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Abstract
Background: Methods are now available for the prediction of interaction sites in protein 3D
structures. While many of these methods report high success rates for site prediction, often these
predictions are not very selective and have low precision. Precision in site prediction is addressed
using Theoretical Microscopic Titration Curves (THEMATICS), a simple computational method for
the identification of active sites in enzymes. Recall and precision are measured and compared with
other methods for the prediction of catalytic sites.

Results: Using a test set of 169 enzymes from the original Catalytic Residue Dataset (CatRes) it
is shown that THEMATICS can deliver precise, localised site predictions. Furthermore, adjustment
of the cut-off criteria can improve the recall rates for catalytic residues with only a small sacrifice
in precision. Recall rates for CatRes/CSA annotated catalytic residues are 41.1%, 50.4%, and 54.2%
for Z score cut-off values of 1.00, 0.99, and 0.98, respectively. The corresponding precision rates
are 19.4%, 17.9%, and 16.4%. The success rate for catalytic sites is higher, with correct or partially
correct predictions for 77.5%, 85.8%, and 88.2% of the enzymes in the test set, corresponding to
the same respective Z score cut-offs, if only the CatRes annotations are used as the reference set.
Incorporation of additional literature annotations into the reference set gives total success rates of
89.9%, 92.9%, and 94.1%, again for corresponding cut-off values of 1.00, 0.99, and 0.98. False
positive rates for a 75-protein test set are 1.95%, 2.60%, and 3.12% for Z score cut-offs of 1.00,
0.99, and 0.98, respectively.

Conclusion: With a preferred cut-off value of 0.99, THEMATICS achieves a high success rate of
interaction site prediction, about 86% correct or partially correct using CatRes/CSA annotations
only and about 93% with an expanded reference set. Success rates for catalytic residue prediction
are similar to those of other structure-based methods, but with substantially better precision and
lower false positive rates. THEMATICS performs well across the spectrum of E.C. classes. The
method requires only the structure of the query protein as input. THEMATICS predictions may be
obtained via the web from structures in PDB format at: http://pfweb.chem.neu.edu/thematics/
submit.html
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Background
Methods are now available for the prediction of interac-
tion sites in protein 3D structures. While many of these
methods report high success rates for site prediction, often
these predictions are highly delocalised, span a significant
fraction of the protein's surface, and are not very selective.
Precision in the prediction of sites is addressed using THE-
MATICS, a simple computational method for the identifi-
cation of enzyme active sites from the three-dimensional
structure alone [1-7]. One goal of the present paper is to
show how the already good performance of THEMATICS
can be improved and to quantify the recall and precision
rates of the method through comparison of its predictions
with the information from a database of enzymes with
experimentally identified active sites. The most important
finding of the present work is that this simple, electrostat-
ics-based method in fact delivers superior precision, i.e.
well-localised site predictions with better selectivity than
other structure-based methods, in addition to good recall.
It is established here that THEMATICS applies to enzymes
of many different structural and chemical classes. It is also
demonstrated that the method works well for structures
that do not contain a bound ligand, which is the situation
for most structural genomics proteins and other proteins
of unknown function. The identification of the interac-
tion sites in protein structures is a critical step in the deter-
mination of function from the wealth of sequence and
structure information emerging from genome sequencing
and from structural genomics efforts [8-14].

Our method is based on established computational tech-
niques and utilizes a finite difference Poisson-Boltzmann
(FDPB) method [15-24] to calculate the Theoretical
Microscopic Titration Curves – THEMATICS – for all of
the ionisable residues in the protein. FDPB methods have
been in use for two decades to calculate the pKa's of ionis-
able residues in proteins. We have shown that the shapes
of the theoretical titration curves generated from a FDPB
method, although they are only approximate, contain a
great deal of useful information about the location, bind-
ing properties and chemical properties of the active site
[1,6,7].

A typical ionisable residue in a protein obeys the Hender-
son-Hasselbalch (H-H) equation, which is generally writ-
ten as:

pH = pKa + log{[A-]/[HA]}. (1)

Equation (1) may be rewritten to express the mean net
charge C (for a specified residue averaged over an ensem-
ble of protein molecules) as a function of the pH, as:

C+(pH) = 10pKa/(10pH + 10pKa) (2)

for the residues that form a cation upon protonation (Arg,
His, Lys, and the N-terminus). These residues go from a +1
charged state to a 0 charge state as the pH is raised. Equa-
tion (2) is rewritten as:

C-(pH) = - 10pH/(10pH + 10pKa) (3)

for the residues that form an anion upon deprotonation
(Asp, Cys, Glu, Tyr, and the C-terminus). These residues
go from a 0 charge state to a -1 charged state as the pH is
raised. Equations (2) and (3) have the familiar sigmoid
shape that is typical of a weak acid or base that obeys the
H-H equation; as the pH is raised, these residues change
from their protonated to deprotonated states in a narrow
pH range. It is commonly (and not always correctly)
assumed that when the pH is less than the pKa, the species
is protonated and that when the pH is greater than the
pKa, the species is deprotonated. While this is true for
most of the ionisable residues in a protein, it has been
reported previously [25-28] that a small number of resi-
dues have predicted titration curves with perturbed shapes
that do not fit the H-H equation. We have demonstrated
[1] that these perturbed curves are indeed significant
because they occur in catalytic and binding sites with high
frequency and with lower frequency elsewhere. In partic-
ular, ionisable residues involved in catalysis and/or recog-
nition tend to have perturbed theoretical titration curves
with flat or nearly flat regions in their predicted C(pH)
functions. Therefore both protonated and deprotonated
forms are significantly populated over a pH range that is
significantly wider than that of the more typical residues.
Recently Ko [6] reported on statistical metrics for the
quantification of the deviations of a computed titration
curve from H-H behaviour; the residues that deviate the
most from H-H behaviour are then selected by statistical
criteria. We have shown that these types of perturbed res-
idues can be used to predict interaction sites, such that a
cluster of two or more of these perturbed residues in three-
dimensional space is a reliable predictor of active site or
binding site location. Thus from the structure alone one
can identify interaction sites, in the absence of further bio-
chemical data, with just a simple and relatively fast calcu-
lation.

Most of the methods currently in use to predict the func-
tion of a protein from its sequence or from its structure
rely on relationships to proteins of known function. For
some classes of proteins, information about function can
be inferred from the sequence [29-33]. However, these
inferences can be misleading. Such methods also do not
necessarily identify or characterize interaction sites. Anal-
ysis of sequence and structure data together gives more
revealing clues about function [34-37]. Methods to locate
active sites generally rely either on analogies to related
proteins of known function [38-45], or on searches for
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clefts in the protein structure [46]. Energetics, flexibility
and dynamics [47-50] may also serve as markers of func-
tion. The method of Gutteridge et al. [51] is based on
sequence conservation and structural features and pre-
dicts active sites with a high success rate. This method
returns a correct prediction for 69% of the 159 proteins in
the test set and a partially correct prediction for 25% of the
test proteins, with an average of 7.2 predicted clusters per
protein.

Methods for the determination of functional information
that utilize the structure of the query protein alone are rel-
atively new. THEMATICS thus represents a departure from
previous approaches because it takes advantage of the
unique chemical and electrostatic properties of catalyti-
cally active sites in protein structures to identify and char-
acterize them. Specifically, it searches for anomalies in the
theoretical titration behaviour of the ionisable residues
[1]. These anomalous titration curves arise from coupling
between protonation events on the ionisable residues in
the active site and on multiple ionisable partners. These
couplings contribute most to titration curve anomalies
when the electrostatic interaction is strong and when the
pKa's are roughly matched. While all ionisable residues in
a protein experience such couplings, these couplings tend
to be the strongest for active site residues. Structural Anal-
ysis of Residue Interaction Graphs (SARIG) [52] is another
method based on interactions between residues, but it
effectively counts all types of residue contacts, based on
spatial proximity. It is a graph theoretic approach that cal-
culates residue contacts and identifies the residues that
have the highest closeness scores to all other residues.
SARIG successfully predicts 46.5% of the annotated cata-
lytic residues for the enzymes in the CatRes [53] database.
The precision, however, is low; only 9.4% of the predicted
residues are known catalytic residues. Still another com-
putational approach to the identification of interaction
sites from the structure alone involves solvent mapping.
Originally this was developed as an experimental tech-
nique [54], but now entails the computational docking of
small solvent molecules onto the protein surface and
searching for clusters of energy minima for these mole-
cules [55,56]. Q-SiteFinder, a simple and fast version of
this method developed by Laurie and Jackson [57], uses
only a methyl group as the probe. For 90% of proteins in
the test set, Q-SiteFinder returns a correct prediction
within the top three predicted sites, albeit with low preci-
sion. Another 3D-structure-based method based on
purely geometric properties has been reported by Ben-Shi-
mon and Eisenstein [58], for which a high success rate is
reported for site prediction but performance data for cata-
lytic and binding residue prediction is not reported.

While there are now methods available that predict cata-
lytic residues from the 3D structure alone with good recall

rates, it is desirable to select such residues with good pre-
cision, i.e. to obtain predictions where a higher fraction of
the predicted residues are known catalytic residues. One
of the goals of the present paper is to establish that cata-
lytic sites and residues can be predicted using computed
protonation properties with good recall and also substan-
tially better precision. Precise, localised predictions are
important for future applications, such as ligand design
and also for comparative studies of predicted sites in pro-
teins of unknown function with known sites in well-char-
acterized proteins.

Having established the basic principles upon which THE-
MATICS works [1,2,4] and having developed a method to
automate it [6], it is now possible and desirable to test it
on a large set of enzymes that spans a wide range of chem-
ical functions and structural types. In particular, we now
apply THEMATICS to an annotated set of enzymes to
measure the success rate and the precision and to study
the degree of improvement obtainable in the recall with-
out excessive loss of precision. We utilize the CatRes data-
base [53], a compilation of information from the
experimental literature that identifies residues in a protein
structure that are involved in catalysis.

The method of reference [6] for the selection of those ion-
isable residues that deviate most from Henderson-Hassel-
balch behaviour is based on a moment analysis. In
particular the third and fourth moments of the derivatives
of the FDPB-hybrid-computed titration curves are used to
quantify deviation from H-H behaviour. In reference [6] a
Z score is used to select those residues with third or fourth
moments that are more than one standard deviation
above the mean for all ionisable residues in the protein,
i.e. Z3 > 1 or Z4 > 1. Here we examine how the Z score cut-
off affects recall and precision and show how this cut-off
may be adjusted to optimise the method for desired per-
formance.

There are 178 proteins in the original CatRes database
[53]. Nine of these have been excluded from the present
analysis for specific reasons. One, Ribonuclease P [PDB:
1A6F], does not have any annotated catalytic residues and
this is noted in the CatRes database. Four enzymes are
excluded because of poor structure quality (i.e. a large
number of missing atoms and/or residues in the structure
file) or redundancy. Two others had to be excluded
because the structures are too large for the current system
to handle. Two enzymes are excluded from the present
analysis because they are NMR structures. While THE-
MATICS can work for NMR structures, the analysis is dif-
ferent because there is a set of structures instead of a single
structure. The present paper is based on the analysis of the
x-ray crystal structures of 169 enzymes. The enzymes in
the test set span a wide range of chemical functions. Table
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1 shows the number and percentage of enzymes in the test
population by EC class. For the 169 enzymes in our test
set, a total of 594 residues are annotated as catalytically
important in the CatRes database [53]. The CatRes infor-
mation was checked against the Catalytic Site Atlas (CSA)
[59,60] and for the applicable cases, the list of catalytically
important residues was modified to incorporate the
updated CSA annotations.

In the present paper both the success rate for the predic-
tion of sites and the success rate for the prediction of
important residues are reported. We regard the labelled
data sets as reliable sources of information about catalytic
sites; i.e. the local area on or near the surface of a protein
where the labelled residues are located is very likely to be
a site where catalysis and/or binding occurs. Furthermore,
the residues labelled as positive (catalytically important)
have experimental evidence to support that labelling and
therefore are considered reliably annotated. However,
because the literature annotations of catalytic residues are
incomplete, the absence of a positive annotation for a par-
ticular residue is not necessarily a reliable negative anno-
tation. Therefore the computed precision rate for residues,
the number of predicted residues that are annotated as
important divided by the total number of residues pre-
dicted for a given protein, should be regarded as a lower
bound.

To measure the performance of the method for catalytic
residue prediction, three metrics are employed: Recall,
Precision, and Filtration Ratio (FR). The recall (or sensitiv-
ity) is defined as the fraction of known active site residues
that are predicted by the method, as:

Recall = (# of positive residues predicted)/
(# of annotated positive residues) (4)

Here a positive residue is one that is annotated in the ref-
erence database as an active site residue. The precision,
related to the selectivity and to the specificity, is defined as
the fraction of predicted residues that are known posi-
tives, as:

Precision = (# of positive residues predicted)/
(total # of residues predicted) (5)

Another measure of the selectivity is the filtration ratio
(FR), the fraction of all residues that are predicted as pos-
itive, as:

FR = (# of residues predicted)/(total # of residues)
(6)

Thus the goal is to maximize recall and precision with low
filtration ratio. The recall and precision for THEMATICS
predictions are measured against the CatRes/CSA data-
bases, so the annotations therein are used to determine
the set of known positive residues used in equations (4) –
(6). We recognize that the literature annotations are nec-
essarily incomplete and are being updated continuously.
In order to test performance, we designate the CatRes/CSA
database as the best compiled reference set available for
catalytic residue annotation.

The present study of the effect of Z score cut-off and the
method comparison study therefore are performed using
only the CatRes/CSA annotations. Thus the actual preci-
sions are probably higher than the precisions calculated
herein for all methods, since any of the methods may be
predicting important residues that are not currently anno-
tated as such in the database.

In a separate, subsequent analysis, some annotations
from different sources are added to the CatRes/CSA infor-
mation in an attempt to obtain a more realistic value for
the performance metrics for sites. In particular, three dif-
ferent sets of reference annotations are used: Reference Set
1) is CatRes/CSA only; Reference Set 2) consists of Refer-
ence Set 1 plus PDB SITE entries and, in a few cases, addi-
tional literature articles; and Reference Set 3) is Reference
Set 2 plus ligand-binding residues, as determined by the
LPC [61] server, for cases where bound structures are
available.

Results
Performance for residues as a function of Z cut-off for the 
169-protein test set
First THEMATICS performance for residue prediction is
measured as a function of the Z score cut-off. The metrics
used in reference [6] are measures of deviation from H-H
behaviour. For a Z score cut-off of 1.0, those residues with
a metric that is more than one standard deviation above
the mean value for all ionisable residues in a given protein
are designated as positive. When the Z score cut-off is
reduced, more residues are then predicted to be impor-
tant.

Table 1: Functional Class Distribution in the Test Set of 169 
enzymes.

Class Number Percent

EC 1 Oxidoreductases 39 23%
EC 2 Transferases 39 23%
EC 3 Hydrolases 46 27%
EC 4 Lyases 28 17%
EC 5 Isomerases 9 5%
EC 6 Ligases 8 5%
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Table 2 shows the values for the recall and the precision
obtained for the predicted active site residues, averaged
over the 169 proteins in the test set, for Z score cut-off val-
ues ranging from 1.00 through 0.95. A Z score cut-off of
1.00, the value used by Ko [6], achieves a recall of CatRes/
CSA annotated catalytic residues of 41.1% and a precision
of 19.4%. When the Z score cut-off is reduced to 0.99, the
recall increases to 50.4%; there is only a small concomi-
tant drop in the precision, to a value of 17.9%. A Z score
cut-off of 0.98 increases the recall to 54.2%, while the pre-
cision drops to 16.4%. Further reductions in the Z score
cut-off return better sensitivities, up to 62.8% for a 0.95
cut-off, but always with some sacrifice in the precision.
Figure 1 represents these data graphically, with precision
plotted as a function of the recall for Z score cut-off values
between 1.00 and 0.95.

Thus a small reduction in the Z score cut-off, from 1.00 to
0.99 or to 0.98, leads to better recall with only a small
reduction in precision. In particular, a Z score cut-off
value of 0.99 yields a residue recall rate of better than 50%
and at the same time gives a favourable precision rate of
17.9%.

While THEMATICS is able to predict roughly half of all
known catalytic residues, the success rate for the prediction
of catalytic sites is much higher.

Overall performance for sites
First we compare the THEMATICS positive clusters against
the CatRes/CSA annotations. The overwhelming majority
of these enzymes have at least one ionisable residue
labelled in the reference sets as catalytically active. Of the
169 enzymes in the test set, all but four contain one or
more ionisable residue(s) annotated in the reference set as
catalytically important. We therefore note that, if success
is based solely on comparison with the specified reference
labels, THEMATICS automatically fails for those four pro-
teins, since THEMATICS in its present form only identifies

ionisable residues. However, the percentage of proteins
for which such automatic failure occurs is only 2.4%.

Following designations used in previous work [51], a site
prediction is considered correct if it includes half or more
of the annotated catalytic residues. A prediction is consid-
ered partially correct if it contains at least one, but less than
half, of the annotated catalytic residues. The total success
rate for the prediction of sites is the sum of the correct plus
partially correct predictions. The success rates and the fil-
tration ratio obtained for Z score cut-off values of 1.00,
0.99, and 0.98 are shown in Table 3 for the 169 CatRes
enzymes. First our predictions are compared only with the
CatRes/CSA annotations, which are the best available
from a single source but incomplete. Then additional
information about interaction sites from other reference
sources is added for further comparison.

Using only the CatRes/CSA lists of active site residues as
the reference and using a Z score cut-off of 1.00, THEMAT-
ICS returns a correct prediction of the active site for 82 out
of the 169 enzymes, a partially correct prediction for 49
enzymes, and an incorrect prediction for 38 enzymes.
Thus the prediction is correct or partially correct for 131
out of 169 enzymes, or 77.5%, using Ko's [6] Z score cut-
off value.

Further analysis was performed on the 38 enzymes where
THEMATICS (with a Z score cut-off of 1.0) gave an incor-
rect prediction, according to the CatRes/CSA annotations.
For these enzymes, the list of functionally important resi-
dues is augmented using additional information from the
SITE field in the PDB file or from related journal articles.

Table 2: Recall and precision of CSA labelled residues.

Z Score Cut-off Recall Precision

Z = 1.00 41.1% 19.4%
Z = 0.99 50.4% 17.9%
Z = 0.98 54.2% 16.4%
Z = 0.97 58.0% 15.5%
Z = 0.96 61.0% 14.6%
Z = 0.95 62.8% 13.6%

Recall and Precision for THEMATICS predictions of catalytic residues 
as functions of Z score cut-off for the test set of 169 enzymes. Here 
only the CatRes/CSA annotations are used as the reference set. 
Values are averaged over the test set.

Precision Versus Recall – THEMATICS predictions for CSAFigure 1
Precision Versus Recall – THEMATICS predictions 
for CSA. Precision (fraction of predicted residues that are 
known catalytic residues) as a function of recall (fraction of 
known catalytic residues that are predicted as positive) for 
THEMATICS predictions on the annotated set of 169 pro-
teins. Known catalytic residues are defined here as only the 
CatRes/CSA annotated residues. Results are shown for Z 
score cut-off values of 1.0, 0.99, 0.98, 0.97, 0.96, and 0.95.
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There are then eight additional successful predictions, for
a total success rate of 82.2%, according to Reference Set 2.
If we add the ligand binding residues computed by the
Ligand-Protein Contacts (LPC) server [61] to the list of
active site residues for those enzymes where a bound
structure is available, the total success rate rises to 89.9%.
These success rates are achieved with a low filtration ratio
of 2.5%.

Improvement in the site prediction success rate is
achieved with a slightly lower Z score cut-off, as shown in
Table 3. Using a cut-off of 0.99, a correct site prediction is
obtained for 101 enzymes and a partially correct predic-
tion for 44 enzymes, for a total success rate of 85.8%,
according to the CatRes/CSA data. This success rate
increases to 88.2% against Reference Set 2 and to 92.9%
against Reference Set 3, all with a filtration ratio of 3.3%.

If a Z score cut-off of 0.98 is used, then correct active sites
are predicted for 113 of the enzymes and partially correct
predictions for 36 enzymes, for a total success rate of
88.2%, using only the CatRes/CSA data as the reference. If
Reference Set 2 is used as the source of true positive resi-
dues, then the overall success rate increases to 90.5%, and
to 94.1% if Reference Set 3 is used. For a Z score cut-off of
0.98, the filtration ratio is 3.8%.

Based on these results and given our desire to make pre-
dictions with good sensitivity but without major sacrifice
in precision, a Z score cut-off value of 0.99 is designated
as the preferred value for our future predictive calcula-
tions.

Comparison with other methods on a sample set
There are two other 3D-structure-based site prediction
methods available for performance comparison, Q-Site-
Finder [57] and SARIG [52]. It is only possible to compare
performance on a subset of the CatRes/CSA database pri-
marily because the online version of Q-SiteFinder is
restricted to proteins with 10,000 atoms or fewer, because
of the longer processing time for larger proteins. Thus a
test set of 75 proteins, a subset of the CatRes/CSA set, was
created such that the SARIG and Q-SiteFinder servers both
return predictions for all members of the subset. Table 4
compares the performance of THEMATICS with these
other 3D-structure-based methods on the test set of 75
proteins. The composition of the test set is described in
the Methods section. THEMATICS performance is
reported using Z score cut-off values of 1.00, 0.99, 0.98,
0.96, and 0.95. For purposes of Table 4, the combination
of the top three sites is used as the Q-SiteFinder predic-
tion; this combination of the top three sites was used in
reference [57] as the basis for their calculation of the suc-

Table 4: Comparison of method performance for residue prediction on a sample set of 75 proteins.

Method Recall (%) Precision (%) Filtration ratio (%) False Positive Percent

THEMATICS
Z = 1.0

48.1 25.0 2.5 1.95

THEMATICS
Z = 0.99

53.4 21.9 3.2 2.60

THEMATICS
Z = 0.98

56.5 19.5 3.8 3.12

THEMATICS
Z = 0.96

65.6 17.0 4.8 4.08

THEMATICS
Z = 0.95

67.5 16.1 5.3 4.54

Q-SiteFinder (top 3 sites) 65.6 5.4 14.9 14.3
SARIG 57.4 8.1 8.7 8.15

Recall, precision, and false positive rate are based on CatRes/CSA annotations and are averaged over the sample set of 75 proteins.

Table 3: THEMATICS success rates for site prediction.

Z Score
Cut-Off

Correct 
percentage 

based on CatRes

Partially Correct 
percentage 

based on CatRes

Total Success 
based on CatRes

Total % Success 
based on 

Reference Set 2

Total % Success 
based on 

Reference Set 3

Filtration Ratio

1.00 48.5% 29.0% 77.5% 82.2% 89.9% 2.5%
0.99 59.8% 26.0% 85.8% 88.2% 92.9% 3.3%
0.98 66.9% 21.3% 88.2% 90.5% 94.1% 3.8%

Success rate is expressed as correct, partially correct, and total, using a Z score cut-off of 1.00, 0.99 and 0.98 for the test set of 169 enzymes. The 
total success rate is reported using three different reference sets of active site residues. Reference Set 1 is the CatRes/CSA database only; 
Reference Set 2 adds annotations from the PDB SITE field and associated journal articles; Reference Set 3 adds residues in contact with bound 
ligands.
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cess rate. For the set of 75 proteins Reference Set 1 (only
the CatRes/CSA annotations) is used for the labelled set;
there are a total of 390 residues annotated therein as cata-
lytic residues. Recall, precision, filtration ratio, and false
positive fraction are calculated for the individual proteins
and then averaged over the set of 75. The false positive
fraction is defined as the number of predicted false posi-
tives over all negatives. Here a residue is taken to be nega-
tive if it is not annotated in the reference set as positive.

We note that the performance metrics for THEMATICS are
a little better for this test set than on the entire CatRes
dataset. Similarly, the recall rate for SARIG in the test set is
57%, better than the 46.5% reported in reference [52] for
the entire CatRes database. We note that this smaller test
sample is restricted to enzymes that return a result on the
public servers for both SARIG and Q-SiteFinder and there-
fore this sample contains some inherent selection.

The three methods have a recall rate for known catalytic
residues of 48–68% on the test set, with some variation
among the methods within that range. Average recall rates
are 66% for Q-SiteFinder and 57% for SARIG. THEMAT-
ICS recall rates are 48%, 53%, 57%, 66%, and 68% for Z
score cut-offs of 1.00, 0.99, 0.98, 0.96, and 0.95, respec-
tively. The primary difference in the performance of the
three methods on the sample set is that THEMATICS has
substantially higher precision. For THEMATICS with a Z
score cut-off of 1.00, the average precision is 25%. The
precision drops to 22%, 20%, 17%, and 16%, for Z score
cut-offs of 0.99, 0.98, 0.96, and 0.95, respectively. Average
precision rates for Q-SiteFinder and SARIG are 5% and
8%, respectively. Differences in mean precision between
the methods are statistically significant. The 8% precision
rate obtained for SARIG on the test set is close to the value
of 9% reported in the original study [52] on the larger set.
Since the database annotation is incomplete, the actual
precision rates are probably higher for all of the methods,
but values calculated using available annotations give
some idea of the relative precision rates for the different
methods. The low average filtration ratios in the 3–5%
range obtained for THEMATICS predictions further dem-
onstrate that on the average THEMATICS tends to yield
more localised and less diluted predictions than the other
two methods, for which higher filtration ratios were
obtained. False positive fractions for THEMATICS are
1.95%, 2.60%, 3.12%, 4.08%, and 4.54% for the Z score
cut-off values of 1.00, 0.99, 0.98, 0.96, and 0.95, respec-
tively. The other methods show higher false positive rates:
14.3% for Q-SiteFinder and 8.15% for SARIG. For Z score
cut-off values of 0.96 and 0.95, the THEMATICS residue
recall rates are statistically equivalent to those of Q-Site-
Finder, but the THEMATICS predictions show substan-
tially better precision. SARIG is in the middle, with a

precision rate between those of THEMATICS and Q-Site-
Finder and a competitive residue recall rate.

Figure 2 compares the performance of THEMATICS (■ ),
Q-SiteFinder (● ), and SARIG (▲) in active site residue
prediction with a Receiver Operating Characteristic
(ROC) diagram. The True Positive Fraction (true positives
predicted/all known positives), equivalent to the recall
rate, is plotted as a function of the False Positive Fraction
(false positives predicted/all known negatives) for the test
set of 75 proteins. Both fractions are expressed as percent-
ages. For the purposes of figure 2, the known positives are
defined as the CatRes/CSA annotated residues and all
other residues are assumed to be negative. Five data points
are shown for THEMATICS, corresponding to Z score cut-
off values of 0.95, 0.96, 0.98, 0.99, and 1.00, with ascend-
ing (i.e. increasingly selective but less sensitive) Z score
values proceeding from upper right to lower left. The
points for THEMATICS are connected by a solid line (—).
Predictions for SARIG and Q-SiteFinder are based on
results obtained from their respective public servers. Three
points are shown for Q-SiteFinder and these correspond
to the top site only, a combination of the top two sites,
and a combination of the top three sites, with ascending

Comparative ROC DiagramFigure 2
Comparative ROC Diagram. Comparative ROC diagram 
for THEMATICS (■ ), Q-SiteFinder (● ), and SARIG (▲). 
True Positive Fraction (true positives predicted/all known 
positives) is plotted as a function of the False Positive Frac-
tion (false positives predicted/all known negatives), both 
expressed as percentages, for a test set of 75 proteins. The 
CatRes/CSA annotations are used to designate the known 
positive residues and all other residues are taken to be nega-
tive. Five data points are shown for THEMATICS, corre-
sponding to Z score cut-off values of 0.95, 0.96, 0.98, 0.99, 
and 1.00 (with ascending Z score values proceeding from 
upper right to lower left). The points for THEMATICS are 
joined by a solid line (—). The three points shown for Q-
SiteFinder correspond to the top site only, a combination of 
the top two sites, and a combination of the top three sites 
(with ascending number of sites proceeding from lower left 
to upper right). The points for Q-SiteFinder are joined by a 
dashed line (- - - -).
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number of sites (i.e. less selective but more sensitive) pro-
ceeding from lower left to upper right. Q-SiteFinder points
are connected by a dashed line (- - - -).

Performance across EC classes
Table 5 shows performance of THEMATICS on the 169
CatRes/CSA proteins by E.C. class. For purposes of Table
5, a 0.99 Z score cut-off is used. The success rates, recall,
and precision are determined using only the CatRes/CSA
annotations as the reference set. Filtration ratios by class
range from 3.1% to 3.5%, clustering closely around the
average value of 3.3% for the full set of proteins. Success
rates and recall rates by class differ by about 10% or less
of the respective average values for the full set. Precision
rates vary a little more widely, although we note that the
lowest values are obtained for E.C. classes 5 and 6; the val-
ues for these latter two classes should be regarded as
approximate because of their small sample populations.

Structures with a bound ligand versus unbound structures
The CatRes/CSA database consists of a mixture of struc-
tures, some of which are not in complex (apo form) and
others contain a bound small molecule (holo form).
Applications of THEMATICS to proteins of unknown
function, including most Structural Genomics proteins,
requires that the method perform well for apo structures,
because the natural substrate or ligand is nearly always
absent and generally its identity is not even known. Of the
169 proteins in the test set, 72 of them contain no bound
inhibitor or substrate-like molecule. Thus the perform-
ance of the method on this subset of unbound structures
is compared with that of the full set. For purposes of these
comparisons, a Z score cut-off of 0.99 is used and only the
CatRes/CSA annotations are used as the reference set
unless otherwise noted. For the 72 unbound structures,
the average recall is 48.3%, compared to 50.4% for the full
set of proteins. The average precision rate for the unbound
subset is 19.1%, whereas 17.9% was obtained for the full
set of proteins. The average filtration ratio was obtained as
3.3% for both the unbound subset and the full set. The
overall success rate for the 72 unbound structures is 83%
(60/72), based on CatRes/CSA annotations only; if addi-
tional annotations are added to the reference set, the suc-

cess rate increases to 92% (66/72). These rates are close to
the values obtained for the full set of 169 proteins: 86%,
88%, and 93%, for reference sets 1, 2, and 3 respectively
(see Table 3).

THEMATICS performance on apo versus holo structures is
further explored using pairs of structures in cases where
both apo and holo structures are available for the same
protein. Table 6 shows THEMATICS predictions for eight
pairs of such structures. For each protein, results for the
apo form are given in the first row and results for the holo
form are given in the second row. The bound ligand and
the PDB codes for each structure are also given. For each
prediction, the residues that are in contact with the bound
ligand, as determined with the holo structure and the LPC
server [61], are shown in boldface. There are small differ-
ences in the predicted clusters between the two forms for
most of these proteins. However, clusters containing cor-
rect ligand-binding residues are predicted for both the apo
and holo structures for all eight proteins. For two of the
eight proteins, the apo and holo structures yield identical
predictions. For five of the eight proteins, the predicted
clusters for the two forms contain the same set of residues
in contact with the ligand, i.e. the set of residues in bold-
face is the same for the two forms. For β-amylase from B.
cereus, both the apo and holo forms predict four correct
ligand-binding residues, D49, H89, E172, and E367, but
the holo structure yields one more – K287 – that is missed
by the apo structure. However, there are also two exam-
ples in Table 6 where the apo form does a little bit better
than the holo form. For the S. typhi ATP:corrinoid adeno-
syltranferase, both structures return three correct predic-
tions, K41, E128, and Y131, but the apo form also
correctly predicts R161. Likewise for retinol-binding pro-
tein II from rat, both the apo and holo structures predict
Y19, but the apo form also correctly predicts Y60.

Examples
Some examples illustrate the localised nature of THEMAT-
ICS predictions. Figure 3 shows a ribbon diagram of one
of the subunits of Methylglyoxal synthase (E.C. 4.2.3.3;
PDB: 1B93) from E. coli with the side chains of the THE-
MATICS predicted residues shown explicitly in red. This

Table 5: THEMATICS performance on the CatRes/CSA proteins by E.C. class.

E.C. Class N Success Rate Recall Precision Filtration Ratio

1 39 90% 55% 15% 3.1%
2 39 92% 54% 23% 3.3%
3 46 78% 45% 16% 3.4%
4 28 79% 50% 21% 3.5%
5 9 89% 45% 13% 3.2%
6 8 100% 48% 14% 3.4%
All 169 86% 50% 18% 3.3%

The Z score cut-off of 0.99 was used. Success rate, recall, and precision are based on CatRes/CSA annotations only.
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prediction, obtained using the preferred Z score cut-off
value of 0.99, is a five-member positive cluster consisting
of H19, D71, D91, H98, and D101. The Catalytic Site
Atlas [60] lists H19, G66, D71, D91, H98, and D101 as
the important residues. H19, D71, and H98 are the
known catalytic residues, while D91 and D101 are

involved in substrate recognition [62-65]. The backbone
amide group of G66 is also involved in substrate binding
and is the only listed active residue that THEMATICS does
not predict. The largest pocket for this structure, as com-
puted by Computed Atlas of Surface Topography of Pro-
teins (CASTp) [66,67], consists of a total of 20 residues
and includes two of the six annotated residues, H19 and
D91. The correctly predicted catalytic site overlaps with
one corner of this largest pocket.

Figure 4 shows three predictions for Adenylsuccinate syn-
thase (E.C. 6.3.4.4; PDB: 1GIM) from E. coli obtained
from Q-SiteFinder [57], THEMATICS, and SARIG [52].
The atoms of the predicted residues are shown as colored
balls on the ribbon diagrams. Predicted residues listed in
CatRes as catalytic residues, D13, H41, and Q224, are
shown in red; other predicted residues are shown in green.
The prediction shown for Q-SiteFinder consists of the top
three sites. The THEMATICS predictions were obtained
using the preferred Z score cut-off of 0.99 and a 9 Å dis-
tance cutoff. The THEMATICS predicted cluster consists of
a total of ten residues: [D13, K16, H41, H53, E82, E221,
K267, Y269, R305, K331] and includes D13 and H41, two
of the three CatRes-listed catalytic residues. Q-SiteFinder
and SARIG both predict all three listed catalytic residues,
but Q-SiteFinder predicts a total of 38 residues and SARIG
predicts a total of 32 residues; these predictions extend
over a larger region than the THEMATICS prediction, as is
apparent in Figure 4. For this particular example, there are
five common residues predicted by the three methods:
D13, K16, H41, R305, and K331. All five of these residues

THEMATICS predictions for Methylglyoxal synthaseFigure 3
THEMATICS predictions for Methylglyoxal synthase. 
Ribbon diagram of one of the subunits of Methylglyoxal syn-
thase (PDB: 1B93) with the side chains of the THEMATICS 
predicted catalytic residues H19, D71, D91, H98, and D101 
shown explicitly in red; all of these are correctly predicted. 
Prediction was made using a Z score cut-off value of 0.99 and 
a 9 Å distance cutoff.

Table 6: THEMATICS predicted binding clusters for apo and holo structures.

Protein Ligand Apo Holo
PDB ID

THEMATICS Result

ATP:corrinoid 
adenosyltransferase

ATP 1G5R K41 D127 E128 Y131 R161

1G5T K41 D127 E128 Y131
Intestinal Fatty Acid 
Binding Protein

MYR 1IFB Y14 D34 Y70 R106 Y117 R126

1ICM Y14 D34 R56 Y70 R106 Y117
HPV11 regulatory protein ALQ, 434 1R6K H29 H32

1R6N H29 H32
Proline 3-hydroxylase FE (II), sulfate 1E5R R97 H107 H135 H158 R168 H238 Y239 H244

1E5S R97 H107 H135 H158 H238 Y239 H244
Glyoxalase 1 Ni(II) 1FA8 H5 E56 Y72 H74 D115 D117 E122

1F9Z H5 E56 Y72 H74 D115 Y119 E122
β-Amylase maltose 1B90 Y14 Y44 D49 H89 Y164 E172 R174 Y310 E367

1B9Z Y14 Y44 D49 H89 Y164 E172 R174 Y178 K287 Y310 E367
GlcAT-P UDP, Mn(II) 1V82 E101 R104 D195 D196 D197 Y200 D254

1V83 E101 R104 D195 D196 D197 Y200 D254
Retinol-binding protein II retinal 1OPA Y19 Y60 C95 C121

1OPB Y19 C95 R104 C121

For each protein, the predicted binding cluster for the apo form is given in the top row and for the holo form in the second row. Predictions 
obtained using a Z score cut-off of 1.0. Residues that make contact with the ligand are shown in bold.
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are either listed catalytic residues or ligand recognition
residues.

Figure 5 shows THEMATICS predictions for Adenylate
kinase (E.C. 2.7.4.3; PDB: 1ZIO) from Bacillus stearother-
mophilus. This is a case where THEMATICS does not pre-

dict the correct catalytic site using a Z score cut-off of 1.0
but the slightly lower, preferred cut-off value of 0.99 does
return a prediction at the correct catalytic site. Using a Z
score cut-off of 0.99, THEMATICS predicts the catalytic
site [R127, R160] (shown in red in Figure 5) and an addi-
tional zinc-binding site [C130, C133, C150, C153],
shown in green. This is because the cysteine residues in
the second cluster [C130, C133, C150, C153], a cluster
that coordinates a Zn2+ ion that is structural in nature [68],
exhibit very strong predicted interaction between their
ionisation events. This can cause residues in the active site
with anomalous titration behaviour to fall below the cut-
off. The slightly lower Z score cut-off of 0.99 places two
additional residues above the cut-off, so that a predicted
cluster is formed around the catalytic residues R127 and
R160. If the Z score cut-off is dropped further to 0.98, the
predicted catalytic cluster [R36, R127, R160, D162, R171]
includes two more catalytic residues, D162 and R171.

Figure 6 shows predictions by three methods for human
Fragile Histidine Triad protein, FHIT (E.C. 3.6.1.29; PDB:
5FIT). Predictions are obtained from Q-SiteFinder (using
the top three sites), THEMATICS (using a Z score cut-off
of 0.99), and SARIG. The atoms of correctly predicted res-
idues [69,70] are shown as red balls. Other predicted res-
idues are shown as green balls. Again, THEMATICS
returns a highly localised prediction.

Predictions for Structural Genomics proteins
The utility of THEMATICS for site prediction for structural
genomics proteins, including novel folds and orphan
sequences, is now illustrated with some examples. Figure
7 shows the THEMATICS prediction for the structural

THEMATICS predictions for Adenylate kinaseFigure 5
THEMATICS predictions for Adenylate kinase. Rib-
bon diagram showing THEMATICS predictions for Adenylate 
kinase from B. stearothermophilus. (PDB: 1ZIO). Side chains of 
predicted residues are shown explicitly in colour. Prediction 
was made using a Z score cut-off of 0.99 and a 9 Å distance 
cutoff. The side chains of the two residues R127 and R160 in 
the correctly predicted catalytic cluster are shown in red. An 
additional predicted cluster, a zinc-binding site, is shown in 
green.

Comparison of active site predictions for Adenylsuccinate synthaseFigure 4
Comparison of active site predictions for Adenylsuccinate synthase. Active sites as predicted by Q-SiteFinder, THE-
MATICS, and SARIG for Adenylosuccinate synthase (E.C. 6.3.4.4; PDB: 1GIM) from E. coli. Atoms of predicted residues are 
shown as colored balls. Predicted residues annotated as correct according to CatRes/CSA are shown in red; other predicted 
residues are shown in green. The prediction shown for Q-SiteFinder consists of the top three sites. THEMATICS predictions 
were obtained using a Z score cut-off of 0.99 and a 9 Å distance cutoff.
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genomics protein TM0875 from Thermatoga maritima,
(PDB: 1O22), a hypothetical protein with a novel fold
and an orphan sequence. The side chains of the residues
in the THEMATICS predicted site are shown as green sticks
and consist of the residues [K66A, E92A, E107A, K112A,
K66B, E92B, E107B, K112B]. Figure 8 shows the THE-

MATICS prediction for the YJCF protein from Bacillus sub-
tilis (PDB: 1Q2Y), a structural genomics protein and a
member of the GCN5-related N-acetyltransferase super-
family fold. The side chains of the residues in the THE-
MATICS predicted site are shown as green sticks and
consist of the residues [R19, E20, E21, E34, D36, E39,
R58, E69, R70, C72, D129].

THEMATICS predictions for structural genomics protein YJCFFigure 8
THEMATICS predictions for structural genomics 
protein YJCF. Ribbon diagram of structural genomics pro-
tein YJCF from Bacillus subtilis (PDB: 1Q2Y), showing the 
THEMATICS predictions. The side chains of the residues in 
the THEMATICS predicted site are shown as green sticks 
and consist of the residues: [R19, E20, E21, E34, D36, E39, 
R58, E69, R70, C72, D129].

Comparison of active site predictions for fragile histidine triad proteinFigure 6
Comparison of active site predictions for fragile histidine triad protein. Active sites as predicted by Q-SiteFinder, 
THEMATICS, and SARIG for human fragile histidine triad protein (E.C. 3.6.1.29; PDB: 5FIT). Predicted residues known to be 
correct are shown in red; other predicted residues are shown in green. The prediction shown for Q-SiteFinder consists of the 
top three sites. THEMATICS predictions were obtained using a Z score cut-off of 0.99 and a 9 Å distance cutoff.

THEMATICS predictions for novel fold and orphan sequence protein TM0875Figure 7
THEMATICS predictions for novel fold and orphan 
sequence protein TM0875. Ribbon diagram of TM0875 
from Thermatoga maritima (PDB: 1O22), a structural genom-
ics protein, showing the THEMATICS predictions. TM0875 is 
a hypothetical protein with a novel fold and an orphan 
sequence. The side chains of the residues in the THEMATICS 
predicted site are shown as green sticks and consist of the 
residues: [K66a, E92a, E107a, K112a, K66b, E92b, E107b, 
K112b].
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Discussion
Evaluation of the recall and precision rates for the entire
set of 169 enzymes, as shown in Table 2, suggests that per-
formance can be improved with a small reduction in the
Z score cut-off to 0.99 or 0.98 from the 1.00 value used
previously [6]. There is a significant increase in the recall
with only a small sacrifice in precision. The good preci-
sion of the present method is one of its main advantages
when compared with other available 3D-structure-based
methods. Even with the less selective Z score cut-off values
of 0.96 and 0.95, THEMATICS precision rates are still bet-
ter than the other methods tested while recall rates are
competitive. Further reduction of the Z score cut-off to
values less than 0.95 does give further increase in the
recall, but the precision starts to decrease to values
approaching those of other methods and thus the selectiv-
ity advantage of THEMATICS wanes. Based on the results
shown in Tables 2 and 3 and Figure 1, we adopt a Z score
cut-off of 0.99 as the "preferred" value, in that it gives a
high rate of successful site prediction (93%) while still
maintaining our desired high precision rate. These data
confirm what THEMATICS users have already observed
empirically.

THEMATICS requires only the 3D structure of the query
protein as input and therefore the query protein does not
have to have any sequence homologues or similar struc-
tures and thus is applicable to a wider set of proteins than
methods that are based on sequence homology. However,
it is noted that THEMATICS performance does compare
quite favourably with methods that do require sequence
alignments. For instance, one recently reported site pre-
diction method, based on sequence alignments and the
3D structure, reports a catalytic residue recall rate of 47%
and a 5% false positive rate [71]. This constitutes better
performance than some earlier methods based on
sequence homology and 3D structure. Using only 3D-
structure-based information, THEMATICS with a Z score
cut-off of 0.99 does roughly as well in the recall rate
(53%) but with a lower false positive rate of 2.6% on the
75-protein test set.

The present method of selection is based on perturbations
in titration curve shape. This is quite different from selec-
tion based on electrostatic interaction energy or shift in
pKa. Residues with anomalously shaped titration curves
are few in number and tend to be localised in the active
site. Residues with shifted pKa's are greater in number and
are more widely spread across the protein structure. An
earlier study [47] showing that electrostatics- and titra-
tion- based methods give a large number of false positives
for a 20-enzyme test set was based on a method of the lat-
ter type and thus is considerably less selective and less pre-
cise than the present method.

For residues that are predicted but not listed in the data-
base as important, it is not clear at this time how many of
them actually play a functional role and how many are
simply false positives. Experiments are currently in
progress to address this question.

Performance metrics for unbound (apo) structures appear
to be about as good as those for bound (holo) structures.
Predicted clusters for apo and holo forms are similar but
not identical. FDPB methods are 3D-structure dependent
and the predicted titration curves change as 3D structure
changes. However, the strong electrostatic interaction
between ionising events for the active residues is pre-
served sufficiently in the apo structures such that the sta-
tistical analysis can still identify them. Such capability for
unbound structures is particularly important for the pre-
diction of sites in proteins of unknown function. The pairs
of apo-holo structures featured herein undergo changes
primarily in side chain orientation upon ligand binding,
i.e. ligand binding is accompanied by small changes in
backbone conformation. Application to systems undergo-
ing large changes in backbone conformation upon ligand
binding, including allosteric systems, involves a number
of additional issues beyond the scope of the present paper
and is a subject of further exploration.

Conclusion
Herein it has been established that our electrostatics-
based method can actually predict sites from the 3D struc-
ture with better precision, lower filtration ratio, and lower
false positive rate than other methods. THEMATICS works
well on a diverse set of enzymes spanning all six EC
classes, with similar performance data observed within
each of the six EC classes.

It is also noted that the present method is successful with
only one type of computed property used as input,
namely the proton binding properties. The present results
seem to point to the possibility that a combination of 3D
structure based properties can lead to even better perform-
ance. SARIG and Q-SiteFinder have one obvious advan-
tage over THEMATICS in that they can predict non-
ionisable residues. It may be advantageous to combine
capabilities.

THEMATICS predictions tend to be precise and well local-
ised and thus may be suitable for applications such as lig-
and design or functional annotation based on
comparison of predicted active site motifs.

Methods
THEMATICS computations generally are performed on
the biological unit for each enzyme in the dataset. Protein
structures were obtained from the Protein Data Bank [72].
If there are missing side chain atoms, the Swiss PDB
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Viewer (SPDBV) [73,74] program is used to rebuild the
missing atoms. The hydrogen atoms are built into the
structure using TINKER [75] and the OPLS-UA force field
[76,77]. Substrates, cofactors, water molecules, and ions
that crystallize with the proteins are not included in the
electric field calculations. The values for the dielectric con-
stants are assumed to be 20 for the protein interior and 80
for the solvent. The theoretical titration curve for each ion-
isable residue is obtained using a Finite Difference Pois-
son-Boltzmann procedure. The University of Houston
Brownian Dynamics program [19] (UHBD) is used to
obtain the electrical potential function. The program
HYBRID [17], calculates the average charge C as a function
of pH using a hybrid Monte Carlo procedure. The first
derivative (f) functions are obtained numerically by the 4-
point formula and the moments of the f functions are cal-
culated using Gaussian quadrature [78]. The Z scores Z3
and Z4 are calculated for each ionisable residue using the
corresponding mean and standard deviation obtained for
all ionisable residues in the same protein structure. Z score
cut-offs evaluated in the present study run from 1.00 to
0.95. THEMATICS positive residues are defined as those
residues with either Z3 or Z4 greater than the cut-off value
Zcut-off, i.e. Z3 > Zcut-off OR Z4 > Zcut-off. THEMATICS positive
residues are then assigned to clusters, where a residue is a
cluster member if it is within 9 Å of another cluster mem-
ber. For purposes of cluster definition, distances between
residues are measured between the side chain atoms
where the charge is centred in the ionised form of each res-
idue. Clusters containing two or more residues are consid-
ered predictive. Single member clusters are reported but
are not considered predictive.

For THEMATICS with Z score cut-off of 0.95 (the cut-off
with the lowest precision obtained by THEMATICS on the
75-protein subset), the student T test with 95% confi-
dence interval shows that the mean difference in precision
between THEMATICS and SARIG, and between THEMAT-
ICS and Q-SiteFinder, is statistically significant. In other
words, THEMATICS with Z score cut-off of 0.95 has higher
precision than Q-SiteFinder and SARIG, and at the same
time has similar or better recall value, as Table 4 shows.
Differences in the mean values of performance metrics for
THEMATICS on the six E.C. classes, as shown in Table 5,
were found to be insignificant by a one factor ANOVA test
with 95% confidence interval. The student T and ANOVA
tests were performed with SPSS software.

To obtain the test set of 75 proteins for method compari-
son purposes, about half of the proteins within each of the
six E.C. classes were chosen at random from the CatRes
database to create a preliminary list. Proteins were then
deleted from the list if either the Q-SiteFinder [79] or
SARIG [80] servers were unable to return a prediction. The

resulting test set of 75 proteins is a representative cross-
section of the six E.C. classes.

A free THEMATICS web server at http://
pfweb.chem.neu.edu/thematics/submit.html is available
to the public. The user submits the PDB ID or uploads the
structure in PDB format. THEMATICS predictions are
returned to the user by e-mail.

Abbreviations
CASTp Computed Atlas of Surface Topography of Proteins
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