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Qun Dong,1 Danqing Shen,1 Jiachen Ye,1 Jiaxin Chen,1 and Jing Li1,2,*
SUMMARY

Protein phosphorylation is a crucial post-translational modification implicated in cancer pathogenesis, of-
fering potential diagnostic and therapeutic targets. Here, we developed PhosCancer, a user-friendly data-
base for extracting biologically and clinically relevant insights from phosphoproteomics data. Leveraging
data from the CNHPP and CPTAC, PhosCancer encompasses 174,587 phosphosites from 14 datasets
spanning 12 cancer types. Through extensive statistical analyses and integration of annotations from
external resources, PhosCancer serves as a convenient one-stop platform facilitating the exploration of
phosphorylation profiles across different cancer types. Not only does PhosCancer encompass basic infor-
mation, 3D structure, functional domains, and upstream kinases, but also provides quantitative associa-
tions with nine clinical features, and the relevance with hallmarks in both cancer-specific and pan-cancer
views. PhosCancer is a valuable resource for cancer researchers and clinicians, promoting the identifica-
tion of clinically actionable biomarkers and further facilitating the clinical applications of phosphoproteo-
mic data.

INTRODUCTION

Protein phosphorylation is one of the most important post-translational modifications (PTMs), mainly occurring at specific serine (Ser/S), thre-

onine (Thr/T), and tyrosine (Tyr/Y) residues.1 This reversible modification acts as a dynamic molecular switch, regulating a broad spectrum of

biological processes. Aberrant phosphorylation can induce alterations in enzymatic activity, subcellular localization, ligand binding, and inter-

action with other proteins, thereby affecting the dysfunctions of downstream pathways and ultimately contributing to various pathological

conditions, especially carcinogenesis.2,3 During recent decades, tremendous efforts have been made by researchers to assess the applica-

bility of protein phosphorylation changes in cancer diagnosis, prognosis, and therapeutic strategies. Notable findings include the significant

association between elevated phospho-Ser784-VCP levels and poor prognosis in breast cancer,4 and Rb phosphorylation as a driver and po-

tential therapeutic target in colon cancer.5

Advancements in mass spectrometry-based technologies enable the detection and profiling of phosphosites with unprecedented sensi-

tivity, offering new avenues for investigating their biological functions. Cancer proteomics consortia, like the Chinese Human Proteome

Project (CNHPP) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), provide a wealth of phosphoproteomics data across various

cancer types. The datasets hold significant value in enhancing our understanding of the molecular mechanisms underlying cancer and in

identifying novel diagnostic and therapeutic biomarkers. However, the analysis of raw data from such consortia is labor-intensive, time-

consuming, and requires specialized bioinformatics expertise. Moreover, information on the associations between phosphorylation and

cancer is scattered across disparate phosphoproteomics studies, thus greatly limiting the clinical translation of these data. Although

several databases—dbPTM,6 EPSD,7 Phospho.ELM,8 and PhosphoSitePlus9 provide the structural views and literature-based curation of

phosphosites, they lack information on abundance patterns or quantitative annotation of phosphorylation in cancers. Other databases,

such as CPPA,10 iProPhos,11 cProsite,12 and UALCAN,13 offer critical quantitative analyses for phosphorylation and have made significant

contributions to cancer phosphorylation research, but each has certain limitations. CPPA relies on external databases and software pre-

dictions for upstream kinase data without quantitative kinase-substrate correlations and lacks functional analysis of phosphorylation. iPro-

Phos offers data-based kinase-substrate correlations but lacks experimentally validated information and a pan-cancer perspective. cProsite

only displays changes in phosphorylation levels between tumor and normal samples, and correlations among phosphorylation levels.

UALCAN only focuses on analysis across race, age, subtype, and multiple hallmark pathways for phosphorylation. Overall, CPPA, iProPhos,

cProsite, and UALCAN mainly offer certain quantitative analyses without qualitative annotations, which still results in fragmented phos-

phorylation information.
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Figure 1. An overview of the PhosCancer database

First, we manually curated raw phosphoproteomics data from all available cancer types from CNHPP and CPTAC, encompassing 14 datasets, and preprocessed

the data using standardized pipelines. Subsequently, we conducted detailed analyses and integrated various annotations from well-established resources to

develop the PhosCancer database. PhosCancer provides multi-dimensional annotation information for each phosphosite.
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Therefore, we developed PhosCancer, an integrative and user-friendly web server for exploring protein Phosphorylation in HumanCancer.

We collected phosphoproteomics data from a wide array of cancer types sourced from the CNHPP and CPTAC, comprising 174,587 nonre-

dundant phosphosites from 14 datasets across 12 cancer types. Through a series of statistical analyses and integration of essential annota-

tions from multiple external resources, PhosCancer not only provides a rich knowledge repository but also comprehensively characterizes

phosphorylation profiles within and across different cancer types. PhosCancer presents an integrated presentation of annotations, statistical

analyses, and visualization through a flexible web interface. PhosCancer will be an invaluable resource for cancer biologists and clinicians,

facilitating the identification of novel diagnostic and therapeutic targets and expediting the clinical translation of cancer phosphoproteomic

data. PhosCancer is freely available at https://lilab.life.sjtu.edu.cn/PhosCancer.

RESULTS
Database construction and content

PhosCancer is a systematic resource designed for exploring protein phosphorylation in human cancer, depicted in Figure 1. To

construct a comprehensive database, we collected raw phosphoproteomics and proteomics data from almost all available cancer types

from the CNHPP and CPTAC data portals. Subsequently, the collected data were processed and analyzed using a standardized pipe-

line. Intending to serve as a convenient one-stop platform, we integrated key annotations from various resources alongside data-driven

analyses to enrich functional and structural insights. Each phosphosite is linked to detailed annotations across seven categories: (i) basic
2 iScience 27, 111060, November 15, 2024
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information: provides essential details such as the gene name, protein identifier, and information on drugs targeting the protein. (ii) 3D

structure: offers visualization of phosphosite into the amino acid sequence context and 3D structure to derive insights and hypotheses

regarding biological functions and mechanisms. (iii) Functional domains: identifies protein functional domains containing the phospho-

site, highlighting potential functional implications based on protein architecture. (iv) Upstream kinases: links phosphosites to known or

predicted upstream kinases responsible for its phosphorylation, offering mechanistic insights into regulatory networks. Correlations be-

tween all protein kinases14 and phosphorylation levels based on our 14 datasets were provided to enhance the identification of poten-

tial kinase-substrate interactions. (v) Associations with clinical features: investigates associations with tumor status (normal vs. tumor),

stages, survival outcomes, age, gender, BMI, race, tumor size, and subtypes, aiding in the identification of clinically relevant biomarkers.

(vi) Relevance with hallmarks: evaluate the correlation of phosphosites with hallmarks, inferring their potential roles in human cancer. (vii)

Pan-cancer view: offers an integrative overview of the phosphorylation alterations across different cancer types, enabling cross-compar-

isons and facilitating the identification of phosphosites with shared effects on cancer, thereby offering potential implications for multi-

cancer diagnosis and therapeutic strategies.

The current version of PhosCancer comprises 174,587 nonredundant phosphosites derived from 14 datasets, including breast invasive car-

cinoma (BRCA),15 clear cell renal cell carcinoma (CCRCC),16 colon adenocarcinoma (CRC),5 early-onset gastric cancer (EOGC),17 glioblastoma

(GBM),18 (HBV)-related hepatocellular carcinoma (HCC),19 head and neck squamous cell carcinoma (HNSCC),20 lung squamous cell carci-

noma (LSCC),21 lung adenocarcinoma (LUAD),22 ovarian serous cystadenocarcinoma (OV),23 pancreatic ductal adenocarcinoma (PDAC)24

and uterine corpus endometrial carcinoma (UCEC)25 in CPTAC, hepatocellular carcinoma (HCC_cnhpp)26 and lung adenocarcinoma

(LUAD_cnhpp)27 in CNHPP. The distribution of phosphosites across these datasets is illustrated in Figure 2A, with counts ranging from

60,492 (LSCC) to 25,617 (LUAD_cnhpp). Phosphorylation primarily targets pS residues (66.59%), with lesser proportions observed on pT

(22.75%) and pY (10.66%) residues, consistent with prior research.28 These 174,587 phosphosites occur on only a subset of 16,034 proteins

(Figure 2B). Among these proteins, up to 14205 (88.59%) exhibit multiple phosphorylation events with at least two phosphosites, highlighting

multisite phosphorylation as the primary mechanism regulating protein substrates (Figure 2C). Remarkably, 477 proteins (2.97%) are exten-

sively phosphorylatedwith fifty ormore phosphosites, potentially indicating critical roles within complex cellular signaling networks. Phospho-

sites tend to be enriched in disordered protein regions, whereas pY residues show a preference for localization within ordered protein regions

(Figure 2D). No apparent sequence preference in phosphorylation was observed (Figure 2E). These 14 datasets comprise 2553 samples

including 1503 tumor samples and 1050 paired or unpaired normal samples (Figure 2F). Data-driven analyses primarily include correlation

analysis of phosphorylation levels and kinase expression (KinaseCor), differential analysis between tumor and normal samples (DE), differen-

tial analysis across tumor stages (Stage), survival analysis (Survival), and correlation analysis results of phosphorylation levels with hallmarks

(Hallmark). Due to high rates of missing values, certain phosphosites were excluded from statistical analyses within PhosCancer (Figure 2G),

and qualitative information was provided for these phosphosites.

To further explore the clinical associations of phosphosites from a global perspective, we screened for associations including DE (|fold

change|>1.2 & FDR<0.05), Survival (p < 0.05), and Stage (p < 0.05). Our analysis revealed a substantial proportion of phosphosites asso-

ciated with multiple cancer types, with 63.05% in DE and 63.17% in Survival (Figure 3A). Among these, 6,442 (12.61%) phosphosites in DE

and 1,657 (3.41%) in Survival were associated with seven or more cancer types. Specifically, seven phosphosites in DE were linked to 13

cancer types, including ABLIM3 pS503, HMGA1 pS36, NCL pS67, NUCKS1 pS181, DDX21 pS121, NOC2L pS49, and MCM2 pS27. The crit-

ical roles of certain phosphosites have been established; for instance, phosphorylation of the transcription factor NUCKS1 at S181 by CDK1

has been shown to attenuate its DNA binding ability.29 To further explore the clinical significance of phosphosites on a global scale, we

constructed a pan-cancer phosphosite association network. This network focused on phosphosites with differential phosphorylation in at

least seven cancer types, applying stringent criteria (|fold change|>2, FDR<0.05, and a minimum sample size of 15 for both cancer and

normal tissues). The network included 1,429 cancer-phosphosite associations, covering 13 cancer types and 192 phosphosites (Figure 3B).

Among these, 136 phosphosites (70.83%) exhibited consistent differential expression across their respective cancer types. Specifically, 75

phosphosites were consistently upregulated in cancer tissues, while 61 were consistently downregulated compared to normal tissues. The

top 20 phosphosites with the most associations across cancer types are highlighted in the network. Notably, some of these phosphosites

have well-documented functions, such as TOP2A pS1106 associated with nine cancer types,30 CDC20 pT106 associated with nine cancer

types,31 and ECT2 pT359 associated with ten cancer types.32 The strong connections within this network suggest pan-cancer patterns of

protein phosphorylation changes, underscoring the potential significance of these phosphosites in multi-cancer diagnosis and therapeutic

strategies.
Database usage

The PhosCancer is a web-accessible and comprehensive open resource for interactive exploration, browsing, searching, visualization, and

downloading. Within the Browse’’ section, users can access all database results. The ‘‘Quick Search’’ allows users to search easily for informa-

tion using a single keyword of interest, gene symbol, or UniProt ID. For more specific queries, an advanced search option is available on the

‘‘Search’’ page. Here, users can retrieve desired phosphosites based on specific keywords including gene/protein, position, cancer type, pro-

tein correction status, missing value ratio, and different significance thresholds (p < 0.05, p < 0.01, FDR< 0.05, and FDR<0.01) for DE, Stage

and Survival analysis. Users have the flexibility to perform keyword searches individually or in combination to refine their queries.

Detailed pages for each phosphosite can be accessed throughbrowsingor searching (Figure 4). The page consists of sixmodules: ‘‘Basic

info’’, ‘‘Upstream kinases’’, ‘‘DE’’, ‘‘Stage’’, ‘‘Survival’’, ‘‘Subtype’’, ‘‘More Clinical’’ and ‘‘Hallmark’’. Clicking on a module provides access to
iScience 27, 111060, November 15, 2024 3
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Figure 2. The data statistics of PhosCancer

(A) Phosphosite counts across 14 datasets and the distribution of residue types.

(B) Identification numbers of phosphosites (purple) and phosphoproteins (blue) with sample accumulation.

(C) Percentage of numbers of phosphosites in protein substrates.

(D) Distribution of phosphosites within or outside intrinsically disordered regions.

(E) Sequence preference analysis of phosphosites in homo sapiens, ordered by pS, pT, and pY residues.

(F) Tumor and normal sample sizes for each dataset.

(G) Numbers of quantifiable phosphosites with missing values below 80% and non-quantifiable phosphosites annotated only qualitatively in PhosCancer. Clinical

feature data availability is summarized at the bottom.
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the corresponding results. Here, we illustrate the utility of PhosCancer using phosphosite S27 onMCM2 (UniProt ID: P49736) as an example.

The significant role of dysregulated MCM2 phosphorylation has been widely recognized and is implicated in the pathogenesis of various

cancers.33,34 The ‘‘Basic info’’ module provides basic information about the phosphosite, including UniProt ID, protein name, gene name,

position, sequence window, function score, disorder score, drugs targeting the protein, protein subcellular localization, protein function,

and functional domains where the phosphosite is located. PhosCancer reveals thatMCM2pS27 exhibits a functional score of up to 0.95 and

adisorder score of 0.89 (Figure 4A). Additionally, thedistribution of phosphorylation levels across all 14 cohorts, including tumor and normal
4 iScience 27, 111060, November 15, 2024
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Figure 3. The landscape of cancer-associated phosphosites

(A) Distribution of phosphosites associated with varying numbers of cancer types.

(B) Network of differential phosphosites shared among at least seven cancer types. Edge colors indicate changes in phosphorylation levels: red denotes elevated

phosphorylation in cancer tissues, while blue denotes elevated phosphorylation in normal tissues. Node colors represent the consistency of these differences

across cancer types: red nodes indicate consistently elevated phosphorylation in cancer tissues, blue nodes indicate consistently decreased phosphorylation

in cancer tissues, and yellow nodes indicate inconsistent phosphorylation patterns across different cancer types.
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samples, is presented at the bottom. Phosphorylation levels at this site are the highest in theHCC_cnhpp cohort across both cancerous and

normal tissues, whereas BRCA displays the lowest phosphorylation levels. Protein phosphorylation is a result of kinase regulation and ki-

nases could serve as promising therapeutic targets in cancer.5 It is thus particularly important to elucidate the regulatory relationship among

kinases and phosphosites. The ‘‘Upstream Kinases’’ module includes two result tables. The first table lists verified upstream kinases from

phosphoELM and PhosphoSitePlus, as well as predicted kinases from GPS, iGPS (high thresholds), and the study by Johnson et al.35 The

second table provides detailed statistical outcomes for the top 10 kinases from Spearman correlation analysis, including cancer type, sam-

ple size with non-missing values, kinases, GO annotations for kinases, p value, false discovery rate (FDR) and correlation coefficient. Several

upstream kinases for MCM2 pS27 have already been verified previously, including CDK2, CDK7, CDC7, and CSNK2A1. Notably, CDK4,

identified by iGPS and The Kinase Library,35 ranks among the top 10 kinases with the highest correlation in the OV cohort (r = 0.424,

FDR = 0.006), indicating its potential role as an upstream kinase for this phosphosite (Figure 4B). The ‘‘DE’’, ‘‘Stage’’, ‘‘Survival’’, ‘‘Subtype’’,

‘‘More Clinical’’ and ‘‘Hallmark’’ modules follow a similar structure: each module begins with a detailed statistical table at the top of the

page, followed by visualizations at the bottom. The visualizations include a summarizing plot covering 14 cohorts and cancer-specific views

are accessible via a dropdown menu. MCM2 pS27 consistently exhibits significantly elevated phosphorylation levels in cancerous tissues

compared to normal tissues across 13 cohorts, with the highest fold change in BRCA. We also report the distribution of MCM2 pS27 phos-

phorylation across various tumor stages. However, the significance of p values did not reach statistical significance, potentially due to

limited sample size (Figure 4D). Survival analysis utilizing a log rank test with optimal cutoff indicates statistical significance within the ma-

jority of cohorts (Figure 4E). MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication.34 Indeed, the association

analyses with hallmarks consistently confirm its functional relevance, revealing strong correlations between its phosphorylation level and

hallmark pathways associated with proliferation across all cohorts, including E2F targets, G2M checkpoint, andMYC targets v2 (Figure 4F).

Hyperlinks to UniProtKB, GeneCards, and theMolecular Signatures Database (MSigDB)36 are provided for the UniProt ID, gene name, and

hallmark, respectively, thereby facilitating users’ access to additional supplemental information.

Finally, users can download generated plots in raster (PNG) formats, processed phosphoproteomics data, and detailed tables containing

statistical analysis results as text files from the ‘‘Download’’ page. A detailed user guide is available on the ‘‘Help’’ page to assist users in navi-

gating and utilizing the features of PhosCancer effectively.
iScience 27, 111060, November 15, 2024 5
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Figure 4. A case study to explore phosphosite S27 on MCM2 using PhosCancer

Clicking the ‘‘Basic info’’, ‘‘Upstream kinase’’, ‘‘DE’’, ‘‘Stage’’, ‘‘Survival’’, ‘‘Subtype’’, ‘‘More Clinical’’ and ‘‘Hallmark’’ buttons in the toolbar displays the

corresponding results.

(A) This section presents basic information, functional and disorder prediction scores of the phosphosite, along with 3Dmol visualization of the phosphosite on

the tertiary structure. It also includes the landscape of phosphorylation levels at this phosphosite across 14 datasets in tumor or normal samples.

(B) The first table comprises experimental and predicted upstream kinases and the second table provides the correlation analysis between kinases and the

phosphosite based on the 14 datasets. The DE (C), Stage (D), Survival (E), and Hallmark (F) sections each comprise three main components. Firstly, a detailed

statistical outcome table for each analysis. Secondly, a pan-cancer visualization. Thirdly, a cancer-specific visualization is accessible via a dropdown menu.
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DISCUSSION

The crucial role of protein phosphorylation in cancer leads to an urgent need for integrating associations between phosphorylation events

and cancer biology. Benefiting from the extensive proteomics data deposited by cancer proteomics consortia, we assembled a compre-

hensive human phosphoproteome. Here, we present PhosCancer, a database aimed to translate phosphopeptide identification and quan-

tification results into biological and clinical insights from a vast repository of phosphoproteomics data. PhosCancer allows cancer re-

searchers and clinicians, regardless of their computational expertise, to access, analyze, visualize, and interpret the data with ease.

Considering kinases as promising therapeutic targets for cancer,5 PhosCancer not only provides experimental verified and predicted up-

stream kinases collected from external databases and tools, but also offers co-expression links between 518 protein kinases and the phos-

phosites across our 14 datasets to enhance the identificationof potential kinase-substrate interactions. Toprioritizephosphosites for further

study regarding their potential oncogenic or tumor suppressor properties, one common strategy is to identify those associated with clinical

features. PhosCancer comprehensively characterizes phosphosites with clinical features, including phosphorylation level differences across

different cancer subsets as defined by clinicopathologic features, survival associations and hallmarks. To meet diverse user needs, survival

analysis employsmultiplemethods such asCoxproportional hazards regression and log rank tests basedonoptimal cutoff ormedian value.

Each analysis provides both cancer-specific results and pan-cancer visualizations, enabling users to explore the role of each phosphosite

across different cancers simultaneously. To correct for differential underlying protein levels when performing certain phosphorylation-

based analyses, a linear model was then fit (R function lm, PTM � protein) to all matched PTM-protein data points by accession number.

The residuals of each model served as protein-normalized phosphosite abundances.3,21 Both the search page and each analysis module

on the detailed page include a dropdown menu labeled ‘‘Corrected with Protein,’’ indicating that the statistical analysis is based on phos-

phorylation data adjusted for protein expression. Moreover, critical annotations from external databases, such as whether the phosphosite

falls within known protein functional regions, are integrated for comprehensive data interpretation. In PhosCancer, a flexible and user-

friendly web interface offers an integrated presentation encompassing annotation, statistical analysis, and meticulously crafted images

for visualization. The information about MCM2 pS27 underscores the database’s ability to provide credible clues and functional insights.

The information available in this database can be used by biology researchers to explore potential functional associations of phosphosites.

Furthermore, PhosCancer enables rapid prioritization of critical phosphosites for in-depth investigation, resulting in significant time and

effort savings, and aiding in the discovery of clinically relevant biomarkers.

PhosCancer will undergo quarterlymaintenance and updates through ongoingmonitoring of public resources and research articles. Addi-

tionally, we will integrate additional annotations from other public resources to rich annotations for phosphoproteins and phosphosites. We

anticipate PhosCancer to serve as a valuable asset for future cancer proteomics research, significantly advancing our understanding of the

molecular mechanisms underlying human cancer.
Limitations of the study

PhosCancer, as primarily a data exploration and hypothesis generation tool, has several limitations. For instance, while certain cancer-asso-

ciated phosphosites in the database show promise as diagnostic and therapeutic targets, their translation into clinical applications remains to

be experimentally validated. Moreover, although PhosCancer contains datasets from CNHPP and CPTAC, data from other sources necessi-

tates further supplementation in PhosCancer.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jing Li (jing.li@sjtu.edu.cn).
Materials availability

This study did not generate new reagents.
Data and code availability

� All data used in this study were obtained from CPTAC and CNHPP. All generated data and analysis results of PhosCancer are accessible through the
download page of PhosCancer (https://lilab.life.sjtu.edu.cn/PhosCancer/Download.html).

� Code for PhosCancer is available at https://github.com/Li-Lab-SJTU/PhosCancer.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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MS-GF+ Kim et al.38 https://github.com/MSGFPlus/msgfplus

MASIC Monroe et al.39 https://github.com/PNNL-Comp-

Mass-Spec/MASIC

Ascore Beausoleil et al.40 https://github.com/PNNL-Comp-

Mass-Spec/AScore

GPS 5.0 Wang et al.41 http://gps.biocuckoo.cn

iGPS Song et al.42 http://igps.biocuckoo.org

R 4.0.2 R Core Team https://www.r-project.org

impute https://github.com/gangwug/impute https://github.com/gangwug/impute

GSVA Hänzelmann et al.43 https://bioconductor.org/packages/

release/bioc/html/GSVA.html

IUPred3 Erd}os et al.44 https://iupred3.elte.hu

InterProScan https://github.com/ebi-pf-team/interproscan https://github.com/ebi-pf-team/interproscan

funscoR Ochoa et al.45 https://github.com/evocellnet/funscoR
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zh-CN/docs/Web/HTML

https://developer.mozilla.org/zh-

CN/docs/Web/HTML

CSS https://developer.mozilla.org/

zh-CN/docs/Web/CSS

https://developer.mozilla.org/zh-

CN/docs/Web/CSS

JavaScript https://developer.mozilla.org/

zh-CN/docs/Web/JavaScript

https://developer.mozilla.org/zh-

CN/docs/Web/JavaScript

MySQL https://www.mysql.com https://www.mysql.com

Bootstrap https://v3.bootcss.com https://v3.bootcss.com

Echarts https://echarts.apache.org/zh/index.html https://echarts.apache.org/zh/index.html

3Dmol Rego et al.46 http://3dmol.csb.pitt.edu

Deposited data

PhosCancer: Analysis scripts This paper https://github.com/Li-Lab-SJTU/PhosCancer

PhosCancer: Standardized Data for

PhosCancer

This paper https://lilab.life.sjtu.edu.cn/PhosCancer/

Download.html

Other

Resource website for the publication This paper https://lilab.life.sjtu.edu.cn/PhosCancer
METHOD DETAILS

Data collection and processing

We curated raw phosphoproteomics and proteomics data from nearly all available cancer types from the CNHPP and CPTAC data portals,

encompassing 14 different cohorts with sample sizes exceeding 50 (Tables S1 and S2). These datasets include BRCA,15 CCRCC,16 CRC,5

GBM,18 HCC,19 HNSCC,20 LSCC,21 LUAD,22 OV,23 PDAC24 and UCEC25 in CPTACwith TMT labeling, EOGC17 in CPTACwith iTRAQ labeling,

HCC_cnhpp26 and LUAD_cnhpp27 in CNHPP with label-free quantification. Clinical information was also downloaded with molecular data.

MS/MS spectra files obtained from the CNHPP in raw format were uniformly converted tomzML format along with data fromCPTAC using

the msConvert tool37 (version 3.0.21128). Then, the MS/MS data in mzML format were searched against the UniProtKB/Swiss-Prot protein

sequence database downloaded in January 2024 using the MS-GF+ search engine.38 Specifically, the partially tryptic search used a G 20

ppm parent ion tolerance, and the maximum missing cleavage site was set as 2. MS-GF+ considered static carbamidomethylation
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(+57.0215 Da) on Cys residues, and dynamic oxidation (+15.9949 Da) on Met residues. Additional static modifications were set according to

specific datasets, such as TMTmodification (+229.1629 Da) on peptide N termini and Lys residue for TMT datasets, and iTRAQ4modification

(+144.1021 Da) on peptide N termini and Lys residue for iTRAQ4 datasets. All results were then filtered with a 1% false discovery rate (FDR) at

the peptide-spectrum match (PSMs) level. Intensities of all TMT reporter ions and peak areas for the label-free dataset were extracted using

MASIC software.39 Phosphoproteomics data files underwent the same process with additional consideration for dynamic phosphorylation on

Ser, Thr, or Tyr residues. Phosphosite localization was performed using the Ascore algorithm, and top-scoring sequences were reported.40

Phosphorylation levels were determined based on themedian intensity of all identified peptides at each specific site.5 Subsequently, median-

centered normalization and log2 transformation were applied to obtain final abundance values. Considering the variability introduced by

different MS/MS platforms and experimental protocols, we employed percentile rank transformation to standardize the expression values

of each MS/MS dataset to a uniform scale (0-1) when exploring the distribution of tumor/normal phosphorylation levels across various cancer

types.47,48

Tumor stage information in clinical data was standardized by consolidating subcategories, such as ‘stage IA’, ‘stage IB’, and ‘stage IC’, into

a unified stage I group. Survival data included patient vital status (Dead/Alive), ‘Days to Last Follow Up’ for living patients, and ‘Days to Death’

for deceased patients.

Upstream kinase collection and prediction

We gathered experimentally verified human kinase-specific phosphosite relationships from the Phospho.ELM8 and PhosphoSitePlus9 (ac-

cessed in Apr. 2024). We employed the sequence-based predictor GPS 5.041 and network-based predictor iGPS42 to predict kinase-substrate

interactionswith a high threshold. Furthermore, kinases rankingwithin the top 10 for the Ser/Thr kinases in TheKinase Library were considered

as biochemically predicted according to Johnson et al.,35 which predicts PTM regulators according to substrate specificity.

In addition, Spearman correlation analysis was conducted to explore the co-expression between 518 protein kinases14 and the phospho-

sites across our 14 datasets. PhosCancer presents the detailed statistical results for the top 10 kinases exhibiting the highest correlation.

Associations with clinical features

The association analyses between phosphopeptide abundances and clinical features involved differential expression assessment between

tumor and normal samples, differential expression across tumor stages, survival analyses and associations with age, gender, BMI, race, tumor

size and subtypes. The subtype information comes from the data provided in the clinical documents, corresponding to the multi-omics clas-

sification results in the relevant literature. The Wilcoxon rank-sum test was employed to examine differential expression between tumor and

normal samples, younger and older samples (separated bymedian values), and female andmale samples. The Kruskal-Wallis test was utilized

to evaluate differential expression across various tumor stages, races and tumor subtypes. Spearman correlation analysis was used to assess

the correlation between phosphorylation and BMI/tumor size. For investigating associations with overall survival (OS) or disease-free survival

(DFS), Kaplan-Meier survival analysis, log-rank test, and Cox proportional hazards regression were conducted. Using both Cox regression and

log-rank tests provides a comprehensive understanding of survival differences and allows for cross-validation, enhancing the robustness of

our conclusions. Notably, two cutoff methods based onmedian and optimal cutpoints were applied for the log-rank test. Themedian value is

a commonly used statistical measure that divides the data into two equal parts, providing a straightforward and unbiased dichotomization for

survival analysis. The optimal cutpoint, determined using the survminer R package (version 0.4.9) with the maxstat method, maximizes the

difference in survival between groups. Thismethod helps identify more potentially prognostic phosphosites, thereby improving the sensitivity

of the analysis. FDR was controlled using the Benjamini-Hochberg method to address multiple comparisons.

To ensure statistical reliability, phosphosites with missing values exceeding 80% in samples were excluded.

Relevance with hallmarks

We explored the potential effects of phosphosites on hallmarks in cancer by conducting a Spearman correlation analysis between phosphor-

ylation levels and the activities of hallmark pathways (h.all.v7.5.1.symbols.gmt). The 50 hallmark pathways, retrieved from theMSigDB36, have

been extensively employed to elucidate the fundamental mechanisms underlying cancer pathogenesis.49 Pathway activities were inferred us-

ing single-sample gene set enrichment analysis (ssGSEA) applied to proteomics data with the R packageGSVA.43 Given the intolerance of the

tool to missing data, we performed missing value imputation before analysis. Proteomics data underwent filtration to exclude proteins with

more than 50% missing values in tumors, and any remaining missing values were imputed using k-nearest neighbor (kNN) imputation imple-

mented in the impute R-package, with 5 nearest neighbors utilized.22

Integration of external biological resources

To provide more functional and structural annotations of the phosphosites and modified proteins, we integrated external biological data-

bases and tools. For each phosphosite, the basic information about its protein has been obtained fromUniProtKB, such as UniProt ID, protein

name, gene name, sequence window (a peptide with 7 amino acids upstream and downstream of the modified residue), protein subcellular

localization and protein function. Besides, we assigned a functional score to each phosphosite ranging from 0 to 1 using the funscoR R pack-

age, with higher scores indicating increased relevance for cell fitness.45 To assess whether phosphosites reside in intrinsically disordered pro-

tein regions (IDRs), site-specific disorder scores were computed using IUPred3,44 with scores exceeding 0.5 classified as disorder. We also
12 iScience 27, 111060, November 15, 2024
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investigated drugs targeting proteins where phosphosites are located, utilizing data from the Drug-Gene Interaction database (DGIdb) 4.0,50

DrugBank,51 and Therapeutic Target Database Therapeutic Target Database (TTD)52 (downloaded in Apr. 2024). Lastly, to elucidate the func-

tional roles of phosphosites, their presence within functional domains annotated in the InterPro database53 was examined. InterProScan was

employed with default settings to search protein sequences for potential matches against 13 InterPro member protein signature databases.
Database implementation

The PhosCancer database was implemented on an Apache HTTP server running on the Linux platform. The front-end of the interface was

developed using HTML, PHP, CSS, and JavaScript, with Bootstrap with jQuery for responsiveness and enhanced user experience. MySQL

server version 5.1.73 on a Linux-based system was utilized for back-end data management. Visualization of PDB tertiary structures utilized

the 3Dmol.js plugin,46 while interactive charts on the homepage were created using the ECharts plugin.54 Besides, all figures displayed on

the website were generated using R.
QUANTIFICATION AND STATISTICAL ANALYSIS

Protein expression and phosphorylation levels were quantified using MASIC software (v3.2.7465). Kinase-substrate interactions were pre-

dictedwith theGPS 5.0 and iGPS 1.0. Disorder scores were computedwith IUPred3, and functional scores for each phosphosite were assigned

using the funscoR R package (v0.1.0). InterProScan (v5.61-93.0) was employed to match protein sequences against protein families and do-

mains. Statistical analyses included Spearman correlation to evaluate relationships between phosphorylation and BMI/tumor size, hallmark

activity, and protein kinases. Differential expression was assessed using the Wilcoxon rank-sum test for comparisons of tumor versus normal

samples, age (younger versus older), and sex (female versus male). The Kruskal-Wallis test evaluated differential expression across tumor

stages, races, and subtypes. The log-rank test and Cox proportional hazard regression were performed to investigate associations with sur-

vival. Specifically, ‘*’: p < 0.05; ‘**’: p < 0.01; ‘***’: p < 0.001; ‘****’: p < 0.0001; ns: not significant.
iScience 27, 111060, November 15, 2024 13
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