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Illusions give intriguing insights into perceptual and neural dynamics. In the auditory

continuity illusion, two brief tones separated by a silent gap may be heard as one

continuous tone if a noise burst with appropriate characteristics fills the gap. This

illusion probes the conditions under which listeners link related sounds across time

and maintain perceptual continuity in the face of sudden changes in sound mixtures.

Conceptual explanations of this illusion have been proposed, but its neural basis is still

being investigated. In this work we provide a dynamical systems framework, grounded in

principles of neural dynamics, to explain the continuity illusion. We construct an idealized

firing rate model of a neural population and analyze the conditions under which firing rate

responses persist during the interruption between the two tones. First, we show that

sustained inputs and hysteresis dynamics (a mismatch between tone levels needed to

activate and inactivate the population) can produce continuous responses. Second, we

show that transient inputs and bistable dynamics (coexistence of two stable firing rate

levels) can also produce continuous responses. Finally, we combine these input types

together to obtain neural dynamics consistent with two requirements for the continuity

illusion as articulated in a well-known theory of auditory scene analysis: responses

persist through the noise-filled gap if noise provides sufficient evidence that the tone

continues and if there is no evidence of discontinuities between the tones and noise. By

grounding these notions in a quantitative model that incorporates elements of neural

circuits (recurrent excitation, and mutual inhibition, specifically), we identify plausible

mechanisms for the continuity illusion. Our findings can help guide future studies of neural

correlates of this illusion and inform development of more biophysically-based models of

the auditory continuity illusion.

Keywords: auditory scene analysis, bistability, computational neuroscience, continuity illusion, hysteresis, neural

dynamics

1. INTRODUCTION

How do listeners in crowded and noisy environments create stable auditory streams in the
face of interruptions and “background” noise? How do listeners identify the stops and starts
of overlapping and interwoven sounds to correctly parse an auditory scene? Answering these
questions is fundamental to understanding auditory perception and neural processing of sounds.
A perceptual illusion that sheds light on dynamic processing of multiple sounds is the auditory
continuity illusion (Bregman, 1990) (also called temporal induction;Warren, 2008). The continuity
illusion can be elicited when noise interrupts a variety of sounds including: tones, frequency glides,
and sentences (Bregman, 1990; Warren, 2008); complex tones Plack and White (2000); and sound
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textures (McWalter and McDermott, 2019). The common aspect
of this illusion is that, when the noise is sufficiently loud and
shares spectral content with the interrupted signal, listeners
perceive the signal as continuous and uninterrupted. This
illusion reveals a tendency for the auditory system to maintain
perceptual continuity when confronted with sudden changes
in the auditory scene and to sustain perception of sounds
that are present prior to some masking or distracting sound.
The continuity illusion has been thoroughly studied since its
discovery (Miller and Licklider, 1950; Warren, 1970).

The version of the continuity illusion we investigate is an
interrupted tone that can be perceived as continuous if the
interruption (a short interval in which no tone is presented) is
filled with broadband noise, as depicted in Figure 1. Results of
listening experiments inform conceptual models for the illusion
such as Bregman’s theories of auditory scene analysis (Bregman,
1990). Fundamental questions remain about the perceptual
origin and neural basis for the illusion [ that is, whether it
is a cortical phenomenon (Husain et al., 2005; King, 2007;
Petkov et al., 2007) or is created subcortically (Bidelman
and Patro, 2016), and whether it is required that peripheral
responses signal discontinuities in the sound (Riecke et al.,
2012)]. Perhaps due to these uncertainties, there have been few
efforts to model how the dynamic activity of neural populations
can generate the continuity illusion. Previous works point
toward several possible neural mechanisms that can give rise
to the illusion: feedforward intra-cortical connections (Husain
et al., 2005), nonlinear dynamic self-excitation (Noto et al.,
2016), short-term synaptic plasticity (Vinnik et al., 2010), and
a hierarchy of neural subpopulations integrating information
on multiple time scales that are modulated by top-down
feedback (Balaguer-Ballester et al., 2009). These few and disparate
studies are motivation for further model-based investigations of
the continuity illusion.

Our goal is to identify dynamical mechanisms that implement
fundamental principles of the illusion. We are informed by
the work of Petkov and colleagues who obtained evidence that
two types of neural responses participate in the continuity
illusion: sustained responses that signal ongoing sounds and
transient responses that signal acoustic edges in time (onsets and
offsets of sounds) (Petkov et al., 2007). While they specifically
identified these response types in auditory cortex, we view these
as common response motifs that are found throughout the
auditory pathway (see Kopp-Scheinpflug et al., 2018 for a review
of offset auditory neurons). In addition, we seek to connect
Bregman’s principles, gained over decades of careful observation,
to fundamental features of neural dynamics. Specifically, we
present dynamical explanations for two of Bregman’s “rules”
that define the circumstances under which the illusion will
occur (Bregman, 1990). We paraphrase these rules as:

Sufficiency of Evidence Rule: There must be some neural
activity during the interruption that is indistinguishable from
what would have occurred if the tone had continued through
the noise-filled interruption.
No Discontinuity Rule: There must be no evidence that the
tone shuts off during the noise-filled interruption.

We use a nonlinear, dynamical firing rate model (Miller,
2018) with sustained inputs to implement the Sufficiency of
Evidence rule. The dynamical principle at work is hysteresis:
the interrupting noise (a broadband sound) provides a partial
amount of excitatory input to an idealized neural population.
Recurrent excitation enables the noise to maintain firing activity
if the population is already active, even though the noise
alone cannot activate an inactive population. We then adjust
excitability in the model so that it has two stable states that
coexist in the absence of sustained inputs (bistability). We use
this configuration to show that transient inputs at tone onsets
and offsets implement the No Discontinuity rule. Continuity
occurs when noise suppresses the offset response at the end of
the first tone. Without this sufficiently strong offset response,
the population remains active despite the absence of any
ongoing input during the interruption between tones. Finally,
we configure the model to receive both input types. In this
setting, the model utilizes both hysteresis and bistability to
create dynamics consistent with the continuity illusion. This
formulation of using persistent neural activity as an indicator
of perceptual state, instantiated as an attractor in a dynamical
system, resembles ideas common to studies of the neural basis
for working memory (Brody et al., 2003).

We illustrate our dynamical explanation for the continuity
illusion with simulation results and we emphasize, throughout,
analytical and geometric insights gained by computing
equilibrium solutions to the nonlinear differential equation
that governs the firing rate dynamics. By identifying
dynamical principles that are consistent with the continuity
illusion, we illuminate how a long-standing perceptual theory
(Bregman’s “rules”) can be embodied with an idealized neural
population. Furthermore, the postulated roles of bistability and
hysteresis in the continuity illusion can guide how future, more
biophysically-detailed modeling studies of this phenomenon
should be constructed.

2. MATERIALS AND METHODS

2.1. Firing Rate Model of a Neural
Population
We model sound-evoked activity of a neural population using a
firing rate equation with recurrent excitation (Miller, 2018). The
differential equation that describes the dynamics of the neural
activity is

τx′ = −x+ f (aEx+ I(t)) (1)

where x(t) is the firing rate variable that takes unitless values
between 0 (population inactive) and 1 (population active).
The value of x(t) can be interpreted in a mean-field sense as
the proportion of active neurons in a population or as the
instantaneous probability of firing for neurons in the population.
Frequency-tuning, known as tonotopy, is a central organizing
feature of the auditory pathway (Pickles, 2012). Since we
are studying responses to pure tone inputs (or a pure tone
interrupted by broadband noise), we define x(t) as the activity
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FIGURE 1 | Illustration of the continuity illusion. (A) A tone interrupted by a silent gap (top panel) is perceived (correctly) as two tones discontinuous in time (bottom

panel). (B) If a weak noise burst is inserted into the gap between tones, the tone remains perceived as discontinuous. (C) A sufficiently loud noise that shares

frequency content with the tone can induce the illusion that the tone is uninterrupted and persists through the noise-filled interruption.

of a population tuned to the tone frequency. We associate values
of x(t) near 1 (active population) with perception of the tone
at time t. The parameter τ is a time constant of the firing rate
dynamics and aE is the strength of recurrent excitation within
the population. The nonlinear input-output function f has the
sigmoidal form

f (u) =
1

1+ e−(u−m)/k
. (2)

Since we are working with unitless quantities, we use k = 1
throughout without loss of generality. We explain our choices for
the half-maximum parameterm in more detail below.

The input term I(t) represents sound-driven inputs to the
population. It consists of four components, some of which are
sustained inputs (piecewise constant for the duration of the
sound) and some are transient inputs (exponentially-decaying
following tone onsets or offsets). Our classification of inputs
as either sustained or transient, and our description of their
dynamics as either constant or exponentially-decaying, are
caricatures of actual inputs. Nevertheless, these response types
are observed in auditory cortex (Wang et al., 2005) and in
other nuclei (e.g., Pfeiffer, 1966). Moreover, we are motivated by
observations of Petkov et al. (2007) who proposed that sustained
and transient response types in primary auditory cortex are
possible neural correlates of the continuity illusion.

The general form of I(t) is

I(t) = Isustain(t)+ Ionset(t)− Ioffset(t)− Iinhib(t). (3)

We consider three input scenarios: tone-only (tone on for 1 s and
no noise), masking (tone and noise presented together for 1 s),
and continuity (a pair of 1-s long tones separated by a half-second
noise-filled gap). Figure 2 illustrates the forms of each of these
inputs across these different scenarios. To be clear, tones and
noise are represented by idealized waveforms (piecewise constant
for sustained inputs, exponential decay for transient inputs).
We do not use sinusoidal waveforms for tones or stochastic
processes for noise. We next describe the forms and physiological
rationales for each of these components. As we will make clear in

section 3.1, some of these terms are omitted depending on the
model configuration.

The sustained input Isustain(t) is a piecewise-constant function
that is positive when a tone is on and zero otherwise. This
term represents the frequency-tuned excitatory input to the tone
population. We use a unitless parameter IT to represent tone
strength and set Isustain(t) equal to IT in the absence of noise
(tone-only input, Figure 2A1). As discussed in section 3.1, we
construct all models so that IT = 1 is the threshold for activation
of the firing rate variable (in the absence of noise). Although
IT is unitless, sound levels only vary over a finite range in
behaviorally-relevant situations, so we restrict IT to not exceed
a maximum tone level that we set (arbitrarily) at IT,max = 5.
As a broadband signal, noise also has energy in the frequency
channel to which the tone population is tuned. We denote noise
strength by IN (takes values between 0 and IN,max = 10) and
allow the sustained excitatory term Isustain(t) to increase with IN ,
see Figures 2B1,C1 for illustrations of Isustain(t) in the masking
and continuity scenarios. This input is

Isustain(t) = IT1tone + αIN1noise (4)

where 1tone is an indicator function that takes the value one if a
tone is on at time t and zero otherwise, 1noise is defined similarly
for the noise input, and α scales the contribution of noise to this
excitatory, frequency-tuned input to the tone population.

The onset input Ionset(t) and offset input Ioffset(t) are
illustrated in the second and third rows of Figure 2. These
are exponentially-decaying terms triggered by tone onsets and
offsets, respectively. The minus sign before Ioffset in Equation (3)
indicates that offset responses are inhibitory. Inhibitory offset
neurons have been found in the auditory system including
neurons in the superior paraolivary nucleus (Oliver, 2005; Kopp-
Scheinpflug et al., 2018) and among parvalbumin-expressing
interneurons in auditory cortex (Keller et al., 2018). We use
these transient inputs to represent the salience of the onsets and
offsets of a tone or, in other words, the sharpness (in time) of
acoustic edges. We therefore use tone strength (IT) to set the
initial amplitudes of these transient inputs.We suppose that noise
obscures the sharpness of these acoustic edges (in time) and thus
noise strength (IN) reduces Ionset(t) and Ioffset(t) (if the noise is
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FIGURE 2 | Inputs to the firing rate model. Sustained tone-driven excitatory input (row 1), tone onset excitatory input (row 2), tone offset inhibitory input (row 3), and

sustained noise-driven inhibitory input (row 4). The three input scenarios considered are tone alone (IN = 0, column 1), masking (tone and noise presented

simultaneously, column 2), and continuity (tones separated by a noise-filled gap, column 3). Effects of noise are to increase Isustain (see B1 and C1), suppress transient

responses Ionset and Ioffset (if noise is on at relevant onset and/or offset (see B2,B3,C2,C3), and increase Iinhib (see B4,C4). The plot of Iinhib uses x = 0, the amplitude

of this input decreases for larger values of x (as indicated by arrow in B4 and C4, see Eq. 8. Parameter values used are IT = 2 and IN = 2 (for masking and continuity),

α = 0.168, and β = 2/3. These are the α and β values used in Models 1 and 2, respectively. See text for details.

on at the time of tone onset and/or offset). The form of the onset
input for a tone that starts at time ton is

Ionset(t) = γonAone
−(t−ton)/τH(t − ton) (5)

The offset input is defined analogously.We choose the decay time
constant τ for transient responses to match the time scale of the
firing rate dynamics. The function H is the Heaviside function
(also known as a step function) that is 0 if its argument is <0 and
1 if its argument is>0.We use it here to indicate that the transient
onset response begins at tone onset (ton). The constant Aon gives
the initial amplitude of the onset input. As described above, it
increases with IT and decreases with IN and takes the form:

Aon =

{

γonIT if noise is off at tone onset

γon [IT − βIN]+ if noise is on at tone onset
(6)

where [·]+ is the rectifier operation defined as [u]+ = max(0, u).
The parameter γon scales the onset response so that tone
threshold is always IT = 1. We detail the calculation of γon in
section 3.1. In our analysis of this model we will make use of the
fact that this exponentially-decaying input can also be described

by Iinhib(t) = γons where s is a dynamical variable that follows a
first-order, linear, ordinary differential equation:

for t < ton: s = 0

for t ≥ ton: τ s′ = −s, with s(ton) = Aon
(7)

The final input term in Equation (3) is the sustained inhibitory
term Iinhib(t). This term represents a noise-driven subpopulation
(Iinhib increases with IN) and it directly inhibits the tone
population (note the minus sign in Equation 3). This term
can reflect processes as early as the auditory nerve, where it
is known that noise suppresses responses to tones (Costalupes
et al., 1984). It can also be thought to represent lateral inhibition
(“lateral” in the sense that neural responses can be suppressed
by sounds with spectral content away from their best frequency).
Lateral inhibition is evident in early auditory stages (Ehret and
Merzenich, 1988; Rhode and Greenberg, 1994) and has also been
observed in auditory cortex (Kato et al., 2017) and suggested
to exist there by modeling work (de la Rocha et al., 2008).
We suppose, further, that there is mutual inhibition between
the tone-driven population and the noise-driven inhibitory
population that we implement with amultiplicative factor (1−x).
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For analytical convenience, we make the approximation that the
dynamics of the noise-driven inhibitory population are much
faster than x(t) so that Iinhib(t) can be described as evolving
instantaneously to an x-dependent steady state of the form:

Iinhib(t) = aIIN(1− x)1noise (8)

where the parameter aI determines the strength of this inhibitory
input to the tone population. Time courses of Iinhib(t) for the
three input scenarios are shown in the fourth row of Figure 2.

2.2. Numerical Simulations
All calculations were carried out using the scientific
computing software MATLAB (The MathWorks, Inc.).
The firing rate differential equation (Equation 1) was
solved numerically using ode15s. Simulation code is
available for download and use at https://github.com/
jhgoldwyn/ContinuityIllusion. Nonlinear equations (to
compute equilibrium states, for example) were solved
using root-finding functions in Matlab such as fzero
and fsolve.

3. RESULTS

We begin, in section 3.1, by characterizing different dynamical
regimes of the model and determining appropriate parameter
choices (ae and m in Equations 1 and 2). We identify three
regimes that can exhibit the continuity illusion and analyze
models drawn from each of these regimes. In section 3.2, we
study a model with firing rate dynamics that exhibit hysteresis
and can be activated by sustained inputs alone. In section
3.3, we study a model with bistable firing rate dynamics
that can be activated by transient inputs alone. In section
3.4, we study a model in which the hysteresis and bistable
features are both operative and the firing rate can only be
activated by combinations of sustained and transient inputs.
In each subsection, we describe how these models respond
to a tone alone (without noise), a tone and noise presented
together (masking), and two tones separated by a noise-filled
gap (continuity). We derive activation threshold criteria for
each model and stimulus type and describe how parameter
values affect activation thresholds. Our primary observation is
that all models can support continuity dynamics (firing activity
persists through a noise-filled gap between tones), but that this
is accomplished differently using the mechanisms of hysteresis
and bistability. As described above, and following Petkov et al.
(2007), we propose that sustained transient inputs to the model
implement Bregman’s Sufficiency of Evidence rule and transient
inputs implement the No Discontinuity rule. While two of
the models can implement these rules in isolation (sustained
inputs only in section 3.2, transient inputs only in section
3.3), the significance of the final model (section 3.4) is that it
succeeds at implementing both of these rules together. Firing
activity in that model can persist during a noise-filled gap
between tones because noise has two effects: it contributes
excitatory inputs during the interruption (sufficient evidence),

and prevents the offset response from inactivating the population
(no discontinuity).

3.1. Model Classification by Firing Rate
Equilibria
A general analysis of the equilibrium states of the model for the
case of sustained tone input only (Ionset(t) = Ioffset(t) = 0 for all
t and IN = 0) informs our parameter choices and is a starting
point for subsequent analyses. Setting x′ = 0 and I(t) = IT in
Equation 1) and solving for IT we find the equilibrium relation

IT(x) = m− ln

(

1

x
− 1

)

− aEx. (9)

The parameters aE and m determine the shape of the firing
rate equilibrium curve. We show three representative examples
in Figure 3A, with equilibrium firing rates plotted on the
vertical axis and IT plotted on the horizontal axis. The key
features of these curves are: whether they are S-shaped with
left and right “knees” and, if so, the values of IT at these
knees. Recall that the firing rate variable x takes values
between zero and one. We interpret equilibrium solutions
x ≈ 0 as inactive states (no perception of tone) and
equilibrium solutions x ≈ 1 as active states (perception
of tone).

We summarize the possible scenarios in Table 1 and show
how they partition the aE-m plane in Figure 3B. The scenarios
that interest us must satisfy three criteria. First, to clearly
distinguish between active and inactive states, the firing rate
equilibrium curve must be S-shaped. This rules out Region I.
Second, the left knee must be located at an IT value less than
the maximum tone strength (IT,max = 5) so that activation is
possible. This rules out Region II. Lastly, the right knee must be
located at a positive IT value so that inactivation is possible. This
rules out Region V, in which the population could remain active
at all times, even without inputs.

As detailed in Table 1, the number and locations of the knees
of the firing rate equilibrium curve delineate these regions.
The knees are saddle node bifurcation points in the firing rate
dynamics (points at which stable and unstable equilibria appear
or disappear). They are located at critical points of IT(x), so we
identify these points by differentiating Equation (9) with respect
to x and setting the resulting expression to zero. The x values at
the left and right knees are

xL =
1

2

(

1+
√

1− 4/aE

)

xR =
1

2

(

1−
√

1− 4/aE

)

.

(10)

We parameterize aE and m by selecting values for IT(xL) and
IT(xR) and then solving the resulting two nonlinear equations
for IT obtained from Equation (9). No real solutions exist for
aE < 4, thus aE = 4 marks the boundary of models without
S-shaped firing rate equilibrium curves (region I in Figure 3B).
The regions of interest for this study (III and IV) are determined
by the positions of the knees in the firing rate equilibrium curve.
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FIGURE 3 | Parameter space is partitioned according to shape of firing rate equilibrium curves. (A) Equilibrium firing rates for tone-only inputs (IN = 0). Two stable

branches (solid) are separated by a branch of unstable equilibria (dotted). Gray line at right indicates the maximum tone level used in simulations and analysis

(IT ,max = 5). (B) Parameter space for parameters in Equations (1) and (2). Colored dots correspond to the curves in (A). Parameter space is partitioned according

position of left and right knees of the firing rate equilibrium curves (see Table 1 for details).

In particular, region IV consists of (aE,m) parameter pairs for
which the model is bistable in the absence of any inputs (the left
knee is at a negative IT value and the right knee is at a positive IT
value). Region III consists of models that are monostable with no
inputs (left knee is at a positive IT value). We distinguish between
two subregions of Region III. In Region IIIa, IT at the right knee
is less than the maximum tone value, and thus sustained inputs
alone can activate the neural population. In contrast, in Region
IIIb the IT value at the right knee is larger than the maximum
tone strength and thusmodels in this region can only be activated
by a combination of sustained and transient inputs.

From these considerations, we choose three models (one from
each region of interest) and use these in all further analysis
and simulations.

Model 1 (aE = 5.9,m = 3.6, in Region IIIa). The left knee
is at IT = 0.2 and the right knee is at IT = 1. As we
describe below, the essential dynamical feature of this model is
hysteresis: in response to sustained inputs the system requires
a higher tone level to activate than deactivate (the S-shape of
the firing rate equilibrium curve creates a mismatch between
the two knees). We use sustained inputs only for this model
(Ionset(t) = Ioffset(t) = 0 in Equation 3 for all t).
Model 2 (aE = 10.5,m = 5.2, in Region IV). The left knee
is at IT = −2 and the right knee is at IT = 2. As we
describe below, the essential dynamical feature of this model
is bistability. We use transient inputs to move the system
between active and inactive states and do not include sustained
inputs (Isustain(t) = Iinhib(t) = 0 in Equation 3 for all t).
Model 3 (aE = 12.7,m = 9.5, in Region IIIb). The left knee is
at IT = 0.2 and the right knee is at IT = 6. Neither sustained
inputs alone nor transient inputs alone can activate models
in Region IIIb, so we use all inputs types in Equation 3 for
this model.

TABLE 1 | Regions of aE -m parameter space classified by positions of left and

right knees of firing rate equilibrium curves.

Region Left knee Right knee

I none none

II > IT ,max > IT ,max

IIIa (0, IT ,max ) (0, IT ,max )

IIIb (0, IT ,max ) > IT ,max

IV < 0 > 0

V < 0 < 0

Regions of interest for this study are III and IV. Other regions are ruled out because inactive

and active states are indistinguishable (I), active state is inaccessible (II), or inactive state

is inaccessible (V).

3.2. Model 1: Sustained Inputs and
Hysteresis Dynamics Implement the
Sufficiency of Evidence Rule
3.2.1. Response Dynamics to Tone-Only Inputs
Recall that Model 1 includes sustained inputs only (Ionset(t) =

Ioffset(t) = 0 for all t). The equilibrium solutions for this model
for tone inputs only (IN = 0) are shown in Figure 4A1 with IT
as the bifurcation parameter (horizontal axis). When there is no
tone input (IT = 0), this system has a single stable equilibrium
in the inactive state. For stronger tone inputs, the system passes
through a saddle point bifurcation point at which a second
stable equilibrium is created in the active state. Activation of the
population from rest requires the tone to be larger, namely that
IT > IR where IR is the tone level at the right knee of the firing
rate equilibrium curve. At this second saddle node bifurcation
point, the inactive state is abolished and only the active state
remains as the unique stable and globally attracting fixed point
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for the system. Responses to subthreshold and suprathreshold
tone inputs are shown in Figure 4A2.

The feature of this model that is essential in our study of the
continuity illusion (discussed below) is that it exhibits hysteresis
dynamics. By this we mean that the tone level that activates an
inactive population is larger than the tone level that maintains
an already active population in the active state. Hysteresis is seen
geometrically in the S-shaped firing rate equilibrium curve IT(x)
(Figure 4A1). The activation threshold is the tone strength at
the right knee. The deactivation threshold—the minimum tone
level that maintains activity—is the tone strength at the left knee.
For Model 1, we positioned these knees at IT = 1 (activation)
and IT = 0.2 (deactivation). As an example of the hysteresis
effect: tone input with IT = 0.5 does not activate x(t) from rest
(blue curve in Figure 4A2) but it would maintain x(t) at a level
near 1 if x(t) were active prior to this input (not shown, but
notice the upper branch of equilibria in Figure 4A1 extends to
IT values <0.5).

3.2.2. Response Dynamics to Tone Masked by Noise
The two effects of noise are that it provides a “partial” input
that enters as the additive term αIN in Isustain(t) and it drives
inhibition through the term Iinhib = aIIN(1 − x), recall
Equations 4 and 8). The effect of the inhibitory term is to shift
the right knee of the firing rate equilibrium curve to larger IT
levels (Figure 4B1, compare black curve with noise to gray curve
without noise). That is, the threshold for activation increases
with IN , as desired for noise to have a masking effect. As a
demonstration, a tone level of IT = 1.5 would activate the
population from rest in the absence of noise, but with IN = 1 this
input does not activate the population (red curve in Figure 4B2).

The equilibrium solutions for this model, using IT as the
bifurcation parameter and now including the effect of noise, are

IT(x, IN) = m− ln

(

1

x
− 1

)

− aEx+ aIIN(1− x)− αIN . (11)

The critical points at which stable equilibria are created and
abolished are the knees of the S-shaped curve. We obtain results
similar to Equation (10), but now with noise included:

xL(IN) =
1

2

(

1+
√

1− 4/ (aE + aIIN)

)

xR(IN) =
1

2

(

1−
√

1− 4/ (aE + aIIN)

)

.

(12)

The xR(IN) point locates the threshold at which a tone activates
a population from rest, in the presence of noise. The threshold
for masking, then, is the noise level that solves IT = IR(IN).
Any value of IT smaller than this critical value would fail
to activate the population due to the noise-driven inhibition.
We denote this masking threshold tone level as M(IN). It
depends nonlinearly on IN because of the dependence of xR
on IN . For Model 1, however, xR is relatively constant with
respect to IN and we find masking threshold as a function
of IT is approximately linear (gray curve in Figure 4D). The
slope of this nearly linear relation can be approximated by
[

aI
(

1− xR(0)
)

− α
]−1

(found by differentiating IT with respect

to IN , and neglecting any change in xR with respect to IN). This
approximation shows the opposing effects of noise on masking
threshold: M(IN) increases with increasing α (the amount of
excitatory noise input) and decreases with increasing aI (the
amount of inhibitory noise-driven input; see Figure 4E). This
relation also imposes a constraint on model parameters. We
must have α < aI

[

1− xR(0)
]

. If this condition is not satisfied,
the excitatory effect of noise [the αIN term in Isustain(t)] would
dominate the inhibitory effect of noise (Iinhib) andmasking would
not be possible.

3.2.3. Response Dynamics to Tones Interrupted by

Noise
The xL point locates the threshold for inactivation in the presence
of noise. A population in the active state will remain active during
the gap between tones if the noise strength causes IT(xL) to
cross over to negative values (see Figure 4C1, and also time-
courses of x(t) in Figure 4C2). Thus, we calculate the continuity
threshold equation by solving (numerically) the root-finding
problem IT(xL, IN) = 0, where xL is also a function of noise level
(Equation 12). Observe that, since IT = 0 during the gap between
tones, the continuity threshold is constant with respect to tone
level, as shown by the horizontal black line in Figure 4D.

The masking and continuity thresholds for this model are
separate. This imposes additional constraints on our parameter
choices. Specifically, in accordance with the hypothesis that
the continuity illusion is a compensation for masking (Warren
et al., 1972; Warren, 2008), we require that continuity can only
occur at noise levels at least as high as the masking threshold.
Additionally, we are only interested in parameter sets for which
masking and continuity can both be achieved (continuity and
masking thresholds must not exceed IN,max = 10, even for the
maximum tone level IT,max = 5). A view of the aI − α parameter
region that satisfies these requirements is shown in Figure 4H,
with labeled contour lines indicating the corresponding masking
and continuity thresholds at the maximum tone level.

3.3. Model 2: Transient Inputs and Bistable
Dynamics Implement the No Discontinuity
Rule
3.3.1. Response Dynamics to Tone-Only Inputs
Model 2 receives transient inputs only (Isustain(t) = Iinhib(t) = 0
for all t). These transient inputs occur at tone onsets and offsets
and signal discontinuities at the “edges” of a tone. To analyze
dynamics of thismodel at tone onset we find it useful to formulate
it as a system of two ordinary differential equations:

τx′ = −x+ f (aEx+ γons)

τ s′ = −s.
(13)

The additional variable s describes the exponentially-decaying
transient input, as introduced in Equation (7). At tone onset, this
variable is instantaneously displaced to s(ton) = [IT − βIN]+.
Similar dynamics occur at tone offset, with γon replaced by γoff
and s(toff ) = − [IT − βIN]+. Notice s(toff ) is negative-valued
because offset responses are inhibitory inputs to x.
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FIGURE 4 | Dynamics of Model 1 responses to tone and noise inputs. (A) Tone inputs (no noise) with tone level IT = 0.5 (blue) and IT = 1.5 (red). Equilibrium firing

rates shown in (A1) and time-courses of firing rate variable x(t) in (A2). Firing rate equilibrium in (A1) (tone only) is re-plotted in gray in (B1,C1). (B) Simultaneous tone

and noise inputs (masking condition) with IN = 1. Noise shifts right knee of firing rate equilibrium curve to larger IT levels (B1) and prevents activation by tone inputs

(IT = 0.5 and IT = 1.5 shown). (C) Interrupted tone with noise-filled gap (continuity condition) with IT = 1.5. Noise shifts left knee of firing rate equilibrium curve to

smaller IT levels (C1). Continuity occurs if left knee crosses IT = 0 axis. Time-courses of firing rate variable in (C2) for no noise (blue) and noise above continuity

threshold (IN = 8, red). (D) Masking threshold and continuity thresholds. (E) Masking and continuity thresholds at maximum tone level, for varying parameter aI and α

parameter values. C(IT ,max ) shown as a color map, contour lines show M(IT ,max ) (values labeled above contours). Parameter values used in (A–D):

aI = 1.124,α = 0.168, shown as black dot in (E).

We configured Model 2 so that it is bistable in the absence
of any inputs. In the x-s phase plane, bistability comprises
stable equilibria at inactive and active firing rates (xI and
xA, respectively) separated by an unstable saddle point (xS).
All equilibria are located along the x-axis. Activation of the
population from rest requires that the transient onset response is
sufficiently large to transition x(t) from the basin of attraction of
xI to the basin of attraction of xA. This condition can be visualized
in the phase plane by considering the separatrix curve S(x) that
divides these two basins of attraction. The firing rate will activate
from rest if s(ton) > S(xI), that is if the response variable at tone
onset exceeds the height of the separatrix curve evaluated at the
inactive firing rate equilibrium. We observed that the separatrix
curve can be adequately approximated as a line connecting the
saddle point (xS, 0) to the point (xI , 1). The choice of s = 1 at
threshold enforces our convention that activation for tone-only
inputs occurs at IT = 1. From this geometric argument, the linear
approximation to the separatrix is

S(x) =
xS − x

xS − xI
(14)

Trajectories in the phase plane at tone onset are shown in
Figure 5A1 and their full time-courses are shown in Figure 5A2.

If the tone level is sufficiently high (IT = 1.2 in this simulation,
red curve), the system crosses the separatrix and transitions to
the stable equilibrium in the active state.

This approximation to the separatrix can also be found by
linearizing the dynamical system in Equation (13) about the
saddle point and determining the eigenvector associated with its
stable manifold. The Jacobian matrix for the system is

J(x, s) =

[(

−1+ aef
′(aEx+ γons)

)

/τ γonf
′(aEx+ γons)/τ

0 −1/τ

]

(15)

The negative eigenvalue for the saddle point is the lower right
entry of this matrix. The associated eigenvector satisfies (J11 −

J22)x+ J12s = 0, where Jij is the (i, j) entry of the Jacobian matrix
so we conclude that the linear approximation to the separatrix is

S(x) =

(

J22 − J11

J12

)

(x− xS). (16)

A useful consequence of our assumption that x and s have the
same time constant τ is that this expression can be simplified
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substantially to:

S(x) =
aE

γon
(xS − x). (17)

Comparing this equation to the result obtained by geometric
considerations (Equation 14), we observe that γon is determined
by the parameters aE and m, and our convention that tone
threshold is IT = 1. In particular, we set γon = aE(xS − xI).

Deactivation is the mirror image of activation and occurs if
the “downward” perturbation of s is sufficiently strong at the
tone offset. For the values of aE and m that we use, the stable
equilibria are symmetric around the saddle point at x = 0.5
and it is convenient to set γon = γoff so that the threshold for
activation and deactivation are the same. More generally, the
offset parameter should always be set so that activation thresholds
are not less than deactivation thresholds, to avoid the scenarios
in which a tone onset can activate the firing rate variable but
the tone offset response is too weak to return the population.
In this unrealistic case, x(t) could remain in the active state
for perpetuity.

3.3.2. Response Dynamics to Tone Masked by Noise
If a sufficiently strong noise is presented at the same time
as a tone, then the noise can prevent activation of the tone
population by reducing the transient response at the start of
the tone. This is the masking condition. Simulations exhibiting
masking dynamics are in Figure 5B. Recall the effect of noise
is to reduce the onset response to s(ton) = [IT − βIN]+ where
β is a parameter that controls how much noise suppresses the
tone onset (given in Equation 6). As we explained above, in our
discussion of tone activation, the model is parameterized so that
IT = 1 is the threshold for activation in the absence of noise.
Thus, a noise will mask a tone if IT − βIN < 1. We denote the
threshold for masking asM(IT) and conclude that it is related to
tone strength via a linear equation:

M(IT) =
1

β
(IT − 1) , (18)

This equation is valid for values of IT above the noise-free
threshold (IT = 1) and below the maximum tone strength
in the model (IT,max = 5). It provides a direct relationship
between masking threshold and the degree to which noise masks
tone onsets (represented by the parameter β). In the simulations
shown in Figure 5) we use β = 2/3. Themasking threshold curve
is shown in Figure 5D.

3.3.3. Response Dynamics to Tones Interrupted by

Noise
The feature of this model that is essential for our study of the
continuity illusion is that the inactive and active states coexist
and are stable in the absence of any inputs. The tone population
can, therefore, remain in the active state even after a tone is
turned off if the offset signal is weak and does not send x(t) across
the separatrix. Simulations exhibiting continuity dynamics are in
Figure 5C.

Whereas masking depends on suppression of the onset
response (as described above), the continuity illusion depends

on suppression of the offset response. Computation of the
continuity threshold is analogous to our derivation of the
masking threshold, but with onset terms replaced by offset terms.
The criteria for continuity are that IT > 1 (so that the first
tone activates the population) and that IN is sufficiently large to
reduce the tone offset response and x(t) to remain near its upper
equilibrium state. To satisfy this second condition, we must have
that the offset response does not cross the separatrix curve, with
the key difference being that we are now analyzing the system at
the start of the noise-filled gap. Thismeans x(toff ) = xA (first tone
has activated the population) and s(toff ) = − [IT − βIN]+ (noise
reduces offset amplitude). Adapting the separatrix equation in
Equation (17) for the offset response, we have that continuity
requires − [IT − βIN]+ < aE (xS − xA) /γoff . The continuity
threshold equation is, therefore,

C(IT) =
1

β

(

IT −
aE

γoff
(xS − xA)

)

. (19)

In the particular case of Model 2, we have chosen parameters that
make it symmetric (xI and xA are equidistant from the saddle
point).We set γoff = γon = aE(xS−xI), so that the continuity and
masking thresholds are identical (compare C(IT) to Equation 18,
and see threshold lines in Figure 5D).

More generally, we would require γoff ≥ γon to avoid
persistent activation (discussed above). If γoff > γon,
the continuity threshold would shift upward in Figure 5D

(γoff affects the intercept of C(IT) but not its slope). In
the intermediate IN values between C(IT) and M(IT), we
observe responses in which the first tone activates x(t), then
x(t) deactivates during the noise-filled gap (no continuity,
offset response too strong), and the second tone does not
reactivate x(t) (second onset response too weak). In other
words, the model without symmetry results in a region in
stimulus space in which the noise burst between the two
tones is too weak to induce the continuity illusion but
sufficiently strong to prevent perception of the second tone by
forward masking.

3.4. Model 3: Combined Inputs Implement
Both Rules for the Continuity Illusion
The last model configuration we consider is one that cannot be
activated by transient inputs alone or sustained inputs alone.
These requirements are met if IT at the left knee of the firing
rate equilibrium curve is positive (no bistability at rest) and the
IT at the right knee is to the right of the maximum allowable
tone level IT,max. Activation from rest can only occur using
a combination of sustained and transient inputs. There must
be a sufficiently strong sustained input to move the system
past the saddle node bifurcation point at the left knee of the
firing rate equilibrium curve. This creates a stable equilibrium
in the activated state that can be accessed if the transient
portion of the input is sufficiently strong to transition the
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FIGURE 5 | Dynamics of Model 2 responses to tone and noise inputs. (A) Tone inputs (no noise). Phase plane at tone onset, showing stable equilibria (black dots),

unstable saddle (gray circle), linear approximation to separatrix (gray line), and trajectories for IT = 0.8 (blue curve) and IT = 1.2 (red curve). Time-course of firing rate

variable x(t) shown in (A2). (B) Simultaneous tone and noise inputs (masking condition) with IT = 3. Phase plane shown at tone and noise onset. Sufficiently large

noise suppresses the transient onset response and can prevent activation for sufficiently large noise (IN = 3.2, red curve). (C) Interrupted tone with noise-filled gap

(continuity condition) with IT = 3. Phase plane shown at noise onset. Sufficiently large noise suppresses tone offset and can prevent return to inactive state (IN = 3,

red curve). (D) Masking threshold and continuity thresholds are equal for our choice of parameters (stable equilibria are equidistant to unstable saddle). Tone and noise

levels shown in legend at bottom right. Parameter values used: β = 2/3, γon = γoff = 5.2. Filled circles are thresholds computed from simulations and the solid line is

the approximate threshold computed from linearized system (Equation 18).

FIGURE 6 | Activation dynamics in Model 3 requiring sustained and transient inputs. (A) Firing rate equilibrium curve. Defining feature of Model 3 is a left knee at

positive IT level and right knee at IT level larger than IT ,max . (B) Time-courses of firing rate variable for sustained input only (blue), transient input only (red), and

combination of both inputs (yellow). Tone level is IT = 1.5 in all cases.
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system into the basin of attraction of this upper equilibrium (see
Figure 6).

To understanding firing rate responses for this model, we
again formulate the dynamics in the x-s state space:

τx′ = −x+ f (aEx+ [IT − βIN]+ − aI(1− x)IN + γ s)

τ s′ = −s
(20)

These equations govern the dynamics of the system in the time
following a tone onset or offset. The parameter γ should be
thought of representing γon when describing onset responses and
γoff when describing offset responses. The initial values for these
equations are given by the state of the system immediately prior
to sound onset or offset. For the case of tone onset for a system
starting from rest (no input), for instance, the initial values would
be x(ton) = xI(0, 0) and s(ton) = 1, where xI(0, 0) is the inactive
state in the case of IT = IN = 0. We will use similar notation
throughout this section to indicate that equilibrium points are
functions of the input levels.

The Jacobian matrix for these equations is

J(x, s) =

[(

−1+ (ae + aIIN) f ′(u)
)

/τ γ f ′(u)/τ
0 −1/τ

]

(21)

where we have abbreviated the argument of f ′ with u = aEx +

[IT − βIN]+ − aI(1 − x)IN + γons. As before, we evaluate the
Jacobian at the saddle point (when it exists, for sufficiently large
IT) and use the eigenvector associated with the stable manifold
of the saddle point to construct a linear approximation to the
separatrix curve that defines the threshold for activation. The
notable difference between the analysis in this section and the
preceding section (for Model 2), is that the sustained input terms
can affect the positions of the equilibrium solutions and the shape
of the separatrix in the current model setting. Following our
earlier calculation (recall Equation 16), we find the eigenvector
by solving (J11 − J22)x + J12s = 0. After simplifications, we find
the linear approximation to the separatrix to be

S(x; IT , IN) =

(

aE + aIIN

γ

)

(

xS(IT , IN)− x
)

(22)

where we are assuming that IT is sufficiently large so that the
saddle point xS(IT , IN) exists. In the remaining sections, we
apply this result in the three cases we have been considering
(tone only, simultaneous tone and noise, and tones with a
noise-filled gap) to characterize activation by tone, masking, and
continuity dynamics.

3.4.1. Response Dynamics to Tone-Only Inputs
Activation by a tone-only input (IN = 0) occurs if the onset
response causes the system to cross the separatrix defined in
Equation (22). In particular, we consider the system starting from
rest, with x(ton) = xI(0, 0) and input variable s instantaneously
perturbed to s(ton) = IT . We then ask if this onset perturbation
to s exceeds S(x(ton)). We must also keep in mind that the
position of the saddle point is determined by inputs, so in this
case we use xS(IT , 0) in Equation (22). From these considerations

we conclude that, to satisfy our convention that IT = 1 is
the tone threshold, we must set the onset parameter to γon =

aE
[

xS(1, 0)− xI(0, 0)
]

. Simulations showing activation by a tone
are shown in Figure 7A. The phase portrait in Figure 7A1

illustrates the dynamics at tone onset. We remark that Ioffset(t)
is not necessary to move the system back to the inactive state. In
this model, the return to the inactive state at the end of the tone
is guaranteed in the tone-only case because the saddle point and
upper equilibrium do not exist for IT = 0. The firing rate variable
must return to xI(0, 0) because it is the unique, remaining stable
equilibrium. This differs from Model 2 which required an offset
response to deactivate x(t). We will see shortly, however, that
the offset response does affect dynamics of the continuity illusion
dynamics, and we will explore γoff further in that setting.

3.4.2. Response Dynamics to Tone Masked by Noise
In the masking condition, tone and noise inputs are both present
simultaneously and thus the saddle point about which we
linearize the system depends on IT and IN . To determine whether
a noise prevents activation by a tone, we are still interested in
onset dynamics from rest. The initial firing rate is x(ton) =

xI(0, 0). We use the separatrix equation (Equation 22) again to
determine the masking threshold. We determined γon from the
tone-only response and we use it to here to update the separatrix
at tone onset:

S(x; IT , IN) =

(

1+
aI

aE
IN

)(

xS(IT , IN)− x

xS(1, 0)− xI(0, 0)

)

. (23)

This equation reveals the differing effects of sustained tone
and noise inputs. The sustained tone input does not alter the
slope of the linear approximation to the separatrix, it is the
same as the slope found for the model with transient inputs
only (Equation 16), but it can change the intercept through the
dependence of xS on IT in the numerator. The sustained noise
input, in contrast, changes the intercept and also the slope of the
intercept (through the term aIIN/aE).

Trajectories in the phase plane and as firing rate time-courses
showing masking of a tone by noise are in Figure 7B. In this
example, the onset response exceeds the threshold for tone-only
inputs (s(ton) is above one in Figure 7B1). Nevertheless, the
population returns to the inactive state because the noise input
has raised the threshold for activation (in this case, primarily by
steepening the slope of separatrix).

With Equation (23) in hand, we compute the masking
threshold as the minimum IN level (for a given IT level) at which
the onset response crosses the separatrix. To do this, we set the
amplitude of the transient onset response to the height of the
separatrix at the initial value. Thus, the masking thresholdM(IT)
is the noise level that solves the nonlinear equation IT − βIN =

S(xI(0, 0); IT , IN). We solve this equation numerically and display
the resulting masking threshold curve in Figure 7D, for selected
parameter values.

3.4.3. Response Dynamics to Tones Interrupted by

Noise
In contrast to the two cases just considered (activation by a
tone alone, masking by noise), understanding the continuity
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FIGURE 7 | Dynamics of Model 3 responses to tone and noise inputs. (A) Tone inputs (no noise) with tone level IT = 1.2. Phase plane at tone onset, showing stable

equilibria (black dots), unstable saddle (gray circle), linear approximation to separatrix (gray line) and trajectory (blue curve). Time-course of firing rate variable x(t)

shown in (A2). (B) Simultaneous tone and noise inputs (masking condition) with IT = 2 and IN = 1.5. Phase plane shown at tone and noise onset. The active state still

exists, but it is shifted rightward relative to tone only and slope of the separatrix is steeper. Noise prevents activation in this case and firing rate returns to inactive

equilibrium. (C) Interrupted tone with noise-filled gap (continuity condition) with IT = 2 and IN = 1.5. Phase plane shown at noise onset. Noise preserves stable

equilibrium. In this case, trajectory does not cross separatrix and system remains active during gap between tones. (D) Masking threshold and continuity thresholds.

Parameter values used: aI = 7,α = 0.5,β = 0.05, γon = 9.6, γoff = 0.88. (E) Continuity threshold for varying γoff parameter value. Black curve in (D,E) are identical.

Filled circles in (D,E) are thresholds computed from simulations, solid lines are approximate threshold computed from linearized system (Equation 18).

illusion requires analysis of the offset response. We approximate
the threshold, as usual, with the linear approximation to the
separatrix that is given in Equation (22). We interpret γ in that
equation as γoff since we are concerned with the dynamics at the
offset of the first portion of the tone. There is no tone (IT = 0)
during the noise-filled interruption between the tones, so the
saddle point position is only a function of IN . This highlights
the fact that there are two necessary conditions for continuity
dynamics in this model: the noise level must be sufficiently strong
to preserve the saddle point and the stable active equilibrium, and
the offset response must be sufficiently weak (perhaps because
it is masked by the noise) to prevent the system from crossing
the separatrix. The second of these conditions is satisfied if the
offset response, which has initial amplitude−(IT−βIN), does not
cross S(xA; 0, IN). A firing rate response that remains active when
the tone is removed (consistent with the continuity illusion) is
shown in the x-s phase plane in Figure 7C1 and as a time-course
in Figure 7C2. The continuity threshold curve, C(IT), which we
calculate by solving for IN the nonlinear equation−(IT −βIN) =
S(xA; 0, IN), is shown in Figure 7D.

The offset parameter γoff shifts the system between the two
extreme cases represented by Models 1 and 2. If the offset

parameter is small, then the occurrence of the continuity illusions
relies on the hysteresis effect (the fact that IN can preserve the
saddle point and active equilibrium). In this case, the continuity
threshold C(IT) changes slowly with IT (and, in fact, can be
constant over a range of IT values). In the extreme case of
no offset response, the continuity threshold would be constant
with IT as was the case for Model 1 (see Figure 4D). If the
offset parameter is large, then the offset response makes a larger
contribution to whether the firing persists during the gap. The
continuity threshold varies more with IT as γoff increases. These
effects of γoff on continuity threshold are shown in Figure 7E.

4. DISCUSSION

The continuity illusion is an intriguing example of the capacity
for the brain to “fill in” missing information. In this case, the
“filling in” process creates an illusion of a continuous tone
that is, in fact, discontinuous. In the context of hearing in a
complex listening environment, a bias toward linking related
sounds across time to create longer-lasting auditory objects
can be useful when contending with multiple interrupting or
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distracting sounds that could momentarily obscure a sound
of interest. Our contribution has been to use principles
of neural dynamics and to draw on previous conceptual
frameworks and experimental studies of the continuity illusion
to identify dynamical mechanisms that can account for the
continuity illusion.

We used a firing rate model of population-level neural
activity to explore possible routes toward continuity illusion-
like dynamics. A first requirement was that recurrent excitation
be strong enough to create a stable equilibrium at a high
firing rate level (Figure 3). We stereotyped the inputs to the
population as sustained and transient. This setup was based on
physiological evidence that neurons in auditory cortex with these
response types are possible neural correlates for the continuity
illusion (Petkov et al., 2007). We showed, using Model 3, that a
firing-rate model can be constructed to require both input types
to implement the continuity illusion.

Although the model could also be configured so that sustained
inputs alone (Model 1) or transient inputs alone (Model 2)
produce dynamics consistent with the continuity illusion, there
are shortcomings in both cases that were remedied in Model 3.
In the case of sustained inputs alone, continuity dynamics require
a hysteresis effect: input levels that are too weak to activate the
population from rest can, nevertheless, sustain activity in an
already active population. The tone input makes no contribution
to the response dynamics during the noise-filled interruption
between the tones. As a result, the continuity threshold is
constant with tone level (Figure 4D). This is inconsistent with
evidence that the probability of perceiving the continuity illusion
increases as the noise level becomes louder relative to the
tone (Riecke et al., 2008). In the case of transient inputs alone,
continuity dynamics require a population that is bistable in the
absence of any inputs. If additional mechanisms were not at work
(synaptic adaption in the recurrent excitatory connections, for
instance), a bistable population could remain in a high firing rate
state for a long period of time even when no stimulus is present.
An additional limitation of this model is the requirement for
symmetric onset and offset response dynamics. If deactivation
requires a stronger input than activation (i.e., if the saddle point is
at some x < 1/2), then there will exist a range of input strengths
for which a tone that activates the population will not return the
population to rest at the end of the tone. For the same reason,
if activation requires a stronger input than deactivation (i.e., if
the saddle point is at some x > 1/2), then in the interrupted-
tone case a tone that activates the population may be too weak
to reactivate the population following the noise-filled gap. While
this type of response dynamic could be consistent with forward
masking (Moore and Glasberg, 1983), it is inconsistent with the
stimuli used to test for the continuity illusion (both tones, before
and after the noise-filled gap, are typically audible).

Interestingly, the model configurations revealed that
continuity thresholds can depend on tone level (IT) in distinct
ways. As IT increased, continuity thresholds increased less for
models in which sustained inputs dominated (Model 1) and
more for models in which transient inputs dominated (Model
2), see also Figure 7E showing similar results for different offset
strengths γoff in Model 3. This outcome of the model could

be examined with experiments that assess listeners’ perception
of the continuity illusion across a range of tone levels using
inputs that vary the salience of acoustic edges (e.g., tones that
ramp down before the noise-filled interruption; Bregman and
Dannenbring, 1977).

Following Petkov et al. (2007), we view the different input
populations (sustained, onset, and offset) as possible neural
correlates of two aspects of the descriptive theory of the
continuity illusion proposed by Bregman (Bregman, 1990). First,
sustained responses convey “evidence” that a tone is ongoing. If
some sustained neural activity persists during the interruption
between two tones, then the tonemay be perceived as continuous.
This is Bregman’s “Sufficiency of Evidence rule.” In our model,
this is implemented by assuming that noise (as a broadband
signal) drives a partial excitatory input to the population whose
activity signals the perception of the tone. Second, transient
responses at tone onsets and offsets mark “discontinuities” in
the tone (acoustic edges). If the noise during the gap between
tones obscures this discontinuity, then tone may be perceived
as continuous. This is Bregman’s “No Discontinuity rule.” In
our model, this is implemented by assuming noise can reduce
the amplitude of the transient response. An additional effect of
noise (in Model 3) is to increase the threshold for activation by a
transient input (effected by altering the separatrix, see IN term in
Equation 23).

By analyzing how these input types drive firing rate activity, we
identified two dynamical mechanisms and circuit properties that
can support the continuity illusion: 1) a hysteresis effect enabled
the noise to convey “sufficient evidence” to sustain firing activity
in the gap between tones, 2) an offset response that signaled
“discontinuity” in an acoustic signal could be suppressed by noise
to confined the system to the basin of attraction of the high firing
rate stable equilibrium. These dynamical mechanisms (hysteresis
and bistability) required sufficiently strong recurrent excitation,
specifically the requirement that aE > 4 for S-shaped firing rate
equilibrium curves (Figure 3).

In addition to providing a dynamical framework to
accompany Bregman’s theory, our approach offers a new
perspective on previous models of the continuity illusion. The
work of Noto et al. (2016) relied on nonlinear, self-excitation of
neural populations which is consistent with our approach for
creating hysteresis and bistable dynamics. The work of Vinnik
et al. (2010) utilized dynamic synapses to create continuous
responses to interrupted tones. Since dynamic synapses are
an additional mechanism for creating hysteresis and bistable
dynamics (Barak and Tsodyks, 2007), there is also consistency
between their work and ours. An extra feature of our study,
not considered in these previous models of the continuity
illusion, is that we also required that our simulated dynamics
exhibit masking for noise and tones presented simultaneously.
Incorporating this is essential, in our view, to avoid “trivial”
solutions in which noise acts simply (and solely) as an excitatory
input that facilitates neural activity during the noise-filled gap
between tones. Balancing these excitatory and inhibitory effects
of noise required fine-tuning in Model 1 (Figure 4E).

Although the firing rate framework is a caricatured
description of neural activity, insights into a number of
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sensory illusions have been made using similar approaches
including for visual bistability (Laing and Chow, 2002; Shpiro
et al., 2007, 2009) and auditory streaming (Rankin et al., 2015,
2017; Paredes-Gallardo et al., 2019). In our study, it has been
useful as a minimal model that identifies mechanisms that can
account for the continuity illusion. We focused on a classic
version of the continuity illusion (tone interrupted by noise), but
the illusion can be elicited by a variety of sound types (Bregman,
1990; Warren, 2008; McWalter and McDermott, 2019). The
facts that the continuity illusion is widespread and that the
dynamics of the illusion can be explained with a relatively simple
model may indicate that perceptual continuity of interrupted
sounds is constructed at more than one stage of auditory
processing. Indeed, while we were motivated by observations
in auditory cortex (Petkov et al., 2007), the input motifs we
used in our model (sustained, onset, and offset responders)
are present in other auditory nuclei, and there is evidence for
involvement of the brainstem in the continuity illusion in human
listeners (Bidelman and Patro, 2016). We suggest future work
could focus on the inferior colliculus (IC) as a possible origin
of the continuity illusion. The IC is a midbrain structure that
receives inputs from numerous brainstem regions including
excitatory projections from the ventral cochlear nucleus (a site
of sustained and onset neurons; Pfeiffer, 1966; Rhode and Smith,
1986) and inhibitory projections from the superior paraolivary
nucleus (a site of offset neurons; Oliver, 2005; Cant and Oliver,
2018; Kopp-Scheinpflug et al., 2018). A critical component of our
model was recurrent excitation that creates persistent activity.
The IC, accordingly, has numerous, local connections (Ito and
Malmierca, 2018) that may prolong the duration of post-synaptic

potentials (Sivaramakrishnan et al., 2013) and increase firing

rate responses to high sound intensities (Grimsley et al.,
2013). As work continues to identify neural correlates of the
continuity illusion, idealized dynamical systems descriptions
can inform what features should be included in future, more
biophysically-detailed modeling approaches.
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