we introduced a deep predictor of drug-drug interactions (namely

DPDDI), which uses a graph convolution network (GCN) to learn the low-dimensional

feature representation of each drug in the DDI networks, and adopts the deep neural

network (DNN) to train models. GCN characterizes drugs in a graph embedding space

for capturing the topological relationship to their neighborhood drugs. Experiment re-

sults demonstrate that our DPDDI outperforms other existing state-of-art methods in

DDI prediction.

Results
In this section, we first introduce how to set the parameters of DPDDI predictor, then

compare the performance of DPDDI with four other state-of-the-art methods in 5-fold

cross-validation (5CV) test. We also compare the results of three feature aggregation

operators, discussing the effect of sampling rate of negative samples and the robustness

of DPDDI on different scale dataset. In the end, we show the effectiveness of DPDDI

through a case study.

In statistical prediction, the jackknife test and q-fold cross-validation (CV) test are

often used to examine the effectiveness of a predictor [24]. Of the two test methods,

the jackknife test is deemed the least arbitrary that can always yield a unique result

[25]. However, for large scale database, the jackknife test is quite time consuming. To

reduce the computational time and evaluate performance of a predictor, in this study,

we adopted the 5-fold cross-validation (5CV) test as done by most investigators [26–

29]. For 5CV test, the samples in the DDI dataset are randomly partitioned into 5 sub-

sets with approximately equal size. One of the 5 subsets is singled out in turn as testing

set; 90 and 10% of the other 4 subsets are used as the training samples (forming train-

ing set) and validation samples (forming validation set), respectively. The predictor is

constructed on the training set and its parameters are tuned by using the validation set.

This process is repeated for 5 iterations, each time setting aside a different test subset.

To avoid the bias aroused from random data split, we implement 10 independent runs

of 5CV, and use the average of the results to assess the performance of our DPDDI

predictor.

Parameter setting

We performed a grid search of the parameters by seeking both the minimum value of

the loss function and the best accuracy with the training dataset. Both the GCN-based

feature extractor and the DNN-based predictor need to tune the learning rate, epochs,

batch size, dropout rate, as well as neuro numbers (dimensions) in hidden layers.

Specifically, with the full batch size, the GCN-based feature extractor tuned the learn-

ing rate (L-rate) from the list of {0.1, 0.01, 0.001, 0.005, 0.0001}, the Epochs from {200,

500, 800, 1000, 1200, 1400, 1600}, the Dropout from {0.01, 0.001, 0.0001}, and the
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hidden layer dimensions (H-dim) from {[800,512], [800,256], [800,128], [512,256], [512,

128], [512,64], [256,64], [128,32]}. The DNN-based predictor tuned the learning rate

(L-rate) from {0.1, 0.05, 0.01, 0.005}, the Epochs from {20, 40, 60, 80,100,140,160}, the

batch size (B-size) from {10, 20, 40, 50, 60, 80}, the Dropout from {0.01, 0.001, 0.0001}

and the hidden layer dimensions (H-dim) from {[128, 32], [128, 64], [64, 32], [128,64,

32], [128, 32, 16], [64, 32, 16], [128, 64, 32, 16], [64, 32, 16, 4]}. The parameters led op-

timal prediction are shown in Table 1.

Comparison with other state-of-the-art methods

We compared our DPDDI with four other state-of-the-art methods, including two

Vilar’s methods (named as Vilar 1 and Vilar 2, respectively) [6, 7], label propagation-

based method (named as LP) [13] and Zhang’s method (named as CE) [11] in 5-CV

test. Vilar et al [6] integrates a Tanimoto similarity matrix of molecular structures with

known DDI matrix by a linear matrix transformation to identify potential DDIs. Vilar

et al [7] uses the drug interaction profile fingerprints (IPFs) to measure similarity for

predicting DDIs. Label propagation method [13] applies label propagation to assign la-

bels from known DDIs to previously unlabeled nodes by computing drug similarity-

derived weights of edges on the DDI network. Zhang et al [11] collects a variety of

drug-related data (e.g., known drug-drug interactions, drug substructures, proteins,

pathways, indications, and side effects, etc.) to build many base classifiers, then per-

formed the prediction with an ensemble (CE) classifier model.

To ensure a fair comparison, the DB2 dataset from [11] is adopted. In the DB2 data-

set, all unlabeled drug pairs are considered as the negative samples. The comparison re-

sults in 5CV test are shown in Table 2, from which we can see that DPDDI achieves

the best results, outperforming the other four state-of-the-art methods across all the

metrics. Specifically, DPDDI achieves the improvements of 0.2 ~ 24.9%, 6.6 ~ 64.5%, 2.2

~ 31.5%, 2.5 ~ 50.1%, 0.6 ~ 22.1%, 8.9 ~ 50.6% against other three methods of Vilar 1,

Vilar 2 and LP in terms of AUC, AUPR, Recall, Precision, Accuracy, and F1-score, re-

spectively. Although the AUC and ACC of DPDDI are slightly lower than that of

Zhang’s method [11], the AUPR and F1 of DPDDI are higher. AUPR is often believed

to be a more significant quality measure than AUC, as it punishes much more the ex-

istence of false positive drug-drug interactions. F1 represents the harmonic mean of

precision and recall, which focus on the proportion of correctly predicted drug-drug

interaction pairs. ACC focuses not only on the proportion of correctly predicted drug-

drug interaction pairs, but also on the proportion of correctly predicted drug-drug

non-interaction pairs. For the prediction of drug-drug interaction, F1 should be more

effective measure than ACC.

In addition, Zhang et al [11] used 9 drug-related data sources, while our DPDDI just

use the known drug-drug interaction data. If we integrate more drug-related data

Table 1 The optimal parameters of DPDDI

Parameters L-rate Epochs Dropout B-size I-dima H-dim O-dimb

Feature extractor 0.001 1400 0.0001 Full-batch 1562 [512,128] 128

Predictor 0.01 140 0.001 50 256 [128,64,32] 2
aI-dim denotes the neuro numbers in input layer; bO-dim denotes the neuro numbers in output layer
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sources (e.g., drug substructure, drug target, drug enzyme, drug transporter, drug path-

way, drug indication, drug side effect and drug off side effect used in [11]) to construct

the dug-drug similarity network, using DPDDI framework to predict DDIs, DPDDI

should be able to achieve better performance.

Comparison of different feature aggregate operators

After obtaining the latent feature vectors of single drugs in the embedding space by

GCN, we adopt three feature operators (i.e., inner product, summation and concaten-

ation) to aggregate the feature vectors of two drugs into one feature vector for repre-

senting the drug-drug pairs. Then these aggregation feature vectors are fed into the

DNN model to evaluate their effects to our DPDDI on DB1 dataset in 5CV test. As

shown in Table 3, the concatenate operator achieves the best results and is thus se-

lected in our DPDDI model to aggregate the feature vectors of drugs.

Comparison of the network structure features, chemical features and biological features

of drugs

In order to evaluate the effectiveness of the network structure (NS) features, we also

considered the chemical and biological features derived from three heterogeneous

sources, such as chemical structure (CS), drug-binding proteins (DBP), and Anatomical

Therapeutic Chemical Classification labels (ATC). Chemical structures of the drugs are

characterized by 881-dimensional PubChem fingerprints. The DBP features of drugs

are represented by 1121-dimensional binary vectors in which each bit indicates the

binding occurrence of a specific DBP across the drugs. The 118-dimensional ATC fea-

tures of drugs are converted from the 7-bit ATC code via a one-hot coding. These fea-

tures (i.e., network structure features, chemical structure features, DBP features and

ATC features of drugs) are respectively concatenated to feed the DNN models for pre-

dicting DDIs, and the results of these features with DNN on DB1 dataset in 5CV test

are shown in Table 4, from which we can see that the network structure features gener-

ate the best performance.

Table 2 Performance comparison on DB2 dataset in 5CV test

Method AUC AUPR Recall Precision ACC F1

Vilar 1 [6] 0.707 0.262 0.495 0.253 0.719 0.334

Vilar 2 [7] 0.826 0.533 0.569 0.515 0.862 0.540

LP [13] 0.851 0.799 0.685 0.729 0.809 0.706

CEa [11] 0.957 0.807 0.785 0.670 0.955 0.723

DPDDI 0.956 0.907 0.810 0.754 0.940 0.840
aThe results are taken from Table 5 in Ref. [11]

Table 3 Results of three feature aggregation operators on DB1 dataset

Operators AUC AUPR Recall Precision ACC F1

Inner product 0.938 0.810 0.709 0.761 0.927 0.734

Summation 0.970 0.898 0.774 0.854 0.949 0.812

Concatenation 0.983 0.925 0.844 0.836 0.955 0.840
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Influence of dataset scale size

In order to verify the robustness of our DPDDI approach, we use three datasets (i.e.,

DB1, DB2 and DB3) with different sizes to assess the performance of DPDDI in 5CV

test. DB1 dataset contains 1562 drugs and 180,576 annotated drug-drug interactions.

DB2 contains 548 drugs and 48,584 annotated drug-drug interactions. DB3 dataset con-

tains 1934 drugs and 230,887 annotated drug-drug interactions. As shown in Table 5,

although the dataset size has some effect on the performance of DPDDI (i.e., higher

performance is achieved on dataset of a larger size), our DPDDI obtain reasonable pre-

diction results on small dataset as well. These results show that our DPDDI approach

is relatively robust with respect to the size of datasets for predicting DDI.

We also investigate the effects of negative sample size on DPDDI by sampling differ-

ent unlabeled drug pairs to generate the negative sample sets, which are combined with

the known DDI pairs (i.e., positive sample set) to form the DDI training, validation and

testing datasets.

From DB1 dataset, we randomly selected different number of unlabeled drug pairs

and combine them with the known DDI pairs to construct the datasets of DB1:1, DB1:

3 and DB1:6, in which the ratio of positive samples (i.e., known DDI pairs) and negative

samples (i.e., unlabeled drug pairs) are kept 1:1, 1:3 and 1:6, respectively. Figure 1

shows the results of DPDDI on DB1:1, DB1:3 and DB1:6 datasets in 5CV test. We can

see that DPDDI achieves the highest values in terms of AUC, AUPR, Precision, Recall,

Accuracy and F1 on DB1:1 dataset, indicating that the imbalance between positive and

negative samples does have impacts on the performance of DPDDI.

Case studies

In this section, we investigate the performance of DPDDI in predicting the unobserved

DDIs. DB1 contains 180,576 annotated drug-drug interaction pairs among 1562 drugs,

and 1,038,565 unlabeled drug pairs which may contain unobserved DDIs. By training

DPDDI with DDI network from DB1 dataset, the possible interactions among drugs are

inferred. Higher scores of unobserved drug pairs indicate that there are higher prob-

abilities to interact between these drugs. Table 6 shows the top 20 predicted drug-drug

interactions of DPDDI, which are not available in DB1 dataset. By searching for the evi-

dence of these newly predicted DDIs on DrugBank (version 5.0) database and Drug

Table 4 Comparing different types of features on DB1 data in 5CV test

Feature AUC AUPR Recall Precision ACC F1

CS 0.904 0.635 0.668 0.554 0.876 0.605

DBP 0.874 0.616 0.602 0.584 0.882 0.593

ATC 0.901 0.656 0.659 0.576 0.882 0.615

NS 0.983 0.925 0.844 0.836 0.955 0.840

Table 5 Results of DPDDI on datasets of different size in 5CV test

Dataset Type Sparsity AUC AUPR Recall Precision ACC F1

DB2 Small 32.4% 0.956 0.907 0.810 0.754 0.940 0.840

DB1 Medium 14.8% 0.983 0.925 0.844 0.836 0.955 0.840

DB3 Large 12.4% 0.981 0.932 0.835 0.876 0.960 0.855
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Interaction Checker website (Drugs.com), we find that a significant fraction of newly pre-

dicted DDIs (13 out of 20) is confirmed. For instance, the description of the interaction

between drug “Doxycycline” and drug “Bleomycin” is “Doxycycline may decrease the ex-

cretion rate of Bleomycin which could result in a higher serum level”. The case studies

demonstrate that our DPDDI can effectively detect the potential drug-drug interactions.

Maybe other 7 newly predicted DDIs our of 20 are confirmed by later experiments.

In addition, among the top 20 predicted DDIs of DPDDI, we find that the drug of

“doxycycline” interacts with other 8 drugs, and 5 out of 8 DDI pairs have been con-

firmed by current experimental evidences. These results indicate that “doxycycline”

drug may have higher activity and is easy to interact with other drugs for implementing

the drug efficacy.

Discussions
One the key factor in DDI prediction is the features considered. We compared the

GCN-derived DDI network structure feature with the other three chemical structure

and biological features. The results in Table 4 show the superiority of our GCN-

derived DDI network structure feature across all the performance metrics. Especially,

our GCN-derived DDI network structure feature achieves > 20% improvement in terms

of AUPR, Recall, Precision, and F1-score. These results demonstrate that DDI network

structure features-based GCN contains more DDI discriminant information, and can

effectively learn a low-dimensional feature representation for each drug in the DDI net-

work, i.e., the low-dimensional representation preserve the ample structural informa-

tion of DDI network.

In DDI prediction, how to best aggregate the feature vectors of two drugs into one

vector for presenting one drug pair is another key factor. We adopt three feature opera-

tors of inner product, summation and concatenation to aggregate the feature vectors of

two drugs. Results in Table 3 show that the concatenate operator achieves the best per-

formance whereas the inner product operator gets the worst performance. Therefore,

concatenation operator was adopted in our DPDDI.

Fig. 1 Impact of sample balancing

Feng et al. BMC Bioinformatics          (2020) 21:419 Page 7 of 15

http://drugs.com


Table 6 Top 20 predicted DDIs by DPDDI

Number Drug 1 Drug 2 Validation source Description

1 Doxycycline Bleomycin DrugBank Doxycycline may decrease the
excretion rate of Bleomycin which
could result in a higher serum level.

2 Doxycycline Rifapentine N/A N/A

3 Doxycycline Fusidic acid N/A N/A

4 Pramipexole Paroxetine DrugBank Paroxetine may increase the
sedative activities of Pramipexole.

5 Luliconazole Doxycycline N/A N/A

6 Netupitant Doxycycline DrugBank The metabolism of Netupitant can
be decreased when combined with
Doxycycline.

7 Tenoxicam Minocycline N/A N/A

8 Etoperidone Tenoxicam DrugBank Tenoxicam may decrease the
excretion rate of Etoperidone
which could result in a higher
serum level.

9 Pramipexole Minocycline N/A N/A

10 Ropinirole Pramipexole DrugBank Ropinirole may increase
the sedative activities of
Pramipexole.

11 Minocycline Ropinirole DrugBank Minocycline may increase the
central nervous system
depressant (CNS depressant)
activities of Ropinirole.

12 Bleomycin Doxycycline DrugBank Doxycycline may decrease the
excretion rate of Bleomycin
which could result in a higher
serum level.

13 Pramipexole Metyrosine drugs.com Using metyroSINE together
with pramipexole may increase
side effects such as dizziness,
drowsiness, confusion, and
difficulty concentrating.

14 Osimertinib Doxycycline DrugBank The metabolism of Osimertinib
can be decreased when
combined with Doxycycline.

15 Dronabinol Pramipexole DrugBank Dronabinol may increase the
sedative activities of Pramipexole.

16 Rufinamide Tenoxicam N/A N/A

17 Phenobarbital Pramipexole drugs.com Using PHENobarbital together
with pramipexole may increase
side effects such as dizziness,
drowsiness, confusion, and
difficulty concentrating.

18 Bleomycin Mitotane N/A N/A

19 Fosaprepitant Doxycycline DrugBank The metabolism of
Fosaprepitant can be
decreased when combined
with Doxycycline.

20 Duloxetine Rufinamide drugs.com Using DULoxetine together with
rufinamide may increase side
effects such as dizziness, drowsiness,
confusion, and difficulty concentrating.
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In addition, we paid particular attention to how to balance samples in the

training phase. Many former works in similar areas [22, 30, 31] adopted the same

number of negative samples and positive samples to avoid the computational

challenge caused by the sample imbalance. Consistently, our results in Fig. 1

show that the balanced sample scheme achieves the best performance in terms of

AUPR, Recall, Precision and F1 score. These results indicate that the imbalance

between positive and negative samples does have influence on DPDDI. For fairly

comparing with other state-of-the-art methods, the known drug-drug interaction

pairs (positive samples) and all unlabeled drug-drug pairs (negative samples) are

used to train the prediction model. Considering that more sever sample imbal-

ance can result in the higher errors, we also introduce a weight Wpos in Eq.(2)

for sample balancing.

The comparison experiments (in Tables 1 and 4) demonstrate the superior perform-

ance and robustness of DPDDI compared to four other state-of-the-art methods on

three DDI datasets with different scale. Investigation on the top predicted DDIs con-

firm the competence of DPDDI for predicting the new DDIs.

The superior performance of DPDDI can be attributed to the following aspects: i) De-

signing a GCN model to learn the low-dimensional feature representations of drugs

and capture the structure information of DDI network. ii) Constructing a DNN model

as the predictor to distinguish whether interaction exists between two drugs. iii) DNN

model can learn the non-linear relationship of drug pairs by mapping the drug pairs

from a high-dimension space into a lower dimension space.

DPDDI is effective in predicting the potential interactions between two drugs existed

in DDI network. If the DDI network does not contain the drugs, e.g., a newly invented

drug without prior information, DPDDI will fail. In this condition, it is possible to con-

struct the drug-drug similarity network by introducing the drug chemical or biological

properties, and then implement our DPDDI framework to predict the novel DDIs.

Conclusions
Aiming at the preliminary screening of DDIs, this work presents a novel prediction

method (namely DPDDI) from a DDIs network. DPDDI consists of a feature extractor

based on graph convolution network (GCN) and a predictor based on deep neural net-

work (DNN). The former characterizes drugs in a graph embedding space, where each

drug is represented as a low-dimensional latent feature vector for capturing the topo-

logical relationship to its neighborhood drugs. The latter concatenates latent feature

vectors of any two drugs into one feature vector to represent the corresponding drug

pairs for train a DNN for predicting potential interactions. Designated experiments for

DPDDI bring several observations: i) the concatenation feature aggregation operator is

better than two other feature aggregation operators, i.e., the inner product and the

summation; ii) the GCN-derived latent features greatly outperform other features de-

rived from chemical, biological or anatomical properties of drugs; iii) DPDDI is robust

to the datasets with different scale in drug number, DDI number, and network sparsity;

iv) the performance of DPDDI is significantly superior to four state-of-the-art methods;

v) the finding of 13 verified DDIs out of top 20 unobserved candidates in case studies

reveals the capability of DPDDI for predicting new DDIs. To summarize, the proposed

DPDDI is an effective approach for predicting DDIs, and should be helpful in other

Feng et al. BMC Bioinformatics          (2020) 21:419 Page 9 of 15



DDI-related scenarios, such as the detection of unexpected side effects, and the guid-

ance of drug combination.

Methods
Datasets

We extracted the approved small molecular drugs and their interaction relationships

from DrugBank 4.0 [32] to build the DB1 dataset which contains 1562 drugs and 180,

576 annotated drug-drug interactions. In order to compare with other state-of-the-art

methods, a smaller dataset (named as DB2) built by Zhang et al. [11] was adopted to

evaluate the performance of our DPDDI. DB2 contains 548 drugs and 48,584 annotated

drug-drug interactions. Moreover, we also collected a new and larger dataset from

DrugBank 5.0 [33] to build the DB3 dataset for assess the robustness of our DPDDI, in-

cluding 1934 drugs and 230,887 annotated drug-drug interactions. In DB1, DB2 and

DB3, the known drug-drug interaction pairs are used as the positive samples to build

the positive set, and the other unlabeled drug-drug pairs are considered as the negative

samples in which we utilize a random sampling strategy to build the negative set. From

the perspective of interactions, these three datasets can be treated as DDI networks.

The network characteristics are summarized in Table 7.

In order to compare our network-based features with other drug features derived

from diverse drug properties, we also downloaded the drug chemical structures, Ana-

tomical Therapeutic Chemical classification (ATC) codes and drug-binding proteins

(DBPs) from DrugBank.

The chemical structure-based feature represents each drug by an 881-dimensional bin-

ary vector in which each bit represents the specific substructure according to Pubchem

fingerprints. ATC codes are released by the World Health Organization [34], and they

categorize drug substances at different levels according to organs they affect, application

area, therapeutic properties, chemical and pharmacological properties. It is generally ac-

cepted that compounds with similar physicochemical properties exhibit similar biological

activity. As 138 of 1562 drugs in DB1 have no ATC code, we adopted their predicted

codes by SPACE [35], which deduce ATC codes from chemical structures. To feed the 7-

bit ATC code into DNN, we convert them into a one-hot code with 118 bits.

We also used drug-binding protein (DBP) data collected by [16], including 899 drug tar-

gets and 222 non-target proteins. Similarly, each drug is represented as a binary DBP-based

feature vector, of which each bit indicates whether the drug binds to a specific protein.

Problem formulation

Our task is to deduce DDI candidates among those unannotated drug-drug pairs based

on annotated DDIs in the form of a network. Technically, let G(D, E) be a DDI

Table 7 Characteristics of DDI networks from DB1, DB2 and DB3

Dataset #Drug #Interaction #No-link Sparsity Max degree Min degree

DB1 1562 180,576 1,038,565 14.8% 903 1

DB2 548 48,584 101,294 32.4% 512 1

DB3 1934 230,887 1,637,357 12.4% 1049 1

# denotes the number of drugs, link drug-drug pairs and no-link drug-drug pairs
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network, where D = {d1, d2,…, dm} is the set of m approved drugs and E denotes the in-

teractions between them. This network can be usually represented by an m ×m sym-

metric binary adjacency matrix Am ×m = {aij}, where aij = 1 indicates an annotated

interaction between drug di and drug dj, and otherwise no annotated interaction be-

tween them.

DDI prediction can be solved by a three-step approach. First, the function of f1(A) is

to obtain the latent feature vector Zi of each drug in A, where Zi ∈ R
1 × k(k≪m) . Next,

the latent vectors (Zi and Zj) of two drugs are aggregated into one feature vector to

represent a drug pair. Last, the function of f2(Zi, Zj) ( Zi, Zj ∈ Z) is used to reconstruct

the network Â. The function of f1 is referred as the feature extractor, while the function

of f2 is named as the predictor in our model.

In this work, by implementing the solution based on deep learning, we provide a

Deep Predictor for Drug-Drug Interactions (named as DPDDI). DPDDI mainly consists

of the following three phases: i) Extract the low-dimensional embedding latent features

of drugs from DDI network by building a GCN model; ii) Aggregate the latent feature

vectors (i.e., Zi and Zj) of drugs di and dj to represent the drug pairs; iii) Feed the fused

feature vectors into a DNN to predict DDIs. The overall framework of DPDDI is illus-

trated in Fig. 2.

The loss of DPDDI contains two parts as follows:

Loss ¼ Lf p; qð Þ þ Lp p; qð Þ; ð1Þ

where Lf is the loss of its feature extractor, and Lp is the loss of its predictor. The first

part adopts a binary weighted-cross-entropy as follows:

Lf p; qð Þ ¼ −
X

i; j
p aij
� �

log q aij
� �� ��Wpos þ 1 − p aij

� �� �ð1 − log q aij
� �� �

; ð2Þ

where p(aij) is the true label of the training interaction aij, qðaijÞ ¼ σðzi∙zTj Þ is the pre-

dicting probability computed by the inner product of latent vectors of two nodes gener-

ated by the GCN, and Wpos is the weight equal to the number of negative samples over

the number of positive samples. The second part is defined by a binary cross-entropy

as follows:

Fig. 2 Overall framework of DPDDI. The main steps are as follows. First, the feature extractor of DPDDI
constructs a two-layer graph convolutional network (GCN) to obtain drug latent features, which capture the
complex relations between the drug nodes in the DDI network. Then, each pair of drugs is represented as a
feature vector by concatenating the corresponding latent features of the drugs. Last, the feature vectors of
representing the drug pairs are fed into a deep neural network to train the predictor to deduce
potential DDIs
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Lp p; qð Þ ¼ −
X
i; j

p aij
� �

log s aij
� �� �

; ð3Þ

where s(aij) is the predicting probability generated by the DNN.

Feature extractor

We employ a two-layer auto-encoder of graph convolutional network (GCN) [36, 37]

to obtain embedding representations of drug nodes. Each drug is represented as a la-

tent feature vector, which contains the high-dimensional information about its neigh-

borhood in the DDI network without manual feature engineering. Such node

embedding provides a promising way to represent the relationship between nodes in a

complex network.

Technically, the GCN takes the adjacency matrix A as the input and outputs embed-

ding vectors fZi∈R1�Hp ; i ¼ 1; 2;…;mg for every drug in the DDI network, where Hp is

the dimension of the last hidden layer. Like [38] recommendation, our GCN adopts

two layers as well. Suppose that H(0) is the feature matrix in which each row denotes

the input feature vector of each node in the network. In case of no input features, H(0)

is just an identity matrix. Then, the output H(1) of the first hidden layer is defined as:

H 1ð Þ ¼ f H 0ð Þ;A
� �

¼ ReLU ÂH 0ð ÞW 0ð Þ
� �

; ð4Þ

where Â ¼ ~D
− 1

2 ~A~D
− 1

2 is the symmetrically normalized adjacency matrix, ~Dii ¼
P

j
~Aij

and ~A ¼ Aþ IN , W ð0Þ∈Rm�H1 is the weight matrix to be learned, and ReLU is the acti-

vation function. Similarly, the output H(2) of the second hidden layer is recursively de-

fined as:

H 2ð Þ ¼ f H 1ð Þ;A
� �

¼ ReLU ÂH 1ð ÞW 1ð Þ
� �

; ð5Þ

where W ð1Þ∈RH1�H2 . Because our GCN contains only two layers, H(2) is just the final

embedding matrix Z ∈Rm�H2 .

Feature aggregation for drug pairs

So far, the latent feature vector of single drug in the embedding space is obtained. The

next task is to obtain feature vectors of drug pairs. Given two drugs di and dj, and their

latent vectors Zi and Zj obtained by GCN, three feature operators, i.e., inner product,

summation and concatenation, are considered to aggregate the latent feature vectors of

two drugs into a single feature vector to represent the drug-drug pair. Specifically, we

separately adopt the inner product Fðdi; d jÞ ¼ Zi ZT
j , summation F(di, dj) = Zi + Zj and

concatenation F(di, dj) = [Zi, Zj] of two drug latent vectors Zi and Zj to represent the

drug pair (di, dj).

Predictor

Given the feature vectors of drug-drug pairs, we construct a deep neural network

(DNN) as the predictor in DPDDI for its the proven performance in classification. The

predictor transforms DDI prediction into a binary classification, which is implemented

by a five-layer DNN. The numbers of neurons in the layers of the DNN are 256, 128,

64, 32 and 2, respectively. ReLU is adopted as the activation function in the first four
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layers, while SoftMax is used as the activation function in the last layer, which outputs

how likely drug pairs are potential DDIs.

There are two steps to train our DPDDI. The first step is to train a GCN for obtain-

ing the low-dimensional embedding latent features of drugs. The parameters (i.e., learn-

ing rate, epochs, dropout, input-dim, hidden-dim, and output-dim) in GCN

architecture are trained with the DDI network data. The second step is to learn the pa-

rameters (i.e., learning rate, dropout, epochs, batch-size, input-dim, hidden-dim, and

output-dim) of the DNN for final DDI prediction and to fine turn all the parameters of

DPDDI framework. To explain our DPDDI method in detail, the pseudo-code is shown

in Table 8.

Evaluation metrics

The following metrics of accuracy (ACC), Recall, Precision and F1-score are used to

measure the performance of DPDDI.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

; ð6Þ

Precision ¼ TP
TP þ FP

; ð7Þ

Recall ¼ TP
TP þ FN

; ð8Þ

F1 ¼ 2� Precision� Recall
Precisionþ Recall

; ð9Þ

Table 8 The pseudo-code of DPDDI

Input: DDI network A

The parameters: learning rate, epochs, dropout, batch-size, input-dim, hidden-dim, output-dim
(both in Feature extractor and Predictor)

Output: DDI network Â reconstructed by DPDDI

1: Initialize parameter sets W(0) and W(1) in Feature extractor.

2: Learn drug representations Z.

3: for epoch in epochs (Feature extractor in Table 1.):

4: Compute the loss function based on Eq. 2.

5: Calculate gradient and adopt Adam optimizer to update W(0) and W(1).

6: end for

7: Obtain the representations Z of drugs according to Eq. 4 and Eq. 5.

8: for each drug pair, do

9: Feature aggregation by concatenating operation.

10: end for

11: Initialize parameter sets in Predictor based on DNN.

12: Feed representation vector of each drug pair into Predictor.

13: for epoch in epochs (Predictor in Table 1.):

14: Compute the loss function based on Eq. 3.

15: Calculate gradient and adopt Adam optimizer to update parameter sets .

16: end for

17: Obtain the DDI network Â.
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where TP and TN are the number of correctly predicted DDI pairs and unlabeled drug-

drug pairs, respectively; FP and FN are the number of incorrectly predicted DDI pairs

and unlabeled drug-drug pairs, respectively.

We also used the metrics of AUC and AUPR to measure the performance of our

DPDDI. AUC is the area under the receiver operating characteristic (ROC) curve which

illustrate the true-positive rate (i.e., TP/(TP + FN)) versus the false-positive rate (i.e.,

FP/(FP + TN)) at different cutoffs. AUPR is the area under the precision–recall curve

which plots the ratio of true positives among all positive predictions for each given re-

call rate.
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