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The inhibition of chloride intracellular
channel 1 enhances Ca2+ and reactive
oxygen species signaling in A549 human
lung cancer cells
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Abstract
Chloride intracellular channel 1 (CLIC1) is a promising therapeutic target in cancer due to its intrinsic characteristics; it
is overexpressed in specific tumor types and its localization changes from cytosolic to surface membrane depending
on activities and cell cycle progression. Ca2+ and reactive oxygen species (ROS) are critical signaling molecules that
modulate diverse cellular functions, including cell death. In this study, we investigated the function of CLIC1 in Ca2+

and ROS signaling in A549 human lung cancer cells. Depletion of CLIC1 via shRNAs in A549 cells increased DNA
double-strand breaks both under control conditions and under treatment with the putative anticancer agent
chelerythrine, accompanied by a concomitant increase in the p-JNK level. CLIC1 knockdown greatly increased basal
ROS levels, an effect prevented by BAPTA-AM, an intracellular calcium chelator. Intracellular Ca2+ measurements clearly
showed that CLIC1 knockdown significantly increased chelerythrine-induced Ca2+ signaling as well as the basal Ca2+

level in A549 cells compared to these levels in control cells. Suppression of extracellular Ca2+ restored the basal
Ca2+ level in CLIC1-knockdown A549 cells relative to that in control cells, implying that CLIC1 regulates [Ca2+]i through
Ca2+ entry across the plasma membrane. Consistent with this finding, the L-type Ca2+ channel (LTCC) blocker
nifedipine reduced the basal Ca2+ level in CLIC1 knockdown cells to that in control cells. Taken together, our results
demonstrate that CLIC1 knockdown induces an increase in the intracellular Ca2+ level via LTCC, which then triggers
excessive ROS production and consequent JNK activation. Thus, CLIC1 is a key regulator of Ca2+ signaling in the
control of cancer cell survival.

Introduction
Recent studies have revealed the role of ion channels in

the development of different cancers. Currently, Cl-

channels are considered the most active channels during
tumorigenesis1,2. A high rate of proliferation, active
migration, and invasiveness into nonneoplastic tissues are
specific properties of neoplastic transformation. All these

actions require partial or total involvement of Cl- channel
activity3–6. Thus, this class of membrane proteins could
represent valuable therapeutic targets for the treatment of
resistant tumors. However, drug design targeting ion
channels is difficult because of the vital role of these
channels for essential physiological functions in normal
cells. Considering this difficulty, a new protein family, the
chloride intracellular channels (CLICs)—particularly
CLIC1—could be a promising class of therapeutic targets
because of their intrinsic properties. First, CLIC1 is
overexpressed in particular tumor types, such as hepato-
cellular carcinoma7, gallbladder carcinoma8, gastric car-
cinoma9, and colorectal cancer10,11. Second, CLIC1s
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change their localization from cytosolic to transmem-
brane as active ionic channels or signal transducers during
cell cycle progression in certain cases12,13. These changes
in intracellular localization and channel function, which
are associated with malignant transformation, may offer a
distinct target for cancer therapy that can likely spare
normal cells. Therefore, understanding the role and
underlying molecular mechanism of CLIC1 in cellular
transformation is important for designing a therapeutic
strategy.
Multiple studies have shown that CLIC1 plays crucial

roles in controlling the cell cycle, apoptosis, proliferation,
invasiveness, and metastasis8–10,13–24. Given that changes
in the level of reactive oxygen species (ROS) are funda-
mental for cell cycle progression25,26 and cancer cell
survival27, it was suggested that CLIC1 could regulate
ROS production in cancer cells. In fact, the inhibition of
CLIC1 channel activity by the CLIC ion channel blocker
IAA94 reduces intracellular ROS production during
hypoxia-reoxygenation treatment in LOVO cells, human
colon adenocarcinoma cells, suggesting that
CLIC1 sustains ROS levels28. However, CLIC1 can also
function as a negative regulator of ROS in other tumors,
since the depletion of CLIC1 using siRNA in human
esophageal squamous cell carcinoma induced apoptosis
via the JNK pathway, which is strongly associated with
excessive ROS production29,30. Furthermore, the
mechanism by which CLIC1 regulates ROS is currently
unclear. In this study, we investigated the role of CLIC1
and its molecular mechanism in A549 human lung cancer
cells. We found that depletion of CLIC1 with shRNA in
A549 human lung cancer cells increased DNA double-
strand breaks both under control conditions and under
treatment with the putative anticancer agent cheler-
ythrine, with a concomitant increase in p-JNK levels.
Intracellular Ca2+ measurements revealed that CLIC1
knockdown in A549 cells induced an increase in both the
basal Ca2+ level and chelerythrine-induced Ca2+ signal-
ing. In addition, CLIC1 knockdown greatly increased
basal ROS levels, an effect that was prevented by BAPTA-
AM, an intracellular calcium chelator. The LTCC blocker
nifedipine, as well as the suppression of extracellular Ca2+,
restored the basal Ca2+ level in CLIC1-knockdown A549
cells to that in control cells. Taken together, our results
demonstrate that CLIC1 knockdown induces an increase
in the intracellular Ca2+ level via LTCC, which then
triggers excessive ROS production and consequent JNK
activation.

Materials and methods
Plasmid construction
The shRNA sequences CLIC1-knockdown 1 (5′- GAT

CCCCGGGAGTCACCTTCAATGTTACTTCAAGAGA
GTAACATTGAAGGTGACTCCCTTTTTA-3′) and

CLIC1-knockdown 2 (5′- GATCCCCGATGAAGGTGT
CTCTCAGAGGTTCAAGAGACCTCTGAGAGACACC
TTCATCTTTTTA-3′) were cloned into the pSuper.retro
vector (Oligoengine, Seattle, WA, USA). CLIC1 cDNA
was amplified from MEFs and inserted into pEGFP-C1
(Clontech, Palo Alto, CA, USA) at the BglII and XhoI
sites.

Generation of antibodies
GST-CLIC1 proteins were purified from E. coli and

cleaved with thrombin to remove the GST domain and
were then used to immunize BALB/c mice. Immunized
splenocytes were fused with myeloma cells and selected
with HAT medium. Cell culture medium from the
cloned hybridomas was analyzed with ELISA to identify
specific antibodies against CLIC1. The specificity of the
antibodies was tested with other CLICs (CLIC2, 3, 4,
and 5).

Cell culture and transfection
A549 human lung carcinoma cells were maintained in

RPMI 1640 medium containing 10% FBS. To establish the
CLIC1knockdown cell line, pSuper.retro-scrambled
shRNA or the pSuper.retro-CLIC1 KD1 or KD2 shRNA
constructs were transfected into A549 cells using Lipo-
fectamine (Thermo Scientific, Waltham, MA, USA) and
selected with 0.3 µg/ml puromycin. Cell clones were
screened for CLIC1 knockdown by immunoblot analysis.
For assessing the subcellular localization of CLIC1, A549
cells were transfected with pEGFP-C1 or pEGFP-C1-
CLIC1 plasmids using Effectene (Qiagen, Valencia, CA,
USA). For transient knockdown of CLIC1, 50 nM non-
coding region siRNA (sense: 5′-UUCUCCGAACGUGU-
CACGUUU-3′; antisense: 5′-ACGUGACACGUUCG
GAGAAUU-3′) or siRNA against CLIC1 (sense: 5′-GG
GAGUCACCUUCAAUGUUUU-3′; antisense: 5′-AACA
UUGAAGGUGACUCCCUU-3′) was transfected into
A549 cells using Lipofectamine RNAiMAX (Invitrogen,
Carlsbad, CA, USA).

Immunocytochemistry
A549 cells stably expressing pSuper.retro-scrambled

shRNA or pSuper.retro-CLIC1 KD1 or KD2 shRNA were
stimulated with 50 µM chelerythrine for 24 h. Cells were
fixed with 4% paraformaldehyde and permeablized with
0.5% Triton X-100 in PBS. Samples were blocked with 5%
BSA in PBS and stained with anti-pγH2AX (Ser140)
(Invitrogen). FITC-conjugated goat anti-mouse IgG
(Jackson Laboratory, Bar Harbor, Maine, USA) secondary
antibodies were used. For nuclear staining, Hoechst 33258
was used, and slides were mounted with ProLong Gold
antifade mount (Thermo Scientific). Confocal images
were obtained using an LSM 710 (Zeiss, Oberkochen,
Germany).

Lee et al. Experimental & Molecular Medicine (2019) 51:81 Page 2 of 11

Official journal of the Korean Society for Biochemistry and Molecular Biology



Immunoblot analysis
Cells were lysed on ice for 30min in lysis buffer (50 mM

Tris-HCl (pH 8.0) 0.1% Triton X-100, 50 mM sodium
fluoride, 5 mM sodium pyrophosphate, 1 mM PMSF,
1 mM sodium orthovanadate, and 2mM leupeptin). After
centrifugation, the protein concentration in the super-
natant was determined by a BSA kit (Pierce, Rockford, IL,
USA). Samples were separated by SDS-PAGE and trans-
ferred and were then immunoblotted with the following
antibodies: p-p38 MAPK (Thr180/Tyr182), p38 MAPK,
p-SAPK/JNK (Thr183/Tyr185), SAPK/JNK, and p-Akt
(Ser473) from Cell Signaling Technology (Beverly, MA,
USA) and α-tubulin from Sigma-Aldrich (St. Louis,
MO, USA).

Solutions and drugs
The normal Tyrode’s (NT) solution contained (in mM)

NaCl (143), KCl (5.4), CaCl2 (1.8), MgCl2 (0.5), NaH2PO4

(0.5), glucose (11.1), and HEPES (5) and was adjusted to
pH 7.4 with NaOH. To make the Ca2+-free NT solutions,
CaCl2 was replaced with equimolar MgCl2. Fura 2-AM
was obtained from Thermo Scientific, and chelerythrine
chloride and bisindolylmaleimide I were obtained from
Tocris Bioscience (Bristol, UK). All other drugs were
purchased from Sigma-Aldrich. Stock solutions of the
drugs were made by dissolution in deionized water or
DMSO according to the manufacturer’s specifications and
were stored at −20 °C. On the day of the experiment, one
aliquot was thawed and used. The final concentration of
DMSO in the solutions was maintained below 0.1%.

Reactive oxygen species (ROS) generation assay
For the measurement of intracellular ROS levels, the

general ROS marker CM-H2DCFDA (Thermo Scientific)
was used. Cells were incubated with 20 µM CM-
H2DCFDA for 1 h and were then washed with PBS.
CM-H2DCFDA fluorescence was measured using con-
focal laser scanning microscopy.

[Ca2+]i measurements
Cells were incubated with 3 µM Fura-2 AM (Life

Technologies, Carlsbad, CA, USA) for 45 min in NT
solution or Ca2+-free NT solution at room temperature.
For fluorescence excitation, we used a polychromatic light
source (xenon lamp-based, Polychrome-IV; TILL-Photo-
nics), which was coupled to the epi-illumination port of
an inverted microscope (IX70, Olympus, Tokyo, Japan)
via a quartz light guide and a UV condenser. Fluorescence
intensity was measured via a 40 × objective (Olympus), a
charge-coupled device image intensifier camera (Andor
Technology, Belfast, UK) and Metafluor software (Mole-
cular Devices, Sunnyvale, CA, USA). Dual excitation at
340/380 was used with a 400-nm dichroic mirror, and
emitted light was collected with a 450-nm long-pass filter.

Statistical analysis
Data are presented as the means ± standard errors of the

mean. Student’s t-test or one-way ANOVA was used to
test for significance; P < 0.05 was considered statistically
significant.

Results
CLIC1 knockdown exacerbated the cellular stress response
in A549 cells
First, we investigated the role of CLIC1 in the regulation

of the cellular stress response. To do this, we assessed the
effects of CLIC1 knockdown on DNA damage in A549
cells. Immunostaining for the level of pγH2AX, a DNA
double-strand break marker, in control and CLIC1-
knockdown A549 cells revealed that CLIC1 knockdown
significantly increased the level of pγH2AX (Fig. 1a). It is
well known that a putative anticancer agent, cheler-
ythrine, induces cellular stress in cancer cells31. Thus, we
examined the effects of CLIC1 knockdown on
chelerythrine-induced cellular stress in A549 cells. Con-
sistent with the results of previous studies31, treatment
with chelerythrine (50 µM) for 24 h increased the level of
pγH2AX in control A549 cells, which was further elevated
by CLIC1 knockdown (Fig. 1a, b). We used two different
shRNAs for CLIC1 depletion and found that both
shRNAs effectively reduced the level of CLIC1 protein
(Supplementary Figure S1) and increased DNA double-
strand breaks under both control and chelerythrine
treatment conditions (Fig. 1a, b). In addition, cheler-
ythrine did not alter the cellular localization of CLIC1-
eGFP in A549 cells (Supplementary Figure S2).
It has been demonstrated that chelerythrine induces

cellular stress and apoptotic cell death through mitogen-
activated protein kinases (MAPKs), including c-Jun N-
terminal kinase (JNK), p38, and Akt32,33. Thus, we
examined the activation of JNK, p38, and Akt in the
response to chelerythrine in CLIC1-knockdown A549
cells (Fig. 1c). CLIC1 knockdown resulted in elevated
levels of the active, phosphorylated form of JNK (p-JNK),
which was further increased by chelerythrine, compared
to those in control cells. Interestingly, CLIC1-knockdown
A549 cells exhibited a transient increase in the p-JNK
level 15 min after chelerythrine treatment, while control
cells showed a sustained increase. Thus, CLIC1 knock-
down increased basal JNK activity and induced a surge in
JNK activity upon chelerythrine treatment, which could
function in tandem with efficient apoptotic machinery. In
contrast, the levels of the active, phosphorylated forms of
p38 (p-p38) and Akt (p-Akt) were unaltered in CLIC1-
knockdown A549 cells (Fig. 1c). Both control and CLIC1-
knockdown A549 cells exhibited strong activation of Akt
starting 15min after chelerythrine treatment. Interest-
ingly, however, CLIC1 knockdown induced transient
activation of p38 15min after chelerythrine treatment,

Lee et al. Experimental & Molecular Medicine (2019) 51:81 Page 3 of 11

Official journal of the Korean Society for Biochemistry and Molecular Biology



while control cells exhibited persistent activation. Cur-
rently, the basis of this transient activation of JNK and p38
in CLIC1- knockdown cells in response to chelerythrine
treatment is unclear. However, since CLIC1 knockdown
alone increased the p-JNK level, which was further ele-
vated by chelerythrine treatment, JNK is an important
mediator of the enhanced susceptibility of CLIC1-
knockdown A549 cells to chelerythrine treatment.

CLIC1 knockdown increased ROS in A549 cells
Whether CLIC1 knockdown increases ROS production

in A549 cells was examined by using a CM-H2DCFDA
probe. As shown in Fig. 2, CLIC1 knockdown via
CLIC1 shRNA 1 increased the ROS level by ~4-fold in
A549 cells. We then examined the effects of chelerythrine
on ROS generation in control A549 cells and in cells
transfected with CLIC1 shRNA 1. Consistent with the
results of previous studies31, treatment with 50 μM che-
lerythrine increased the generation of ROS by 132.09% in
control cells. The ROS level in CLIC1knockdown A549
cells was not further increased but rather decreased by
50 μM chelerythrine. However, the ROS level was still
higher than that in untreated control A549 cells and was
comparable to that in chelerythrine-treated control A549
cells (Fig. 2a, b). These data suggest that CLIC1 knock-
down increased the ROS level in A549 cells.

CLIC1 knockdown increased the basal Ca2+ level and
augmented the effects of chelerythrine on [Ca2+]i
Several studies have shown that alterations in intracel-

lular Ca2+ can contribute to ROS generation and cellular
stress34. To determine whether this effect occurs in
CLIC1-knockdown cells, control and CLIC1 knockdown
A549 cells were loaded with Fura-2 AM, and [Ca2+]i was
measured. The basal [Ca2+]i level was significantly
increased in CLIC1-knockdown A549 cells compared
with that in control A549 cells (Fig. 3a, b). The estimated
resting Ca2+ levels in control and CLIC1-knockdown
A549 cells were 38.1 ± 15.2 (n= 7) and 212.6 ± 43.0 nM
(n= 17), respectively (P < 0.05; Fig. 3c). Consistent with
the results of a previous study35, chelerythrine (50 µM)
had little effect on [Ca2+]i in control A549 cells. However,
in CLIC1-knockdown A549 cells, chelerythrine triggered
a robust increase in the [Ca2+]i level. Based on the peak
chelerythrine-induced [Ca2+]i increase, CLIC1- knock-
down A549 cells could be divided into two groups. Even
in the mild response group, the peak chelerythrine-
induced [Ca2+]i increase was higher than that in control
cells (Fig. 3d). Thapsigargin (TG) was used as the positive
control. These data were obtained using CLIC1-depleted
A549 cells transfected with shRNA knockdown construct
1. We confirmed that chelerythrine treatment also
induced a strong, transient elevation of intracellular Ca2+
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in A549 cells with CLIC1 knockdown via shRNA knock-
down construct 2 with (Supplementary Figure S3). In
addition, transient small interfering RNA-mediated
knockdown of CLIC1 in A549 cells resulted in strong
chelerythrine-dependent Ca2+ elevation (Supplementary
Figure S3). To verify the effects of CLIC1 knockdown on
Ca2+ signaling, A549 cells were treated with the CLIC ion
channel blocker IAA94 (50 μM) for 10~15min, and [Ca2+]i
was measured. Similar to the data obtained with CLIC1-
knockdown cells, CLIC1 inhibition by IAA94 treatment
greatly increased the basal Ca2+ level and augmented the
chelerythrine-induced Ca2+ increase in A549 cells (Sup-
plementary Figure S4). Furthermore, treatment with
another PKC inhibitor, bisindolylmaleimide I, did not
show the same effect as chelerythrine in CLIC1-
knockdown A549 cells (Supplementary Figure S5).
Because PKC is the major transducer of Gq-coupled
GPCR signaling, a major involvement of Gq-coupled
GPCR signaling mediated by PKC can be ruled out as an
explanation for the effect of CLIC1-knockdown in A549
cells. Taken together, these data suggest that CLIC1
inhibition in A549 cells increases the basal Ca2+ level and
exacerbates the chelerythrine-induced increase in Ca2+.

The increase in ROS levels in CLIC1-knockdown cells is
suppressed by BAPTA-AM
To determine whether intracellular Ca2+ plays any role

in the cellular stress induced by CLIC1 knockdown, we
performed studies to examine the effects of an intracel-
lular Ca2+ chelator, BAPTA-AM, on ROS generation in
CLIC1-knockdown A549 cells. Fura-2 AM-loaded cells
were incubated with 25 µM BAPTA-AM for 30 min at
37°C and washed twice with Tyrode’s buffer. We found
that the CLIC1 knockdown-induced increase in ROS

generation was suppressed in the presence of BAPTA-AM
(P < 0.005; Fig. 4), suggesting that an increase in [Ca2+]i is
responsible for ROS generation in CLIC1-knockdown
A549 cells (Fig. 2).

The increase in the Ca2+ level in CLIC1-knockdown cells is
not prevented by the antioxidant Trolox
To examine whether ROS play a role in the increase in

the basal Ca2+ level in CLIC1-knockdown cells, control
and CLIC1-knockdown A549 cells were incubated with
the widely used phenolic antioxidant Trolox (10 μM) for
24 h. As shown in Fig. 5, Trolox treatment had little effect
on the basal Ca2+ level and chelerythrine-induced Ca2+

increase in both control and CLIC1-knockdown A549
cells, suggesting that ROS do not contribute significantly
to the increase in the Ca2+ level in CLIC1-knockdown
cells.

Nifedipine inhibited the CLIC1 knockdown-induced
increase in [Ca2+]i
We then investigated how CLIC1 regulated [Ca2+]i in

A549 cells. CLIC1 knockdown can regulate basal [Ca2+]i
either by activating constitutive Ca2+ entry from the
extracellular environment or by promoting Ca2+ release
from intracellular stores such as the endoplasmic
reticulum. Figure 6a, b show that the suppression of
extracellular Ca2+ reduced the basal [Ca2+]i in CLIC1-
knockdown A549 cells. This suggests that CLIC1 knock-
down regulates the basal [Ca2+]i through Ca2+ entry
across the plasma membrane. A recent study showed that
the LTCC is influenced by the concentrations of intra-
cellular anions such as chloride36. Thus, we examined the
possible involvement of the LTCC in the CLIC1
knockdown-induced increase in [Ca2+]i. Figure 6c, d
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showed that blocking the LTCC with nifedipine (10 μM,
24 h) reduced the basal Ca2+ level in CLIC1-knockdown
A549 cells from approximately 212.6 nM to 47.8 nM,
which was not significantly different from that in control
A549 cells (59.0 nM, n= 6; P > 0.05; Fig. 6d). Further-
more, the effects of chelerythrine on [Ca2+]i in CLIC1k-
nockdown A549 cells were suppressed by nifedipine, and
the extent of the chelerythrine-induced [Ca2+]i increase
was comparable to that in control A549 cells (Fig. 6d).
It is generally accepted that the LTCC controls intra-

cellular Ca2+ in excitable cells through plasma membrane
channel activity. However, in nonexcitable cells such as

cancer cells, the LTCC regulates the Ca2+ level, often
through noncanonical functions such as by regulating the
expression and activity of other ion channels or proteins
involved in the regulation of [Ca2+]i

37,38. To determine
whether the regulation of the Ca2+ signal in A549 cells by
the LTCC depends on its channel activity, we performed
an electrophysiological study via the patch clamp tech-
nique in the whole-cell configuration. We detected little
LTCC activity in both control and CLIC1-knockdown
cells even with the use of Ba2+ instead of Ca2+ to
maximize the inward current conductance (data not
shown). Taken together, these data suggest that
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CLIC1-knockdown in A549 cells causes the dysregulation
of Ca2+ signaling, resulting in excess ROS generation and
cellular stress. Based on these data, we propose a working
hypothesis that CLIC1 is involved in the regulation of
Ca2+ homeostasis through noncanonical LTCC function
in A549 cells, thereby preventing excessive intracellular
levels of Ca2+ and ROS and controlling cellular stress (Fig.
7). Therefore, CLIC1 is a key regulator of Ca2+ signaling
in the control of cancer cell survival.

Discussion
CLIC1 plays critical roles in processes such as apoptosis,

proliferation, invasiveness, and metastasis in cancer cells,
but the underlying mechanisms remain unclear. The
disturbance of intracellular ROS homeostasis is reported
to be a key downstream event for CLIC1 activation28,29,
but the mechanisms by which CLIC1 regulates ROS levels
are not clear, and the signaling pathways downstream of
ROS disturbance need to be identified. In the present
study, using electrophysiological and molecular analyses,
we showed that CLIC1 knockdown induces an increase in
[Ca2+]i through the LTCC, which contributes to increased
ROS levels with concomitant JNK activation. Stress-
triggered JNK activation has been linked with the induc-
tion of apoptotic DNA fragmentation through H2AX

phosphorylation, which accumulates at sites of DNA
double-strand breaks39. Consistent with these observa-
tions, we found that CLIC1 deficiency exacerbates p-JNK
signaling and enhances the levels of p-γH2AX, a marker
for DNA double-strand breaks, in response to a putative
anticancer agent, chelerythrine. The intracellular ROS
measurement results revealed that CLIC1 knockdown in
A549 cells upregulated ROS levels, an effect prevented by
the intracellular Ca2+ chelator BAPTA-AM. However, the
antioxidant Trolox had little effect on the basal Ca2+ level
and the chelerythrine-induced increase in the Ca2+ level
in both control and CLIC1-knockdown A549 cells. These
data suggest that Ca2+ dysregulation occurs prior to ROS
disturbance in these cells. Blocking the LTCC with nife-
dipine restored the basal Ca2+ level and chelerythrine-
induced Ca2+ response in CLIC1-knockdown A549 cells
to that in control cells, suggesting a role for LTCC in the
increase in Ca2+ signaling related to CLIC1 depletion.
Based on our current data, we propose that CLIC1 is
critical for the control of intracellular ROS levels and the
apoptotic signaling cascade by suppressing the LTCC
function.
Our study demonstrates that CLIC1 regulates [Ca2+]i

through the LTCC in A549 cells because (1) the sup-
pression of extracellular Ca2+ attenuated the CLIC1
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knockdown-exacerbated Ca2+ response, and (2) nifedi-
pine treatment blocked the increase in the basal Ca2+

level and chelerythrine-induced Ca2+ signal in CLIC1-
knockdown cells. Since we detected little LTCC activity in
both control and CLIC1- knockdown cells using the patch
clamp technique, it is likely that the LTCC regulates the
Ca2+ level via a noncanonical mechanism in these cells.
Several nonselective cation channels such as TRPC1,
TRPC3, TRPC4, and TRPC6 have been found in A549
cells40. Thus, the involvement of nonselective cation
channels in CLIC1 knockdown-induced Ca2+ signaling is
plausible. However, the pharmacological properties of
those TRPCs exhibiting insensitivity to nifedipine41

exclude the possible involvement of TRPCs. Therefore,
the LTCC is the most plausible candidate for increased
basal Ca2+ levels and chelerythrine-stimulated elevation
of intracellular Ca2+ in CLIC1-knockdown A549 cells.
However, we cannot completely rule out the possible
involvement of other nifedipine-insensitive nonselective
cation channels. LTCC proteins are expressed in various
cancers42 and have both canonical and noncanonical
functions37. It has been demonstrated that LTCC proteins
control Ca2+ homeostasis and cell migration in the
HCT116 colon cancer cell line by a noncanonical
mechanism that involves another channel protein, NCX1/
338. In addition, the LTCC can also function as a tran-
scription factor regulating the expression of proteins
involved in the regulation of [Ca2+]i and cell

migration43,44. Considering the broad cellular localization
of CLIC1 proteins, CLIC1 might also modulate LTCC
function as a transcription factor. Further studies are
required to elucidate the regulatory mechanism of non-
canonical LTCC function in CLIC1-knockdown
A549 cells.
The reduction in the chloride channel activity in cancer

cells induces an increase in the intracellular chloride level
due to a reduction in chloride efflux45. Chloride (Cl−) is
the most abundant transportable anion in all cells of the
body, and the intracellular concentration of chloride
([Cl−]i) is regulated and maintained by a delicate func-
tional balance between the operations of plasma mem-
brane Cl− channels and those of transporters, as well as
those of local impermeant anions46,47. As intracellular
chloride homeostasis is critical for many cell functions,
including cell signaling transduction48,49, intracellular
chloride might function as a signaling messenger to reg-
ulate LTCC directly or indirectly. In fact, previous studies
showed that an increase in chloride levels can increase L-
type Ca2+ currents36, possibly via two intracellular regions
of the LTCC. It is also reported that the replacement of Cl-

with various substituting anions influences many Ca2+-medi-
ated processes, including the contractility of cardiac and
skeletal muscle, hormone secretion, and neurotransmitter
release via the LTCC

50–54

. Thus, it is plausible that CLIC1
knockdown in A549 cells induces an increase in the
intracellular level of chloride, which in turn enhances

Fig. 7 A working hypothesis. In A549 control cells, CLIC1 blocked the L-type calcium channel and diminished the effects of chelerythrine on [Ca2+]i.
When CLIC1 was depleted, the intracellular calcium level was increased through the LTCC and increased calcium-enhanced ROS generation. ROS
accumulation might lead to JNK phosphorylation, resulting in an increase in cellular stress
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LTCC function. However, the detailed mechanisms by
which intracellular chloride regulates the LTCC need to
be further investigated.
Our results demonstrated that BAPTA-AM suppressed

ROS production in CLIC1-knockdown A549 cells, sug-
gesting that Ca2+ signaling can influence the cellular
generation of ROS. Interactions between ROS and Ca2+

signaling can be bidirectional, wherein ROS can regulate
cellular calcium signaling, while calcium signaling is
essential for ROS production55. However, the antioxidant
Trolox did not alter the basal Ca2+ level or chelerythrine-
induced Ca2+ response in either control or CLIC1-
knockdown A549 cells, suggesting that these Ca2+ sig-
nals are independent of ROS in A549 cells. These data
further support the idea that the mutual interplay and
crosstalk between Ca2+ and ROS is highly dependent on
the cellular context56. The role of Ca2+ and ROS during
the process of apoptosis has been explored in great depth.
Ca2+ signals regulate ROS by modulating several ROS
generation systems, including NADPH oxidases (Nox),
NO synthase (NOS) and mitochondria, and the con-
sequent Ca2+ and ROS surges are required for apoptosis
initiation at the mitochondria-endoplasmic reticulum
interface57. However, this interplay is altered in cancer
cells, enhancing their resistance to apoptosis, but its
underlying mechanisms are still unclear57. Taken together
with the fact that the activity of JNK and p38 is regulated
by intracellular Ca2+ as well as ROS58,59, our results
suggest that the disturbance in intracellular Ca2+ signal-
ing combined with elevated ROS levels might underlie the
stronger but more transient activation of MAPK upon
chelerythrine treatment in CLIC1 KD1 cells relative to
that in control cells and that these surges in Ca2+ and
ROS might lead to a cellular stress-induced response and
death, implying that CLIC is important for the apoptosis
resistance of A549 cells.
It appears that the regulation of ROS levels by CLIC1 is

tumor cell-type specific. It has been previously shown that
the inhibition of CLIC1 by IAA94 significantly suppressed
ROS generation in glioblastoma cancer stem cells and
LOVO cells, a human colon adenocarcinoma cell line60.
However, CLIC1 knockdown in human esophageal
squamous cell carcinoma induced apoptosis through the
JNK pathway, likely reflecting excessive ROS produc-
tion61. Similar to its effect in human esophageal squamous
cell carcinoma, CLIC1 knockdown in A549 human lung
cancer cells upregulated cell death and JNK activation
concomitant with the elevated ROS levels. The basis for
the different effects of CLIC1 inhibition in distinct cancer
cells is currently unclear; however, one of the mechanisms
might be the diverse regulatory crosstalk between Ca2+

and ROS56. We demonstrated that CLIC1 inhibition
upregulated ROS levels by increasing intracellular Ca2+

through the LTCC in A549 cells. Considering that the

functional expression of the Ca2+ signaling machinery,
such as the LTCC, varies depending on cell type, down-
stream signaling effects, such as ROS regulation by CLIC1
inhibition, can vary in different cell types. Further studies
are required to clarify these uncertainties. However, our
data reveal that CLIC1 might play a critical role in
apoptosis resistance, diminishing the large surges in the
Ca2+ concentration and ROS levels, and suggest the
possibility for targeting CLIC1 to control apoptosis in
cancer cells.
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