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Cognitive task information is transferred between
brain regions via resting-state network topology
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Resting-state network connectivity has been associated with a variety of cognitive abilities,

yet it remains unclear how these connectivity properties might contribute to the neurocog-

nitive computations underlying these abilities. We developed a new approach—information

transfer mapping—to test the hypothesis that resting-state functional network topology

describes the computational mappings between brain regions that carry cognitive task

information. Here, we report that the transfer of diverse, task-rule information in distributed

brain regions can be predicted based on estimated activity flow through resting-state network

connections. Further, we find that these task-rule information transfers are coordinated by

global hub regions within cognitive control networks. Activity flow over resting-state con-

nections thus provides a large-scale network mechanism for cognitive task information

transfer and global information coordination in the human brain, demonstrating the cognitive

relevance of resting-state network topology.
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The human brain is thought to be a distributed information-
processing device, its routes of information transfer con-
stituting a core feature that determines its computational

architecture. Many studies have used correlations among resting-
state functional MRI (fMRI) time series to study functional
connectivity (FC) in the human brain1 (see ref. 1. for review). It
remains unclear, however, if these resting-state FC routes are
related to the brain’s routes of cognitive information transfer.
Evidence that group and individual differences in resting-state FC
correlate with cognitive differences2–4 suggests that there is a
systematic relationship between resting-state FC and cognitive
information processing. However, without linking FC to infor-
mation transfer, it remains unclear whether or how resting-state
FC might mechanistically contribute to neurocognitive compu-
tations. Additionally, while a number of studies have shown that
task information representations are distributed throughout the
brain5–8, such studies have yet to reveal how these distributed
representations are coordinated, and how information in any one
brain region is used by other brain regions to produce cognitive
computations9. Other studies investigating interdependence of
brain regions during tasks (rather than during rest) have typically
emphasized statistical dependencies between regional time ser-
ies10–12, rather than the mechanistic transfer of task-relevant
information content (reflected in task activation patterns13)
between those regions. Thus, it remains unclear whether or how
the network topology described by either resting-state or task-

evoked FC is relevant to the neurocognitive computations
underlying task performance.

Here, we provide evidence for a network mechanism underlying
the transfer and coordination of distributed cognitive information
during performance of a variety of complex multi-rule tasks.
Based on recent evidence that resting-state FC describes the routes
of task-evoked activity flow14 (Fig. 1a)—the movement of task
activations between brain regions—we hypothesized that resting-
state network topology describes the mappings underlying task
information (task-evoked activation pattern) transfer between
brain regions. If true, this hypothesis implicates a network
mechanism for an information-preserving mapping across brain
regions involving communication channels9, 15 described by
resting-state network topology. Identifying such a mechanism
would provide an important new window into the large-scale
information processing architecture of the human brain.

The current study focuses on fine-grained activation and FC
topology, allowing us to infer the role of resting-state FC in
carrying task-related information (represented by activation
patterns5–8). This is, in turn, critical for testing a novel network
mechanism in which resting-state FC topologies of cognitive
control networks globally coordinate task-related information.
Further, correspondence between resting-state FC topology and
information-representing activation patterns would demonstrate
the general mechanistic relevance of resting-state FC for infor-
mation processing in the human brain.
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Fig. 1 Measuring information transfer through activity flow mapping and cognitive task information decoding. a Computational principle of activity flow
mapping, as used by Cole et al.14. Adapted with permission from Cole et al. Activity in a held-out region is predicted by computing the linear weighted sum
of all other regions’ activity weighted by those regions’ resting-state FC estimates with the held-out region (the held-out region’s activity is not included
when computing the predicted activity of that region, thus avoiding a circular prediction). b Region-to-region activity flow mapping between vertices/
voxels of isolated regions (“many-to-many” rather than “all-to-one” mapping of regions). Mathematically, we predict the activation pattern in Region B by
computing the dot product of Region A’s activation pattern vector with the vertex-to-vertex resting-state FC matrix between Region A and B. c Information
transfer mapping, which involves region-to-region activity flow mapping and representational similarity analysis (information decoding/classification) on
held-out data. To test the transfer of task information from Region A to Region B, we compare the predicted activation pattern of Region B (mapped using
Region A’s activation pattern) to the actual task activation pattern of Region B for all task conditions using a spatial Spearman’s rank correlation. For every
prediction, spatial correlations to the task prototypes are computed and the information transfer estimate is measured by taking the difference of the
correctly matched spatial correlation to the average of the incorrectly matched (mismatched) spatial correlations. Here, we depict the approach for only
two task conditions
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Recent evidence suggests that resting-state FC reflects the
human brain’s invariant global routing architecture16, 17. Sup-
porting this, it has been demonstrated that most of the functional
network topology variance present during task performance
(80%) is already present during rest18, 19. Thus, resting-state FC
primarily reflects an intrinsic functional network architecture that
is present regardless of cognitive context, given that there are only
moderate changes to functional network organization across
tasks18, 19. We built upon these findings to test the hypothesis that
intrinsic network topology describes the baseline network state
upon which distributed cognitive information processing occurs.

Our hypothesis required an approach to empirically derive the
mapping between information representations of pairs of brain
regions, similar to identifying the transformation weights between
layers in a neural network model20. The approach developed here
contrasts with two previous approaches that describe the coor-
dination of task-relevant information between brain regions. One
of the previous approaches measures small shifts in task-evoked
FC according to task-relevant content10, 12. Another previous
approach measures the correlation of moment-to-moment fluc-
tuations in information content between regions21. Critically,
these prior approaches primarily describe time-dependent sta-
tistical dependencies rather than suggest a large-scale mechanism
by which task representations are mapped between brain regions.
Thus, neither of these earlier approaches were appropriate for
characterizing a network mechanism by which cognitive infor-
mation is mapped between regions. Nonetheless, these past
approaches were important for demonstrating the basic phe-
nomenon of large-scale task information coordination, which we
sought to better understand via the recently developed activity
flow mapping approach14.

The hypothesis that fine-grained resting-state FC describes the
representational mappings between brain regions during tasks is
compatible with several recent findings. First, resting-state FC
topology was recently shown to be highly structured and repro-
ducible, forming clusters of networks consistent with known
functional systems22–24. Second, as already mentioned, these

resting-state networks are likely task-relevant given recent
demonstrations that the network architecture estimated by
resting-state FC is highly similar to FC architectures present
during a variety of tasks18, 19. Third, in addition to reflecting
large-scale connectivity patterns, resting-state FC has been shown
to reflect local topological mappings between retinotopic field
maps in visual cortex, highlighting the specificity with which
resting-state FC conserves functionally tuned connections25, 26.
Finally, resting-state FC has been shown to systematically relate
to task-evoked activations, allowing prediction of an individual’s
task-evoked activations across a variety of tasks using that indi-
vidual’s resting-state FC14, 27. This suggests a strong role for
resting-state FC in shaping task activations—a core feature of our
hypothesis that resting-state FC carries the fine-grained activation
patterns that represent task-relevant information.

Traditional brain information mapping approaches localize
task-related brain activity patterns. Because the experimenter is
doing the information decoding, it is unclear whether (or how)
that information is used for downstream processing by other
brain regions. Thus, such approaches embody an experimenter-
as-receiver framework, rather than a cortex-as-receiver frame-
work, which estimates how brain regions send/receive informa-
tion to/from other regions9. The proposed method—information
transfer mapping—advances this perspective by analogizing
resting-state connections with information channels. This allowed
us to characterize whether distributed brain regions receive and
decode task information from other brain regions via resting-state
network connections, thus ascribing an information-theoretic
description to resting-state network topology. Further, above-
chance information transfers between two regions would indicate
that the cognitive information in those brain regions is likely
supported by the intrinsic network connectivity between them.
Thus, information transfer mapping implicitly tests the cognitive
relevance of resting-state FC topology.

Going beyond our general hypothesis, we additionally focus on
the contribution of particular features of resting-state network
topology in contributing to task-related information transfer.
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Fig. 2 Concrete Permuted Rule Operations experimental paradigm. For a given task, subjects were presented with an instruction set (i.e., a task-rule set), in
which they were presented with three rules each from a different rule domain (logic, sensory, and motor rule domains). Subjects were then asked to apply
the presented rule set to two consecutively presented stimulus screens and respond accordingly. Auditory and visual stimuli were presented
simultaneously for each stimulus screen. The auditory waveforms are depicted visually but were not presented visually to participants. A mini-block design
was used, in which for a given set of instructions three trials were presented consecutively. The inter-trial interval was set to a constant 1570ms (2 TRs),
with a jittered delay following the three trials prior to the subsequent task block (see Methods for more details). Task blocks lasted 28.26 s (36 TRs) each
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Recent studies have identified domain-general flexible hub net-
works that exhibit widespread resting-state FC and high activity
during cognitive control tasks10, 28, 29. The strong involvement of
these cognitive control networks—the frontoparietal network
(FPN, which likely implements task sets30), cingulo-opercular
network (CON, which likely implements task set maintenance30),
and dorsal attention network (DAN, which likely implements
top-down attentional processes31)—in cognitively-demanding
processes suggests a role for flexibly transferring task informa-
tion across regions and networks.

We sought to isolate cognitive representations that would likely
involve cognitive control networks by using a cognitive paradigm
that involves multiple features thought to be central to cognitive
control. We used the Concrete Permuted Rule Operations (C-
PRO)32 paradigm (Fig. 2), which permutes rules in three different
cognitive domains to produce dozens of unique task-sets. We
predicted that cognitive control networks would flexibly represent
task-rule information and transfer that information to other
regions through their widespread intrinsic connections. The
combination of experimental design and analytical framework
allowed us to isolate cognitive operations and relate them to the
neurobiological processes underlying activity flow mapping, thus
targeting cognitive information transfer.

We began by replicating previously established properties of
cognitive control networks, such as widespread resting-state FC23, 28.

We then used this replication to motivate a computational model
that validates the effectiveness of the information transfer map-
ping procedure for estimating the role of resting-state network
topology in transferring task information. Finally, we applied this
framework to empirical fMRI data, allowing us to test our
hypotheses that (1) resting-state FC describes channels of inter-
region/network task information transfer and (2) cognitive con-
trol networks play a role in transferring task information to other
regions based on their intrinsic functional network properties.
Our results show that the transfer of cognitive information could
be reliably predicted using resting-state network topology, and
cognitive control networks were especially involved in transfer-
ring information across multiple cognitive rule domains. Based
on these results and a series of control analyses that confirmed
that cognitive information transfer depends on precise resting-
state network topology, we conclude that cognitive information
used for task performance is transferred between brain regions via
the functional network topology already present during resting
state.

Results
Network organization of cognitive control networks. We began
by establishing a strong basis for testing subsequent hypotheses
regarding information transfer via cognitive control networks.
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Fig. 3 Large-scale network organization during rest. a Using a recently released, multi-modal parcellation of the human cerebral cortex36, we assigned each
region to a functional network using the Generalized Louvain method for community detection with resting-state fMRI data. We designated functional
labels to seven networks that were replicated with other network assignments22–24. b Whole-brain resting-state FC matrix computed using Pearson
correlation between regions in a. Colors along the rows and columns denote network assignments from a. c Whole-brain resting-state FC matrix computed
using multiple linear regression. For every region’s time series, we fitted a multiple linear regression model using the time series of all other regions as
regressors of the target region. Multiple regression FC strongly reduced the chance that a connection was indirect, since FC estimates are based on unique
shared variance. We used multiple regression FC for information transfer mapping, suggesting the estimated information transfers were likely direct rather
than indirect. d Averaged BGC of resting-state fMRI for each defined functional network. Cognitive control networks (underlined) had higher average BGC
estimates relative to non-cognitive control networks (i.e., DMN and sensorimotor networks; FWE-corrected p< 0.05). Error bars reflect across-subject
standard error
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Given the recent interest in reproducibility in neuroscience and
other fields33, 34, we replicated the hub-like characteristic of
cognitive control networks23, 28, 29, 35 before moving forward with
analyses that build on these previous findings.

Using a recently developed set of functionally defined cortical
regions36 (Fig. 3a), we tested whether cognitive control networks
are global (connector) hubs. We quantified global hubs as having
high between-network global connectivity (BGC) (see Methods)
estimated during resting-state fMRI using FC estimated with
multiple regression (Fig. 3c). Standard Pearson correlations
(Fig. 3b) were not used to compute BGC, given that Pearson
correlations likely inflate the overall number of connections. We
constrained our analyses to seven networks (Fig. 3a), identified by
being replicated across multiple previously published functional
network atlases22–24. We focused on BGC to reduce the bias
toward larger mean connectivity (i.e., weighted degree centrality,
or global brain connectivity28) for larger networks simply because
they are larger23, 29. We found that the top three networks with
highest BGC estimated at rest were the three cognitive control
networks: FPN, CON, and DAN (Fig. 3d; FPN greater than all
non-cognitive control networks, with an averaged t(31)= 9.52;
CON greater than all non-cognitive control networks, with an
averaged t(31)= 12.33; DAN greater than all non-cognitive control
networks, with an averaged t(31)= 11.56; all family-wise error
(FWE) corrected p< 0.0001). These results replicated previous

results suggesting cognitive control networks are global hubs23, 28,
29, 35, strengthening the basis for our hypothesis that cognitive
control networks play a disproportionate role in shaping
information transfer between regions throughout the brain. We
test this hypothesis in a subsequent section, after establishing the
validity of the newly-developed information transfer mapping
procedure.

Computational validation of information transfer mapping.
We previously established that whole-brain activation patterns
can be predicted based on activity flow over resting-state net-
works14. However, it remains unclear whether one region’s cog-
nitive information—coded as fine-grained activation patterns—
can by predicted based on activity flow over resting-state FC.
Such a demonstration would indicate that resting-state FC carries
cognitive task information between brain regions (and networks).
We tested this possibility by shifting from an “all-to-one” activity
flow approach (i.e., predicting the activity level of a single brain
region using the activity flow from all other brain regions; Fig. 1a)
to modeling activity flow between a pair of regions (i.e., using the
fine-grained activation pattern within one brain region to predict
the fine-grained activation pattern within another region; Fig. 1b).

Testing our hypothesis required developing a new approach—
information transfer mapping—which quantifies the amount of
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information transferred between pairs of brain regions over
resting-state FC (Fig. 1b, c). Broadly, information transfer
mapping tests the ability of resting-state FC topology (fine-
grained connectivity patterns) to describe the mappings between
cognitive-task-related activity patterns between pairs of brain
regions. Specifically, each mapping (described by resting-state FC
topology) must preserve the representational space between two
regions, such that task-evoked information is decodable after the
connectivity-based mapping. Beyond improving empirical under-
standing, this approach may have important theoretical implica-
tions given that it bridges biophysical (intrinsic FC) and
computational (transformations between information-carrying
activity patterns) properties into a convergent framework.

This approach (Fig. 1c) predicts the activation pattern in a
target region based on a source region’s activation pattern. This
predicted activation pattern is then compared to the target
region’s actual activation pattern during the current task
condition. The matched condition predicted-to-actual similarity
is then compared to the mismatched condition predicted-to-
actual similarity, with the difference in similarity quantifying the
amount of task-specific information present in the prediction.
Since the prediction was based on estimated activity flow over
resting-state FC patterns, this allowed us to infer the amount of
task-relevant information transferred via resting-state FC. Note
that it was important to compare the predicted with the actual
activation pattern in the target region to ensure that our
prediction preserved the same representational geometry37 as
the actual activation pattern.

We validated this approach using a simple abstract neural
network model with one hub network and four non-hub
networks (see Methods; Fig. 4a). This network organization was
the basis for simulating fMRI dynamics during rest and task
states, which allowed us to establish a “ground truth” to test the
efficacy of the information transfer mapping procedure. This
validation-via-modeling method was highly similar to the simple
neural network model we previously used to validate the original
activity flow mapping approach14. Using Wilson-Cowan type
firing rate dynamics38, 39, we simulated resting state and four
distinct task states, simulated the transformation of the simulated
neural signals to fMRI data (see Methods), and estimated resting-
state FC (Fig. 4b) and task-evoked fMRI runs for each of the four
task conditions (Fig. 4c). Note that we focused on network-to-
network information transfer for our model validation (see
schematic in Supplementary Fig. 1A), but later extended the
approach to region-to-region information transfer.

We found that simulated resting-state FC accurately reflected
high BGC for the hub network (BGC statistically greater for the
hub-network vs. all other networks; averaged t(29)= 21.14; FWE-
corrected p< 0.0001; Fig. 4d). Further, given the underlying
synaptic connectivity structure (Fig. 4a) and the estimated
intrinsic topology via resting-state FC (Fig. 4b, d), we hypothe-
sized that information transfer to and from the hub network
would reliably preserve task-specific information. Using the
information transfer mapping approach (Fig. 1c; see Methods),
we quantified the amount of information transfer via activity flow
between every pair of networks (Fig. 4e). We found that
information transfers to/from the flexible hub network and
non-hub networks preserved task-specific representations (aver-
aged information transfer estimate= 0.13; averaged t(29)= 11.86;
FWE-corrected p< 0.0001), while transfers between pairs of non-
hub networks did not preserve statistically significant representa-
tions (averaged information transfer estimate= −0.0002; averaged
t(29)= −0.02; averaged FWE-corrected p= 0.91). We also found
that these results were consistent with simulations where both
top-down (hub network) and bottom-up (local network)
stimulation occurred simultaneously (Supplementary Fig. 3; see

Supplementary Methods). These results suggest that FC estimates
obtained during simulated resting-state fMRI dynamics reflected
underlying synaptic organization enough to describe the task-
information-carrying mappings that govern activity flow between
functional networks—a key assumption underlying our new
approach.

These model simulations validated the plausibility of two
hypotheses critical to the proposed information transfer mechan-
ism: (1) Resting-state FC estimates characterize intrinsic FC
(potentially reflecting aggregate synaptic connectivity) effectively
enough to reflect underlying communication channel capacities;
(2) Intrinsic FC describes the information-preserving mappings
necessary to predict task-relevant activation patterns transferred
from one region or network to another. Thus, these results
validated the analytical basis of estimating information transfer
via activity flow, which is applied to network-to-network and
region-to-region information transfer mapping with empirical
fMRI data below.

Information transfer via resting-state network topology. We
next applied the information transfer mapping procedure to real
fMRI data, testing its ability to infer cognitive information
transfer in the human brain. To test the hypothesis that cognitive
control networks might widely distribute cognitive information
via their resting-state network topology, we used an experimental
paradigm with several features central to cognitive control to
engage cognitive control networks. First, we used novel tasks
given the need for control to specify behavior in such under-
practiced scenarios40, 41. Second, we used complex tasks given the
need to deploy additional cognitive control resources when
working memory is taxed42. Finally, we used a variety of abstract
rules given that such rules are thought to be represented within
cognitive control networks5, 43, 44. Using many fully counter-
balanced rules also allowed us to test our hypotheses across a
variety of task conditions (while controlling for differences in
sensory stimuli during trials). These features converged in the
C-PRO paradigm (Fig. 2). This paradigm was developed as part of
this study, and is a modified version of the PRO paradigm32. We
predicted that cognitive control networks would flexibly represent
C-PRO rule information and transfer that information to other
regions through their widespread intrinsic connections. For
simplicity, we began with large-scale network-to-network infor-
mation transfers. This involved quantifying information in large-
scale functional networks based on patterns of region-level task
activations (Supplementary Fig. 1; see Methods). In subsequent
analyses we focused on region-to-region information transfers
(based on patterns of voxel/vertex-level task activations).

As a prerequisite to running the network-to-network informa-
tion transfer tests, we sought to first establish that task-rule
information from the C-PRO paradigm (Fig. 2) was widely
distributed across entire functional networks (Supplementary
Fig. 1B). Logic rule information was significantly decodable in 6
out of 7 of the functional networks (averaged information
estimate of significant effects= 0.03; averaged significant t(31)=
4.89; FWE-corrected p< 0.01), with the somatomotor network
(SMN) being the single network that did not contain decodable
logic rule information (information estimate= 0.007; t(31)= 1.22;
FWE-corrected p= 0.58). Sensory rule information was signifi-
cantly decodable in the FPN, DAN, CON, and visual network
(VIS) (averaged information estimate= 0.03; averaged t(31)=
5.14; FWE-corrected p< 0.001), and not decodable in the default
mode network (DMN), auditory network (AUD), and SMN
(averaged information estimate= 0.003; averaged t(31)= 0.83;
averaged FWE-corrected p> 0.11). Motor rule information was
significantly decodable in the DAN, CON, and SMN (averaged
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information estimate= 0.08; averaged t(31)= 7.26; FWE-corrected
p> 0.0001), and not decodable in the FPN, DMN, VIS, and AUD
(averaged information estimate= 0.006; averaged t(31)= 1.93;
averaged FWE-corrected p> 0.05). This allowed us to then
evaluate whether significantly decodable representations of
information were transferred to other functional networks.

In the logic rule domain, we identified information transfers
between the FPN, CON, DMN, and AUD networks (Supple-
mentary Fig. 1C; averaged information transfer estimate= 0.009;
averaged t(31)= 4.73; FWE-corrected p< 0.02). In the sensory
rule domain, we found information transfers between the
DAN and VIS in addition to the FPN, CON, and DMN
(Supplementary Fig. 1D; averaged information transfer estimate
= 0.006; averaged t(31)= 4.01; FWE-corrected p< 0.05). Lastly, in
the motor rule domain, information transfers were between the
DAN, CON, and the SMN (Supplementary Fig. 1E; averaged
information transfer estimates= 0.011; averaged t(31)= 5.37;
FWE-corrected p< 0.01). Further, to ensure that information
transfers between pairs of networks was dependent on the precise
network-to-network FC topology, we performed permutation
testing, permuting FC patterns between pairs of networks (see
Supplementary Methods). Indeed, after statistical testing, we
found that information transfers were identical to our results with
parametric statistical testing, suggesting that the observed
information transfers were dependent on the specific resting-
state network FC topology (Supplementary Fig. 4). These
empirical network-to-network information transfers, along with
their dependence on specific resting-state FC patterns, establish a
role for resting-state network topology in transferring cognitive
task information.

We next focused on region-to-region mappings that, unlike the
network-to-network transfers, are based on fine-grained vertex-
wise patterns. As a prerequisite to testing for information transfer
between pairs of regions, we first needed to establish whether
regions contained decodable task-rule representations. Thus, we
first quantified the information content of each rule domain in
the C-PRO paradigm (logic, sensory, and motor rule domains)
for each of the 360 regions using activation patterns (at the vertex
level) with a cross-validated representational similarity analysis
(see Methods). We found that logic rules were relatively
distributed, with highest-quality representations in frontal and
parietal cortices (averaged information estimate across significant
effects= 0.02; averaged t(31)= 5.24; FWE-corrected p< 0.05;

Fig. 5a). Sensory rule information was also relatively distributed
(averaged information estimate across significant effects= 0.02;
averaged t(31)= 4.97; FWE-corrected p< 0.05; Fig. 5b), though
the highest-quality representations were predominantly in visual
areas. Lastly, we found that motor rule representations were
significantly more localized, with the highest-quality representa-
tions in the SMN (averaged information estimate across
significant effects= 0.06; averaged t(31)= 6.80; FWE-corrected
p< 0.05; Fig. 5c). The existence of distributed task-rule informa-
tion in multiple cortical regions allowed us to next assess how
task-rule-specific information in one region might be transferred
to other regions.

We next performed region-to-region information transfer
mapping (Fig. 6). This approach utilized within-region vertex-
level activation patterns along with vertex-to-vertex resting-state
FC between regions to predict information content in each region
(Fig. 6a; also see Methods). We performed this procedure for
every pair of 360 regions, and visualized our results as a 360 × 360
matrix for each rule domain (Fig. 6b, d, f). However, given the
difficulty in visually interpreting information transfers between
every pair of regions (due to sparseness), we collapsed the region-
to-region information transfer matrix by network to better
visualize statistically significant region-to-region information
transfers at the network level (Fig. 6c, d, g; see Supplementary
Fig. 2A–C for all 14 networks). In addition, to see the relative
anatomical position of regions that transferred information (i.e.,
source regions), we computed the percent of statistically
significant transfers from each cortical region for each rule
domain, and plotted these percentages on the cortical surface
(Fig. 7a–c).

Overall, region-to-region information transfers were detected
(FWE-corrected p< 0.05) for all three task rule domains, as
described in detail below. However, given the conservative nature
of FWE correction, we also provide region-to-region information
transfer results for false discovery rate45 (FDR) corrected p< 0.05
thresholds, which potentially reduced false negatives but
increased false positives (Supplementary Figs. 6 and 7). We
found that with FDR correction, information transfers between
regions were significantly more distributed (particularly in the
logic rule domain). In both cases, these findings support the
hypothesis that resting-state FC topology describes the channels
of information transfer across multiple functional networks and
across multiple task-content domains.

Logic rule Sensory rule Motor rulea b c
Whole-brain information estimate map for each rule domain

Information estimate

0.013 0.036

Information estimate

0.011 0.036

Information estimate

0.021 0.148

Fig. 5 Information estimates of each region for each task-rule domain, prior to information transfer mapping. All reported results were statistically
significant at FWE-corrected p< 0.05. a Thresholded whole-brain logic rule information estimate map. A cross-validated representational similarity
analysis (quantifying degree of information representation; see Methods) for the logic rule domain was computed using vertices within every region.
For each region, an average information estimate was computed for each subject, and a one-sided t-test was computed against zero across subjects.
b Thresholded whole-brain sensory rule information estimate map. As in the logic rule analysis, rule representations were highly distributed across the
entire cortex, though representations were especially prominent in visual areas. c Thresholded whole-brain motor rule information estimate map. Unlike
the logic and sensory rule representations, motor rule representations were more localized to the motor/tactile network
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For logic rule mappings, while information transfers were
highly distributed, most statistically significant region-to-region
information transfers predominantly involved the FPN and other
frontoparietal regions (averaged information transfer estimate
across significant effects= 0.02; averaged t(31)= 6.26; FWE-
corrected p< 0.05). In particular, regions within the FPN
transferred information to other regions in the FPN, as well as
regions in other domain-general networks (CON and DMN)
(Fig. 6c). Further, source regions involved in the transfer of logic
rule information were left-lateralized for FWE-corrected p< 0.05
(Fig. 7a), although FDR-corrected p< 0.05 thresholds showed
more distributed source regions across bilateral frontal and
parietal cortices (Supplementary Fig. 7A). In both cases, these

findings suggest that the FPN uses intrinsic FC topology to
distribute abstract (e.g., logic) rule information broadly for task
set implementation and maintenance.

For sensory rule mappings, we found high specificity and
sparseness of region-to-region task information transfers (aver-
aged information transfer estimate across significant effects=
0.01; averaged t(31)= 6.15; FWE-corrected p< 0.05; Fig. 7b). Most
notably, we found that sensory rule representations are
predominantly transferred within and between the DAN and
VIS networks, as well as the FPN and CON (Fig. 6d, e). Previous
studies have implicated a prominent role of the DAN and VIS in
attentional processing of sensory information, consistent with the
observed information transfers31. These findings suggest sensory
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Fig. 6 Information transfer mappings between all pairs of regions. All reported results were statistically significant at p< 0.05 (FWE-corrected) (see
Supplementary Fig. 6 for results with an FDR-corrected p< 0.05 threshold). a Region-to-region information transfer mapping used the vertex-level
activation pattern within one brain region and the fine-grained region-to-region resting-state FC topology to predict the vertex-level activation pattern in
another brain region. b Logic rule region-to-region information transfer mapping. c Average number of statistically significant region-to-region transfers by
network affiliations. To better visualize and assess how region-to-region transfer mappings may have been influenced by underlying network organization,
we computed the percent of statistically significant rule transfers for every network-to-network configuration (i.e., the percentage of region-to-region
transfers from a network A to a network B). Note that visualizations for the full 14 network partition can be found in Supplementary Fig. 2. Cognitive control
networks are underlined. Information transfer of logic rule information was distributed across frontal and parietal cortices. d, e Statistically significant
sensory rule region-to-region information transfers. Region-to-region information transfers were substantially sparser for sensory rule mappings, but
involved DAN and VIS regions. f, g Statistically significant motor rule region-to-region information transfers. Motor rule mappings were noticeably more
localized within the motor network. h Statistically significant information transfers between regions grouped by network affiliation across rule domains.
Across the three rule domains (c, e, and g) we counted the number of rule domains information was transferred between networks. i We performed a
similar analysis as in h, but counted the number of rule domains a network contained a region that transferred information (as a source region) across the
three rule domains
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rule information may be transferred between cognitive control
networks, with transfers between regions in the DAN and VIS
implementing these top-down information transfers.

Lastly, we found the most information transfer specificity for
motor rule information (averaged information transfer estimate
across significant effects= 0.09; averaged t(31)= 7.38; FWE-
corrected p< 0.05), consistent with the relatively localized
representations of motor rule information (Fig. 5c). In particular,
transfer of motor rule information largely involved transfers from
regions in the SMN (Fig. 7c), while between-network information
transfer with the SMN primarily involved the CON (Fig. 6g).

We next characterized the rule-domain generality of informa-
tion transfers between specific networks. We found that regions
within the FPN transferred rule information to the CON across
two out of the three rule domains (Fig. 6h; see Supplementary
Fig. 2D for all 14 networks). In addition, using an FDR-corrected
threshold of p< 0.05, we found statistically significant informa-
tion transfers from FPN to CON for all three rule domains
(Supplementary Fig. 6D). This is consistent with theories
suggesting the FPN coordinates with CON to maintain and
implement task sets30.

We next tested for networks that consistently transferred
information across all rule domains, regardless of the target
region’s network affiliation. We found that regions in the FPN
were consistently involved in transferring information to other
regions in two rule domains (Fig. 6h). When using FDR to correct
for multiple comparisons, we found that the FPN, DAN, and
DMN transferred task information in all three rule domains
(Supplementary Fig. 6E). We next assessed whether a single
region transferred information across multiple rule domains. We
found that no individual region consistently transferred task-rule
information across the rule domains with either FWE or FDR
correction, which suggests that unique sets of regions within each
network were involved in transferring distinct types of cognitive
information. This suggests that the regions within the FPN (and
the DAN and DMN for FDR-corrected p< 0.05 significance
testing; Supplementary Fig. 6E) collectively act as flexible hub
networks to communicate task-rules in different cognitive
domains. Thus, the FPN likely plays an important role in task-
rule transfers, regardless of cognitive domain.

These results uncover two key findings: (1) resting-state
network topology describes the mappings likely underlying
information transfer across distributed regions and functional

networks, and (2) cognitive control networks likely play especially
important roles in transferring a wide-range of task-rule
information during complex cognitive tasks.

Behavioral relevance of cognitive information transfer. We
next tested whether estimated information transfers are predictive
of task performance, demonstrating a likely role of information-
pattern transfers in supporting task performance. Given that
successful task performance required cognitive encoding of all
three rule types (i.e., logic, sensory, and motor rules), we hypo-
thesized that information transfer of all three rules were impor-
tant to performing a task correctly. We, therefore, constructed a
decoder using multiple logistic regression that was trained on the
miniblock-to-miniblock information transfer estimates for all
three rule types, and predicted the overall accuracy for held-out
miniblocks (i.e., predicted a 1 if greater than 50% of trials were
performed correctly within a miniblock, and 0 otherwise). Suc-
cessful decoding of task performance using information transfer
between pairs of regions would suggest that task performance
depends in part on the successful transfer of task-rule informa-
tion between those regions.

We first sought to ensure that task-rule information coded in
the activity patterns used for information transfer mapping could
predict behavioral performance, as a prerequisite to performing
the information transfer mapping procedure. Given our findings
that transfers between the FPN and CON were involved in two
out of the three rule domains and that the FPN and CON are
known to be involved in task-set maintenance46 we constrained
our search to regions within those two networks. We found that
rule information estimates (see Supplementary Methods) in a
single FPN region in the lateral prefrontal cortex (LPFC) could
significantly decode task performance (decoding accuracy=
52.6%; t(31)= 3.97; FWE-corrected p= 0.02).

We then used this region as a source region and decoded task
performance using information transfer estimates (across all rule
domains) for transfers to every other region in the FPN and
CON. We found that information transfer estimates from the
LPFC region to an FPN region in the orbitofrontal cortex (OFC)
could decode miniblock task performance significantly above
chance (decoding accuracy= 53.2%; t(31)= 4.76; FWE-corrected
p= 0.003; Supplementary Fig. 5). This result demonstrates that
the transfer of cognitive task-rule information between the LPFC

Percent of significant information transfers from each cortical region

Sensory rule transfers Motor rule transfersa b cLogic rule transfers

0.3%

% Significant transfers % Significant transfers % Significant transfers

3.3% 0.3% 0.6% 0.3% 2.2%

Fig. 7 Percent of statistically significant information transfers from each cortical region. All reported information transfers were statistically significant at p
< 0.05 (FWE-corrected) (see Supplementary Fig. 7 for results with an FDR-corrected p< 0.05 threshold). a Percent of statistically significant information
transfers from each region for the logic rule domain. Percentages were computed by taking the number of significant transfers from each region, and
dividing it by the total number of possible transfers from that region (359 other regions). Information transfers were relatively distributed, yet were
predominantly from frontal parietal cortices. b Percent of statistically significant information transfers from each region for the sensory rule domain.
Information transfers were much sparser than in the logic rule domain. Most transfers were from higher-order visual areas and the DAN. c Percent of
statistically significant information transfers from each region for the motor rule domain. Transfers were predominantly from the motor network
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and OFC was significantly correlated with task performance.
However, while we account for the imbalance of correct and error
trials in our decoding model, given that the behavioral data
contains significantly fewer incorrect vs. correct miniblocks, we
interpret these results cautiously. (On average, 85% of miniblocks
were performed correctly.) It will be important for future work to
investigate the behavioral relevance of information transfers using
a data set that contains more error trials, allowing for a more
robust model fit to behavior. Nonetheless, the combination of
linking resting-state FC topology to information transfers across
multiple brain systems and multiple cognitive task domains as
well as trial-by-trial task performance strongly supports a role for
resting-state FC topology in cognitive information transfer and
task information processing.

Discussion
Studies from neurophysiology, fMRI, and computational model-
ing emphasize the distributed nature of information processing in
the brain47–49. However, fMRI studies often decode cognitive
information from brain regions6 without considering how other
brain regions might utilize that information9. In other words,
current neuroscientific findings emphasize an experimenter-as-
receiver framework (i.e., the experimenter decoding information
in a brain region) rather than a cortex-as-receiver framework (i.e.,
brain regions decoding information transferred from other brain
regions)9. The current emphasis on the experimenter-as-receiver
framework clashes with the traditional understanding of infor-
mation communication described by Shannon’s Information
Theory15, which provides a general theory of communication
through the representation and transmission of information-
bearing signals. Thus, understanding how cortical regions receive
information from other regions bridges a crucial gap in under-
standing the nature of information processing in the brain. In
light of recent findings relating resting-state fMRI to task-evoked
cognitive activations14, 27, we hypothesized that resting-state FC
describes the channels over which information can be commu-
nicated between cortical regions. Results strongly supported this
hypothesis, suggesting that resting-state network topology
describes the large-scale architecture of information commu-
nication in the human brain and demonstrating the relevance of
resting-state network connectivity to cognitive information
processing.

We developed a novel procedure to quantify information
transfer between brain regions. The procedure requires an
information-preserving mapping between a source region and a
target region. In the neural network modeling literature, analo-
gous mappings are typically estimated through machine learning
techniques to approximate synaptic weight transformations
between layers of a neural network (e.g., an artificial neural net-
work model using backpropagation)20. However, given that
artificial neural networks are universal function estimators50 and
would, therefore, fit any arbitrary mappings, we opted to take a
more biologically principled approach that relied on FC estima-
tion. Specifically, we used evidence that patterns of spontaneous
activity can be used to successfully estimate the flow of task-
related activity in both local and large-scale brain networks14, 51,
52 to obtain biophysically plausible, data-driven mappings
between brain regions using resting-state fMRI. Thus, informa-
tion transfer mapping unifies both biophysical and computational
mechanisms into a single information-theoretic framework.

We used a computational model to validate the plausibility of
this account of large-scale information transfer, finding that
despite the slow dynamics of the blood-oxygen level dependent
signal, resting-state FC with simulated fMRI accurately reflects
the large-scale channels of information transfer. We then used

empirical fMRI data to show that resting-state FC describes
information-preserving mappings in cortex at two levels of
organization: brain regions and functional networks. In other
words, the connectivity-based mappings estimated via resting-
state FC between a source and a target region preserved task
information content (in the same representational geometry37,
53). Note that the organization of activity patterns was necessarily
distinct between brain regions (given their distinct sizes and
shapes), such that accurately predicting activation patterns in a
target region based on activity in a source region reflected
accurate spatial transformation of information-carrying activity
patterns between those brain regions. These findings suggest that
resting-state FC estimates likely reflect the actual large-scale
mappings that are implemented in the brain during task infor-
mation transfer.

We used multiple regression rather than standard Pearson
correlations to estimate resting-state FC for information transfer
mapping. This decision was based on recent evidence that acti-
vations are better predicted when using multiple-regression FC as
compared to Pearson-correlation FC14. Importantly, multiple-
regression FC strongly reduces the chance that estimated infor-
mation transfers are indirect, since this method fits all regions/
vertices simultaneously to identify unique shared variance
between each pair of regions/vertices. Given that brain systems
contain redundant neural signals54, however, multiple-regression
FC estimates may be overly conservative. It will, therefore, be
important for future research to validate appropriate regulariza-
tion approaches to reduce the false negatives induced by multiple-
regression FC. We expect that such a validated regularization
approach would likely reveal that cognitive information transfers
are even more widespread throughout the brain than reported
here.

The evidence that fine-grained resting-state FC describes the
information-preserving mappings between regions is important
for advancing neuroscientific theory in a number of ways. First,
the present results provide an empirically validated theoretical
account for how cognitive representations in different regions are
likely mechanistically related to one another. Second, these results
confirm the base assumption that decodable representations in a
brain region are utilized by other regions through a biologically-
plausible construct—information transfer via fine-grained pat-
terns of activity flow. Third, these results expand the functional
relevance of decades of resting-state FC findings1, 55, given that
we demonstrated the ability to use resting-state FC to describe
cognitively meaningful fine-grained relationships between brain
regions. Importantly, our modeling and empirical results showed
that the topological organization of the intrinsic connectivity
architecture described inter-region information-preserving map-
pings. Further supporting this conclusion, we verified via per-
mutation testing that fine-grained FC topology (rather than, e.g.,
overall mean FC) was essential for the observed information
transfer results.

Previous studies have focused on the role of task-evoked FC in
shifting distributed task representations10, 11. We recently built
on such findings to develop a flexible hub account of distributed
task set reconfiguration via cognitive control networks10, 56. The
present results advance these findings by describing a network
mechanism involving resting-state FC topology (and cognitive
control network hubs) in transferring task representations
throughout cortex. Importantly, recent findings have demon-
strated that task-evoked FC changes tend to be small relative to
resting-state FC topology18, 19. This suggests that the resting-state
FC topology investigated here likely carries the bulk of the task-
relevant information transfers, with task-evoked FC alterations to
this topology contributing only small (but likely important)
changes to this process.
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The information transfer mapping approach involves esti-
mating linear information transfer. Critically, however, neural
information processing is thought to often depend on nonlinear
transformations57, such as face-selective neurons in the ventral
visual stream responding to whole faces but not facial compo-
nents (e.g., eyes and ears)58, 59. The present findings represent an
important step toward understanding the network mechanisms
underlying information transformations between brain regions,
setting the stage for future research to identify the role of resting-
state FC in nonlinear information transformations. This would go
beyond the information transfer processes investigated here to
better identify the role of resting-state FC in neural computation
(not just communication).

In summary, we combined information decoding of brain
activity patterns with resting-state FC to demonstrate how fine-
grained intrinsic connectivity patterns relate to cognitive infor-
mation transfer. Further, by estimating information transfer
throughout cortex we found evidence that cognitive control
networks play important roles in global transfer of cognitive task
information. We expect that these findings will spur new inves-
tigations into the nature of distributed information processing
throughout the brain, providing a deeper understanding of these
fine-grained information channels estimated at rest and their
contribution to task-relevant information transfers.

Methods
Participants. Thirty-five human participants (17 females) were recruited from the
Rutgers University-Newark community and neighboring communities. We
excluded three subjects, leaving a total of 32 subjects for our analyses; two subjects
were excluded due to exiting the scanner early, and one subject was excluded due to
excessive movement. Excessive movement was defined as three standard deviations
from the mean, in terms of framewise displacement60. All participants gave
informed consent according to the protocol approved by the Rutgers University
Institutional Review Board. The average age of the participants was 20, with an age
range of 18 to 29.

Behavioral paradigm. We used the C-PRO paradigm (Fig. 2), which is a modified
version of the original PRO paradigm introduced in Cole et al.32. Briefly, the C-
PRO cognitive paradigm permutes specific task rules from three different rule
domains (logical decision, sensory semantic, and motor response) to generate
dozens of novel and unique task sets. This creates a condition-rich data set in the
task configuration domain akin in some ways to movies and other condition-rich
data sets used to investigate visual and auditory domains48, 61, 62. The primary
modification of the C-PRO paradigm from the PRO paradigm was to use concrete,
sensory (simultaneously presented visual and auditory) stimuli, as opposed to the
abstract, linguistic stimuli in the original paradigm. Visual stimuli included either
horizontal or vertical oriented bars with either blue or red coloring. Simultaneously
presented auditory stimuli included continuous (constant) or non-continuous
(non-constant, i.e., “beeping”) tones presented at high (3000 Hz) or low (300 Hz)
frequencies. Figure 2 demonstrates two example task-rule sets for “Task 1” and
“Task 64”. The paradigm was presented using E-Prime software version
2.0.10.35363.

Each rule domain (logic, sensory, and motor) consisted of four specific rules,
while each task set was a combination of one rule from each rule domain (Fig. 2). A
total of 64 unique task sets (4 logic rules × 4 sensory rules × 4 motor rules) were
possible, and each unique task set was presented twice for a total of 128 task
miniblocks. Identical task sets were not presented in consecutive blocks. Each task
miniblock included three trials, each consisting of two sequentially presented
instances of simultaneous audiovisual stimuli. A task block began with a 3925 ms
instruction screen (5 TRs), followed by a jittered delay ranging from 1570 ms to
6280 ms (2–8 TRs; randomly selected). Following the jittered delay, three trials
were presented for 2355 ms (3 TRs), each with an inter-trial interval of 1570 ms (2
TRs). A second jittered delay followed the third trial, lasting 7850 ms to 12560 ms
(10–16 TRs; randomly selected). A task block lasted a total of 28,260 ms (36 TRs).
Subjects were trained on four of the 64 task-rule sets for 30 min prior to the fMRI
session. The four practiced rule sets were selected such that all 12 rules were equally
practiced. There were 16 such groups of four task sets possible, and the task sets
chosen to be practiced were counterbalanced across subjects. Subjects’ mean
performance across all trials performed in the scanner was 85% (median = 86%)
with a standard deviation of 8% (min = 66%; max= 96%). All subjects performed
statistically above chance (25%).

fMRI acquisition. Data were collected at the Rutgers University Brain Imaging
Center (RUBIC). Whole-brain multiband echo-planar imaging (EPI) acquisitions

were collected with a 32-channel head coil on a 3T Siemens Trio MRI scanner with
TR = 785 ms, TE = 34.8 ms, flip angle= 55°, Bandwidth 1924/Hz/Px, in-plane FoV
read = 208 mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceleration
factor of 8. Whole-brain high-resolution T1-weighted and T2-weighted anatomical
scans were also collected with 0.8 mm isotropic voxels. Spin echo field maps were
collected in both the anterior to posterior direction and the posterior to anterior
direction in accordance with the Human Connectome Project preprocessing
pipeline64. A resting-state scan was collected for 14 mins (1070 TRs), prior to the
task scans. Eight task scans were subsequently collected, each spanning 7 min and
36 s (581 TRs). Each of the eight task runs (in addition to all other MRI data) were
collected consecutively with short breaks in between (subjects did not leave the
scanner).

fMRI preprocessing. Imaging data were minimally preprocessed using the pub-
licly available Human Connectome Project minimal preprocessing pipeline version
3.5.0, which included anatomical reconstruction and segmentation, EPI recon-
struction, segmentation, spatial normalization to standard template, intensity
normalization, and motion correction64. All subsequent preprocessing steps and
analyses were conducted on CIFTI 64k gray ordinate standard space for vertex-
wise analyses and parcellated time series for region-wise analyses using the Glasser
et al.36 atlas (i.e., one time series for each of the 360 cortical regions). We per-
formed nuisance regression on the minimally preprocessed resting-state data using
12 motion parameters (6 motion parameter estimates plus their derivatives) and
ventricle and white matter time series (extracted volumetrically), along with the
first derivatives of those time series.

Task time series for task activation analyses were preprocessed in an identical
manner to resting-state data. Task time series were additionally processed as
follows: A standard fMRI general linear model (GLM) was fit to task-evoked
activity convolved with the SPM canonical hemodynamic response function and
the same 16 nuisance regressors as above. Block-by-block activity beta estimates
were used for representational similarity analyses and information transfer
mapping analyses. Task activity GLMs were performed at both the region-wise
level and vertex-wise level for subsequent network-to-network and region-to-
region information transfer mapping, respectively.

FC estimation. Given the success of FC estimation using multiple linear regression
in our previous study14, we employed multiple linear regression to estimate FC. To
estimate FC to a given node, we used standard linear regression to fit the time series
of all other nodes as predictors (i.e., regressors) of the target nodes. Using ordinary
least squares regression, we calculated whole-brain FC estimates by obtaining the
regression coefficients from the equation

~xi ¼ β0 þ
XN
j≠i

βji~xj þ ϵ ð1Þ

for all regions xi. We define xi
! as the time series in region xi, β0 as the y-intercept

of the regression model, βji as the FC coefficient for the jth regressor/region (which
we use as the element in the jth row and the ith column in the FC adjacency
matrix), and ϵ as the residual error of the regression model. N is the total number
of regressors included in the model, which corresponds to the number of all other
regions. This provided an estimate of the contribution of each source region in
explaining unique variance in the target region’s time series. This approach was
used for region-to-region FC estimation, where the time series for each parcel was
averaged across a given parcel’s vertices prior to FC calculation. For this model N
= 360, corresponding to the number of parcels in the Glasser et al.36 2016 atlas.
Multiple linear regression FC is conceptually similar to partial correlation, but is
actually semipartial correlation, as the estimates retain information about scaling a
source time series (i.e., regressor time series) into the units of the to-be-predicted
time series (i.e., predicted variable/target region).

For vertex-to-vertex FC estimation, due to computational intractability (i.e.,
more source vertices/regressors than time points), we used principal components
regression with 500 principal components. This is the same form of regularized
regression used in a previous study14 for voxel-to-voxel FC estimation. This
approach involved reducing all source time series into 500 principal components
and using the components as regressors to the target vertex. To reduce the
possibility of spatial autocorrelation when estimating vertex-to-vertex FC, we
excluded all vertices belonging to the same brain region/parcel as well as any
vertices within 10 mm of the border of that parcel in the principal components/
regressors of the target vertex (all vertices that fell within this criterion were given
FC values of 0, preventing any vertices close to the target region from
contaminating FC estimates). Beta values obtained from the principal component
regressors were then transformed back into the original 64 k vertex space.

Replication of network topological properties. We sought to replicate a key
property of resting-state network topology using our novel network assignments of
the Glasser et al.36 parcels—high global connectivity of cognitive control networks.
We included only functional networks, which coincided with the seven most
replicable functional networks found in three previously published network
atlases:12–14 the FPN, the DAN, the CON, the DMN, the VIS, the AUD, and the
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SMN. We measured the average between-network global connectivity (BGC)
during resting-state FC, which was estimated using multiple linear regression
(Fig. 3d). BGC connections were defined as all connections from the source region
to target regions outside the source region’s network. Mathematically, we defined
each region’s BGC as

BGCi ¼
P

j=2C Wij

Ntotal�NC
ð2Þ

where BGCi corresponds to the BGC of region i in network C, j∉ C corresponds to
all regions not in network C, Wij corresponds to the FC estimate between regions i
and j, Ntotal corresponds to the total number of regions, and NC corresponds to the
total number of regions in network C. To compute the average BGC for a network
C, we averaged across all BGCi for i∈ C.

To statistically test whether the average BGC was different for a pair of
networks, we performed a cross-subject paired t-test for every pair of networks. We
corrected for multiple comparisons across pairs of networks using FWE
permutation testing65.

Neural network model. To validate our information transfer estimation approach
we constructed a simple dynamical neural network model with similar network
topological properties identified in our empirical fMRI data. We constructed a
neural network with 250 regions, each of which were clustered into one of five
network communities (50 regions per community). Regions within the same
community had a 35% probability of connecting to another region (i.e., 35%
connectivity density), and regions not assigned to the same community were
assigned a connectivity probability of 5% (i.e., 5% out-of-network connectivity
density). We selected one community to act as a “network hub”, and increased the
out-of-network connectivity density of those regions to 20% density. We then
applied Gaussian weights on top of the underlying structural connectivity to
simulate mean-field synaptic excitation between regions. These mean-field synaptic
weights were set with a mean of 1.0/√K with a standard deviation of 0.2/√K,
where K is the number of synaptic inputs into a region such that synaptic input
scales proportionally with the number of inputs. This approach was recently shown
to be a plausible rule in real-world neural systems based on in vitro estimation of
between-neuron synaptic-weight-setting rules66.

To simulate network-level firing rate dynamics, as similar to Stern et al.39,
region xi’s dynamics for i= 1…250 obeyed the equation

dxi
dt

τi ¼ �xi tð Þ þ sϕ xi tð Þð Þ þ g
XN
j≠i

Wijϕ xj tð Þ
� � !

þ Ii tð Þ ð3Þ

We define the transfer function φ as the hyperbolic tangent, xj the dynamics of
region j= 1…250 for i≠ j, Ii(t) the input function (e.g., external spontaneous
activity alone or both spontaneous activity and task stimulation) for i= 1…250, W
the underlying synaptic weight matrix, s the local coupling (i.e., recurrent)
parameter, g the global coupling parameter, and τi the region’s time constant. For
simplicity, we set s= g= 1 and τi= 10 ms, though we show in a previous study14

that the activity flow mapping breaks down for parameter regimes s>> g.
We first simulated spontaneous activity in our model by injecting Gaussian

noise (parameter Ii(t); mean of 0.0, standard deviation 1.0). Numerical simulations
were computed using a Runge-Kutta second order method with a time step of
dt=10 ms. We ran our simulation for 600 s (10 min). To simulate resting-state
fMRI, we then convolved our time series with the SPM canonical hemodynamic
response function and down sampled to a 1 s TR, resulting in 600 time points. We
then computed resting-state FC using multiple linear regression. To replicate the
empirical data, we computed the BGC of the resting-state data (as in the empirical
data; see equation 2) to validate that widespread out-of-network connectivity was
preserved from synaptic connectivity to FC.

To model task-evoked activity, we simulated four distinct task conditions by
injecting stimulation into four randomly selected but distinct sets of 12 regions in
the hub network. Stimulation to the hub network was chosen to mimic four distinct
top-down, cognitive control task rules. (See Supplemental Methods for further
details.) We simulated 30 subjects worth of data, and generated figures using group
t-tests and controlled for multiple comparisons using FWE-correction permutation
tests65.

To perform network-to-network information transfer mapping in the model,
we used the task-evoked activity (estimated by standard GLM beta estimates), and
performed the information transfer mapping procedure between networks of
regions using the resting-state FC matrix obtained via multiple linear regression.
Network-to-network information transfer mapping is computationally identical to
region-to-region information transfer mapping, and is described below.

Computing information estimates for regions and networks. To compute the
baseline (i.e., unrelated to FC) information content at the region level (Fig. 5), we
performed a within-subject, cross-validated multivariate pattern analysis using
representational similarity analysis for every Glasser et al. parcel (using the vertex-
level multivariate activation pattern within each parcel). We estimated task-
activation beta coefficients separately for each vertex within a region, and sepa-
rately for each miniblock. Note that each miniblock was associated with a specific
task-rule condition for each rule domain. Mathematically, we defined IEB, the

information estimate of region B, as

IEB ¼ MatchB�MismatchB ð4Þ

where MatchB and MismatchB correspond to the averaged Spearman rank corre-
lation for matched and mismatched conditions, respectively. Specifically, we define
MatchB and MismatchB as

MatchB ¼
PK

k¼1 scorr Bk;Bmatchð Þ
K

ð5Þ

MismatchB ¼
PK

k¼1

PN
n¼1 scorr Bk;Bmismatchnðð Þ=N� �

K
ð6Þ

where K corresponds to the total number of miniblocks (in this paradigm,
128 miniblocks), scorr corresponds to a Fisher z-transformed Spearman’s rank
correlation between two activation vectors, Bk is the activation pattern in region B
during block k, Bmatch is the task-rule condition prototype (obtained by averaging
across blocks of the same condition, holding out block k) of region B’s activation
pattern for which block k’s condition matches the condition prototype, and
Bmismatchn as the task-rule condition prototypes for which block k’s condition does
not match (in the present study N = 3, since each rule dimension has four task-rule
conditions, and for a given miniblock there’s one match and three mismatched
conditions). To avoid circularity, we performed a leave-four-out cross-validation
scheme, holding out a miniblock of each task-rule. This ensured that miniblock Bk

was not included in constructing the condition prototype Bmatch and that condition
prototypes were each constructed using the same number of miniblocks. Prior to
running the representational similarity analysis, all blocks were spatially demeaned
to increase the likelihood that the representations we were identifying was a
multivariate regional pattern (rather than a change in region-level mean activity).
Use of Spearman’s rank correlation also reduced the likelihood that the identified
multivariate representation patterns were driven by mean activity changes or a
small number of outlier values.

Statistical significance was assessed by taking a one-sided group t-test against 0
for each region’s information estimate across subjects, since a greater than 0
difference of matches vs. mismatches indicated significant representation of specific
task-rules. All p-values were corrected for multiple comparisons across the 360
parcels using FWE-correction with permutation tests65, and significance was
assessed using an FWE-corrected threshold of p < 0.05.

(see Supplementary Methods for details on estimating network-level
information estimates for Supplementary Fig. 1B).

Region-to-region information transfer mapping. We extended the original
activity flow mapping procedure as defined in Cole et al.14 (Fig. 1a) to investigate
transfer of task-related information between pairs of brain regions using vertex-
wise activation patterns (i.e., region-to-region activity flow mapping; Fig. 1b). This
involved predicting the activity of the vertices of a held-out target region based on
the vertices within a source region. Mathematically, we define region-to-region
activity flow mapping between regions A and B as

Bk ¼ Ak�WRSFC ð7Þ

where Bk corresponds to the predicted activation pattern vector for the target
region B, Ak corresponds to region A’s activation pattern vector (i.e., the source
region), WRSFC corresponds to the vertex-to-vertex resting-state FC between
regions A and B, and the operator • refers to the dot product. This formulation
allowed us to map activation patterns in one region’s spatial dimension to the
spatial dimension of another region.

To test the extent that task representations are preserved in the region-to-region
multivariate predictions, we quantified how much information transfer occurred
between the two regions. Briefly, information transfer mapping comprises three
steps, illustrated in Fig. 1c: (1) Region-to-region (or network-to-network) activity
flow mapping; (2) A cross-validated representational similarity analysis between
predicted activation patterns and actual, held-out activation patterns; (3)
Information classification/decoding by computing the difference between matched
condition similarities and mismatched condition similarities. This final step
produces an information transfer estimate. Mathematically, our information
transfer estimate was derived using the exact formulation (equations 5 and 6) as
our information estimate formula, but we substituted the target region’s actual
activation pattern Bk for the target region’s predicted activation pattern Bk based
on a connectivity-based transformation of source region A’s activation pattern (see
Supplementary Methods materials for more details).

Information transfer mapping was performed within subject between every pair
of regions in the Glasser et al.36 atlas (360 regions in total). Statistical tests were
performed using a group one-sided t-test (t> 0) for every pair-wise mapping. Our
use of mismatched correlations as a baseline ensured that any positive information
transfer estimates was a result of a task-rule-specific representation, rather than a
task-general effect. Any information estimate that was not significantly greater than
0 indicated that the predicted-to-actual similarity was at chance (akin to chance
decoding using classifiers). We tested for multiple comparisons using permutation
testing65 for every region-to-region mapping, and significance was assessed using
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FWE-corrected p-values with p< 0.05. Note that to avoid circularity for region-to-
region information transfer mapping, any vertices in a source region that fell within
a 10 mm radius of the to-be-predicted target region (e.g., an adjacent region) would
not contribute any activity flow to the to-be-predicted target region (see FC
estimation Methods section for details). See Supplementary Methods for further
details.

Network-to-network information transfer mapping. Network-to-network
information transfer mapping in both the computational model (Fig. 4e) and
empirical data (Supplementary Fig. 1C–E) was performed in the same computa-
tional framework as above, though instead of predicting region-level activation
patterns using vertex-level activation patterns, network-level activation patterns
were predicted using region-level activations (averaging across vertices within a
given region). (See Supplementary Methods for more details).

Behavioral relevance of information transfers. To characterize the behavioral
relevance of information transfers, we performed a within-subject analysis to
decode task performance using miniblock-by-miniblock information transfer
estimates. We first sought to ensure that baseline miniblock information estimates
could decode miniblock task performance within subjects prior to the information
transfer mapping procedure. To perform a given task, knowledge of all three rule
domains (i.e., logic, sensory, and motor rule domains) is required. Thus, we con-
structed a decoding model with logistic regression, training the model to decode
the task performance of a given miniblock using the information estimates of a
given brain region across all three rule domains. The model was tested using cross-
validation in MATLAB using the glmfit function (with the logit link function).
Miniblocks with over 50% of trials performed correctly were predicted as a 1, and 0
otherwise. However, to account for the imbalanced training data (on average,
subjects performed 85% of trials correctly), we removed the intercept term β0 to
center our predictions (as computed by a logistic function) at 0.5 (see Supple-
mentary Methods for further details).

We applied our decoding model to all regions within the FPN and CON across
subjects. For each region, we applied one-sided t-tests against chance (50%), and
corrected for multiple comparisons using FWE-correction permutation tests65. We
identified a single FPN region in the LPFC (left hemisphere region 80 in the Glasser
et al. atlas; Supplementary Fig. 5) whose baseline information estimates predicted
miniblock task performance.

We subsequently tested whether information transfer estimates from the LPFC
region could predict task performance. We applied the decoding model to
information transfer estimates across all rule domains for all information transfers
from the LPFC region to all other FPN and CON regions. We performed one-sided
t-tests against chance (50%) for each information transfer, and corrected for
multiple comparisons using FWE-correction permutation tests65. We identified a
single information transfer from the LPFC to the OFC (left hemisphere region 91;
both FPN regions) that survived multiple comparisons with an FWE-corrected p<
0.05. Surface visualizations for Supplementary Fig. 5 were made using Connectome
Workbench software (version 1.2.3)67.

Computational resources. Region-to-region information transfer mapping,
vertex-to-vertex FC estimation, task-rule information estimation, and model
simulations were performed on the Rutgers University-Newark supercomputer
cluster (Newark Massive Memory Machine, NM3) using Python and MATLAB
code.

Data availability. We have included code demos with accompanying tutorial data
for both our computational model and the empirical network-to-network infor-
mation transfer mapping. We have also provided a GitHub repository with both
MATLAB and Python code to run FWE-correction using permutation tests using
the approach described in Nichols & Holmes, 200265. Lastly, we have published all
master scripts/jupyter notebooks used to generate results and figures in the
manuscript. All other data presented in this study are available upon request.

Demo code for the information transfer mapping procedure is publicly available
here:

https://github.com/ColeLab/informationtransfermapping
Code for the FWE-correction via permutation testing is available here:
https://github.com/ColeLab/MultipleComparisonsPermutationTesting

Received: 24 January 2017 Accepted: 10 August 2017

References
1. Raichle, M. E. Two views of brain function. Trends Cogn. Sci. 14, 180–190

(2010).
2. Smith, S. M. et al. A positive-negative mode of population covariation links

brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1–7 (2015).

3. Cole, M. W., Anticevic, A., Repovs, G. & Barch, D. Variable global
dysconnectivity and individual differences in schizophrenia. Biol. Psychiatry 70,
43–50 (2011).

4. Shannon, B. J. et al. Premotor functional connectivity predicts impulsivity in
juvenile offenders. Proc. Natl Acad. Sci. USA 108, 11241–11245 (2011).

5. Muhle-Karbe, P. S., Duncan, J., De Baene, W., Mitchell, D. J. & Brass, M. Neural
coding for instruction-based task sets in human frontoparietal and visual
cortex. Cereb. Cortex 10.1093/cercor/bhw032, bhw032 (2016).

6. Haxby, J. V. et al. Distributed and overlapping representations of faces and
objects in ventral temporal. Cortex 2425, 2425–2431 (2006).

7. Zhang, J., Kriegeskorte, N., Carlin, J. D. & Rowe, J. B. Choosing the rules:
distinct and overlapping frontoparietal representations of task rules for
perceptual decisions. J. Neurosci. 33, 11852–11862 (2013).

8. Poldrack, R. A., Halchenko, Y. O. & Hanson, S. J. Decoding the large-scale
structure of brain function by classifying mental states across individuals.
Psychol. Sci. 20, 1364–1372 (2009).

9. de-Wit, L., Alexander, D., Ekroll, V. & Wagemans, J. Is neuroimaging
measuring information in the brain? Psychon. Bull. Rev. 10.3758/s13423-016-
1002-0, 1–14 (2016).

10. Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task
control. Nat. Neurosci. 16, 1348–1355 (2013).

11. Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B. & Petersen, S. E.
Evidence for two independent factors that modify brain networks to meet task
goals. Cell Rep. 17, 1276–1288 (2016).

12. Sadaghiani, S., Poline, J.-B., Kleinschmidt, A. & D’Esposito, M. Ongoing
dynamics in large-scale functional connectivity predict perception. Proc. Natl
Acad. Sci. USA 112, 8463–8468 (2015).

13. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430
(2006).

14. Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. Activity flow over resting-
state networks shapes cognitive task activations. Nat. Neurosci. 10.1038/nn.4406
(2016).

15. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J 27,
379–423 (1948).

16. Marrelec, G., Messé, A., Giron, A. & Rudrauf, D. Functional connectivity’s
degenerate view of brain computation. PLoS Comput. Biol. 12, e1005031 (2016).

17. van den Heuvel, M. P., Mandl, R. C. W., Kahn, R. S. & Hulshoff Pol, H. E.
Functionally linked resting-state networks reflect the underlying structural
connectivity architecture of the human brain. Hum. Brain Mapp. 30,
3127–3141 (2009).

18. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic
and task-evoked network architectures of the human brain. Neuron 83,
238–251 (2014).

19. Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent
functional coupling modes cluster around a core functional architecture. Philos.
Trans. R. Soc. B Biol. Sci. 369, 20130526–20130526 (2014).

20. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict
neural responses in higher visual cortex. Proc. Natl Acad. Sci. 111, 8619–8624
(2014).

21. Coutanche, M. N. & Thompson-Schill, S. L. Informational connectivity:
identifying synchronized discriminability of multi-voxel patterns across the
brain. Front. Hum. Neurosci. 7, 15 (2013).

22. Yeo, B. T. T. et al. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165
(2011).

23. Power, J. D. et al. Functional network organization of the human brain. Neuron
72, 665–678 (2011).

24. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation
from resting-state correlations. Cereb. Cortex. 10.1093/cercor/bhu239 (2014).

25. Heinzle, J., Kahnt, T. & Haynes, J. D. Topographically specific functional
connectivity between visual field maps in the human brain. Neuroimage 56,
1426–1436 (2011).

26. Haak, K. V. et al. Connective field modeling. Neuroimage 66, 376–384 (2013).
27. Tavor, I. et al. Task-free MRI predicts individual differences in brain activity

during task performance. Science (80-.) 352, 1773–1776 (2016).
28. Cole, M. W., Pathak, S. & Schneider, W. Identifying the brain’s most globally

connected regions. Neuroimage 49, 3132–3148 (2010).
29. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence

for hubs in human functional brain networks. Neuron 79, 798–813 (2013).
30. Power, J. D. & Petersen, S. E. Control-related systems in the human brain. Curr.

Opin. Neurobiol. 23, 223–228 (2013).
31. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven

attention in the brain. Nat. Rev. Neurosci. 3, 215–229 (2002).
32. Cole, M. W., Bagic, A., Kass, R. & Schneider, W. Prefrontal dynamics

underlying rapid instructed task learning reverse with practice. J. Neurosci. 30,
14245–14254 (2010).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01000-w ARTICLE

NATURE COMMUNICATIONS |8:  1027 |DOI: 10.1038/s41467-017-01000-w |www.nature.com/naturecommunications 13

https://github.com/ColeLab/informationtransfermapping
https://github.com/ColeLab/MultipleComparisonsPermutationTesting
http://dx.doi.org/10.1093/cercor/bhw032
http://dx.doi.org/10.3758/s13423--016--1002--0
http://dx.doi.org/10.3758/s13423--016--1002--0
http://dx.doi.org/10.1038/nn.4406
http://dx.doi.org/10.1093/cercor/bhu239
www.nature.com/naturecommunications
www.nature.com/naturecommunications


33. Button, K. S. et al. Power failure: why small sample size undermines the
reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

34. Szucs, D. et al. Empirical assessment of published effect sizes and power in the
recent cognitive neuroscience and psychology literature. PLOS Biol. 15,
e2000797 (2017).

35. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends
Cogn. Sci. 17, 683–696 (2013).

36. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex.
Nature 10.1038/nature18933, 1–11 (2016).

37. Diedrichsen, J. & Kriegeskorte, N. Representational models: a common
framework for understanding encoding, pattern-component, and
representational-similarity analysis. PLoS Comput. Biol. 13, e1005508 (2017).

38. Cowan, J. D., Neuman, J. & van Drongelen, W. Wilson-cowan equations for
neocortical dynamics. J. Math. Neurosci. 6, 1 (2016).

39. Stern, M., Sompolinsky, H. & Abbott, L. F. Dynamics of random neural
networks with bistable units. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys.
90, 1–7 (2014).

40. Rabbitt, P. Methodology of frontal and executive function. Available at
http://public.eblib.com/choice/publicfullrecord.aspx?p=201286 (1997).

41. Cole, M. W., Laurent, P. & Stocco, A. Rapid instructed task learning: a new
window into the human brain’s unique capacity for flexible cognitive control.
Cogn. Affect. Behav. Neurosci. 13, 1–22 (2013).

42. Miller, E. K. & Buschman, T. J. Working memory capacity: limits on the
bandwidth of cognition. Daedalus 144, 112–122 (2015).

43. Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W. & Braver, T. S. Rapid
transfer of abstract rules to novel contexts in human lateral prefrontal cortex.
Front. Hum. Neurosci. 5, 142 (2011).

44. Cole, M. W., Ito, T. & Braver, T. S. The behavioral relevance of task
information in human prefrontal cortex. Cereb. Cortex, 10.1093/cercor/bhv072,
(2015).

45. Genovese, C. & Wasserman, L. Operating characteristics and extensions of the
false discovery rate procedure. J. R. Stat. Soc. Ser. B (Statistical Methodol) 64,
499–517 (2002).

46. Dosenbach, N. U. F. et al. A core system for the implementation of task sets.
Neuron 50, 799–812 (2006).

47. Eliasmith, C. et al. A large-scale model of the functioning brain. Science (80-.)
338, 1202–1205 (2012).

48. Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic
space describes the representation of thousands of object and action categories
across the human brain. Neuron 76, 1210–1224 (2012).

49. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during
flexible sensorimotor decisions. Science (80-.) 348, 1352–1355 (2015).

50. Hartman, E. J., Keeler, J. D. & Kowalski, J. M. Layered neural networks with
gaussian hidden units as universal approximations. Neural. Comput. 2, 210–215
(1990).

51. Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J. & Jarvis, E. D.
Computational inference of neural information flow networks. PLoS Comput.
Biol. 2, 1436–1449 (2006).

52. Timme, N. M. et al. High-degree neurons feed cortical computations. PLoS
Comput. Biol. 12, e1004858 (2016).

53. Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural
representational spaces using multivariate pattern analysis. Annu. Rev.
Neurosci. 10.1146/annurev-neuro-062012-170325, 435–456 (2014).

54. Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy and
redundancy in biological networks. Proc. Natl Acad. Sci. 96, 3257–3262
(1999).

55. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity
in the motor cortex of resting human brain using echo-planar MRI. Magn.
Reson. Med. 34, 537–541 (1995).

56. Cole, M. W., Repov, G. & Anticevic, A. The frontoparietal control system: a
central role in mental health. Neuroscientist 20, 652–664 (2014).

57. Eliasmith, C. How to build a brain: from function to implementation. Synthese
159, 373–388 (2007).

58. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module
in human extrastriate cortex specialized for face perception. J. Neurosci. 17,
4302 LP–4304311 (1997).

59. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A cortical
region consisting entirely of face-selective cells. Science (80-.) 311, 670–674
(2006).

60. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E.
Spurious but systematic correlations in functional connectivity MRI networks
arise from subject motion. Neuroimage 59, 2142–2154 (2012).

61. Nishimoto, S. et al. Reconstructing visual experiences from brain activity
evoked by natural movies. Curr. Biol. 21, 1641–1646 (2011).

62. Simony, E. et al. Dynamical reconfiguration of the default mode network
during narrative comprehension. Nat. Commun. 7, 1–13 (2016).

63. Schneider, W., Eschman, A. & Zuccolotto, A. E-Prime: User’s guide (Psychology
Software Incorporated, 2002).

64. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human
Connectome Project. Neuroimage 80, 105–124 (2013).

65. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional
neuroimaging: A primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

66. Barral, J. & Reyes, A. D. Synaptic scaling rule preserves excitatory–inhibitory
balance and salient neuronal network dynamics. Nat. Neurosci. 10.1038/
nn.4415 (2016).

67. Glasser, M. F. et al. The human connectome project’s neuroimaging approach.
Nat. Neurosci. 19, 1175–1187 (2016).

Acknowledgements
We thank Stephen J. Hanson, Catherine Hanson, and Gregg Ferencz in helping develop
our MRI protocols for data collection. We also thank Merav Stern and Hiromichi
Tsukada for helpful discussions regarding the computational model. We acknowledge
support by the US National Institutes of Health under awards K99-R00 MH096801, R01
AG055556, and R01 MH109520. The content is solely the responsibility of the authors
and does not necessarily represent the official views of any of the funding agencies.

Author contributions
T.I. and M.W.C. conceived of the study. T.I. performed data preprocessing, data analysis,
and developed the computational model under the supervision of M.W.C. T.I., D.H.S.,
L.I.S. and M.W.C. designed the experimental paradigm, and M.W.C. programmed the
experiment. K.R.K. and M.W.C. constructed network definitions. T.I., K.R.K., D.H.S.,
R.D.M., R.H.C. and L.I.S. performed the behavioral and fMRI experiments under the
supervision of M.W.C. T.I. and M.W.C. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at 10.1038/s41467-017-01000-w.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01000-w

14 NATURE COMMUNICATIONS |8:  1027 |DOI: 10.1038/s41467-017-01000-w |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/nature18933
http://public.eblib.com/choice/publicfullrecord.aspx?p=201286
http://dx.doi.org/10.1093/cercor/bhv072
http://dx.doi.org/10.1146/annurev--neuro--062012--170325
http://dx.doi.org/10.1038/nn.4415
http://dx.doi.org/10.1038/nn.4415
http://dx.doi.org/10.1038/s41467-017-01000-w
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Cognitive task information is transferred between brain regions via resting-state network topology
	Results
	Network organization of cognitive control networks
	Computational validation of information transfer mapping
	Information transfer via resting-state network topology
	Behavioral relevance of cognitive information transfer

	Discussion
	Methods
	Participants
	Behavioral paradigm
	fMRI acquisition
	fMRI preprocessing
	FC estimation
	Replication of network topological properties
	Neural network model
	Computing information estimates for regions and networks
	Region-to-region information transfer mapping
	Network-to-network information transfer mapping
	Behavioral relevance of information transfers
	Computational resources
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




