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Abstract
In response to growing awareness of climate change, requests to establish product carbon

footprints have been increasing. Product carbon footprints are life cycle assessments re-

stricted to just one impact category, global warming. Product carbon footprint studies gener-

ate life cycle inventory results, listing the environmental emissions of greenhouse gases

from a product’s lifecycle, and characterize these by their global warming potentials, pro-

ducing product carbon footprints that are commonly communicated as point values. In the

present research we show that the uncertainties surrounding these point values necessitate

more sophisticated ways of communicating product carbon footprints, using different sizes

of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon foot-

print studies only have a comparative meaning, we used dependent sampling to produce

relative results in order to increase the power for identifying environmentally superior prod-

ucts. We therefore argue that product carbon footprints, supported by quantitative uncer-

tainty estimates, should be used to test hypotheses, rather than to provide point value

estimates or plain confidence intervals of products’ environmental performance.

Introduction
Early enthusiasm about carbon footprinting resulted in the aim of calculating product carbon
footprints (PCFs) for whole product assortments [1]. The conclusions were intended for indus-
try to improve the product’s or service’s lifecycle environmental performance, and for consum-
ers to encourage more sustainable product procurements. These ambitions soon floundered
after being faced with the challenges of high costs of collecting data and modeling PCFs, large
time investments, and a lack of consensus on modeling choices [1]. The 14067, 14040 and
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14044 ISO standards for PCF and life cycle assessment (LCA), from which PCFs originate, pro-
vide the principles, minimum requirements and framework for conducting and reporting such
studies [2–4]. ISO 14040, for example, defines the phases of LCAs: goal and scope definition,
life cycle inventory analysis (LCI), life cycle impact assessment (LCIA) and interpretation [4].
In addition to ISO, numerous standards have been produced to harmonize methods based on
the ISO standards [5,6]. Inventory databases and software solutions have also made it easier to
calculate life cycle inventory results (e.g. kg CO2, CH4 and N2O), and classify and characterize
these into PCFs (kg CO2-eq.). Results are commonly presented as absolute point values, which
theoretically could be compared with each other much like nutritional facts [7]. Simply com-
municating the quantitative information through carbon labels has, however, been called into
question, as consumers lack a daily or annual allowance for greenhouse gases (GHGs), unlike
for nutrients [8].

Another reason for not communicating GHGs as point values is the large uncertainties sur-
rounding these quantitative estimates. PCFs of identical products can deviate by an order of
magnitude between studies, even if they comply with the same methodological guidelines [9].
This is largely due to data sourcing and modeling assumptions [9,10], but in some cases also to
different characterization factors used to translate the environmental emissions into impacts
[11]. The characterization factors for carbon footprints are typically the global warming poten-
tials (GWPs 100-year) reported by the IPCC, based upon the radiative forcing of
different gases.

LCA studies are often used for comparative purposes, including consumer choice. In a com-
parative context, two issues should be solved. The first is the fact that a standard LCA yields re-
sults on several impact categories, and that the trade-off between these categories is a delicate
issue, requiring weighting and/or multi-criteria analysis [12,13]. The second is the fact that un-
certainties in a comparative analysis require a different strategy, due to the fact that part of the
uncertainty may be shared between the product alternatives [9]. In our work, we focus on the
carbon footprint, so on just one category. Therefore the first issue is outside our scope. The sec-
ond issue, however, is of central concern to us. While previous approaches dealt with shared
uncertainties, they did not make the step to hypothesis testing, and neither to the implications
for the labeling of individual products.

Despite the known limitations and uncertainties of PCF estimates, GHG savings have still
made their way into regulations where they are enforced on a point-value basis. California’s
Low Carbon Fuel Standard [14], for example, enforces 10% GHG savings for new fuels com-
pared to a fossil fuel reference, and the EU’s fuel quality directive [15] uses a 6% margin.

Already in the 1990s were dispersion estimates made for a number of LCI related emission
parameters [16,17]. Around the same time, there were also several new methodologies sug-
gested for how to include quantitative uncertainties in life cycle inventories (LCIs)[18–21]. To
date, however, the uncertainties considered have largely been limited to sensitivity analyses
[22], default inventory ranges [23,24], characterization factors for one specific impact category
[25,26], or pedigree estimates [27,28]. Pedigree estimates refer to a matrix of data quality indi-
cators which evaluate the representativeness of the data used, which later are tentatively quanti-
fied using uncertainty factors based upon expert judgment or empirical data [27,29,30].
Statistical testing of outcomes, in the meantime, is rare among LCA studies, and where con-
sulted it is largely limited to quotients (A/B) [31]. Table 1 summarizes a selection of LCA stud-
ies that take uncertainty into account. The table results show that this is the first study that
evaluates empirical LCI uncertainty data, empirical LCIA uncertainty data, in a comparative
analysis applying Monte Carlo dependent sampling and a hypothesis based significance test.

It is our belief that failure to explicitly and properly deal with uncertainties may result in
counterproductive decisions, and that more extensive guidelines will merely reduce the number
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Table 1. A selection of LCA studies that take uncertainty into account, specifying if distributions are based upon real data (empirical) or upon
default/pedigree estimates (conjectural), the propagation/sampling method used, if it is a comparative study, and in that case, if there is a
hypothesis and any significance test carried out to test this hypnosis.

Reference Input uncertainty data Output results

Unit process
data

Characterization
factors

Propagation
method

Comparative
analysis

Sampling
method

Hypothesis Significance
test

Basset-Mens et al
2009 [32]

Conjectural No Latin Hypercube No N/A N/A N/A

Bojacá and
Schrevens 2010
[33]

Empirically
based

No Monte Carlo No N/A N/A N/A

Chen and Corson
2014 [34]

Partially
Empirically
based

N/A Monte Carlo Yes Independent None N/A

Hauck et al 2014
[35]

Empirically
based

Empirically based Monte Carlo Yes Unknown None N/A

Heijungs and Kleijn
2001 [36]

Conjectural Conjectural Monte Carlo Yes Dependent n(A>B) = n
(A<B)

Runs test

Heijungs et al 2005
[37]

Conjectural N/A Taylor series No N/A N/A N/A

Heijungs et al 2005
[37]

Conjectural N/A Monte Carlo Yes Dependent n(A>B) = n
(A<B)

Runs test

Heijungs and
Lenzen 2013 [38]

Conjectural Conjectural Taylor series No N/A N/A N/A

Heijungs and
Lenzen 2013 [38]

Conjectural Conjectural Monte Carlo Yes Independent None N/A

Hong et al 2010
[39]

Conjectural Empirically based Taylor series Yes Independent None N/A

Hong et al 2010
[39]

Conjectural Empirically based Monte Carlo Yes Dependent A/B = 1 N/A

Huijbregts et al
2003 [24]

Empirically
based

Empirically based Monte Carlo Yes Dependent A/B = 1 N/A

Kennedy et al
1996 [28]

Conjectural N/A Monte Carlo Yes Independent Median(A) =
Median(B)

Tukey’s test

de Koning et al
2009) [9]

Conjectural Conjectural Latin hypercube Yes Independent None N/A

Lo et al 2005 [40] Empirically
based

Empirically based Monte Carlo Yes Independent None N/A

Malça and Freire
2010 [41]

Meta-analysis N/A Monte Carlo No N/A N/A N/A

Mattila et al 2011
[31]

Empirically
based

Yes, but source
unknown

Monte Carlo Yes Dependent A/B = 1 N/A

Maurice et al 2000
[42]

Largely
Conjectural

No Monte Carlo Yes Independent None N/A

Mutel et al 2013)
[43]

Conjectural Empirically based Monte Carlo Yes Independent None N/A

Röös et al 2010)
[23]

Conjectural No Monte Carlo No N/A N/A N/A

Röös et al 2011
[44]

Conjectural No Monte Carlo No N/A N/A N/A

Sonnemann et al
2002 [45]

Conjectural No Monte Carlo Yes Dependent None N/A

Steinmann et al
2014 [46]

Empirically
based

Empirically based Monte Carlo No N/A N/A N/A

Weber 2012 [47] Meta-analysis N/A Monte Carlo No N/A N/A N/A

(Continued)
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of flawed conclusions. Instead, the field of LCAs and PCFs needs to review some of the funda-
mentals of the scientific method, including statistically supported conclusions.

Statistically testing a hypothesis requires a predefined null hypothesis and quantification of
uncertainties, two requirements that are rare in PCF studies. In comparative studies, the hy-
pothesis conventionally presumes one product alternative to be better or equal to an alterna-
tive. The hypothesis is then critically evaluated using the appropriate statistical tests for the
data under study. A product should consequently only be deemed beneficial if the null hypoth-
esis can be statistically rejected.

Quantifying the dispersions around point values requires a variance and a distribution for
unit process data and characterization factors, in addition to the central value (step 1). Next, a
propagation method is needed [38]. In the present study Monte Carlo (MC) was used as it is
the most commonly available propagation method and allows for post-hoc analyses. In a
Monte Carlo, values are randomly sampled from the unit process distributions over a fixed
number of iterations and aggregated into LCA results using an LCA matrix (step 2). This pro-
cedure produces a range of possible results, which in turn could be evaluated using different
statistical tests and analyses (step 3). The outcomes are statistically supported environmental
recommendations that can be communicated to policy makers or consumers through different
channels (step 4).

If results are to be used for comparisons, e.g. to decide if fish produced in larger corporate
farms is better in terms of climate change impacts than fish produced in smaller family owned
farms, the sampling procedure (step 2) for the products under study can be either dependent
(correlated), where each product footprint builds upon the same sampled parameters, or inde-
pendent (uncorrelated), where each product footprint builds upon a uniquely drawn set of ran-
dom samples (Fig. 1) [36,39,48]. Independent sampling yields completely stochastic,
incomparable results (“absolute results”), while dependent sampling produces results where all
footprints are derived from the same set of sample values for both unit process data and char-
acterization factors in each MC run. Thus, if the fish produced in larger corporate farms yield a
very high outcome in a particular MC run, the fish produced in smaller family owned farms
will most likely also yield a higher than average outcome, assuming that the two share many
processes (e.g. electricity production, transportation processes, and disposal). Only the com-
parative difference between the results of each MC run, obtained by subtracting the sample re-
sult of one product from that of another, is therefore of importance in dependent sampling.
We here label this as “relative results”. For comparative purposes, dependent sampling is the
only relevant option, and relative results can be a very useful way of presenting the LCA results
for each sample. In addition, relative results allow for powerful paired statistical testing of null
hypotheses (step 3). The outcomes would, in turn, be communicated as one product being bet-
ter than one or more alternatives (step 4).

In order to demonstrate the advantages of dependent sampling and to evaluate how to com-
municate PCFs with statistical tests, we use an LCA study of Vietnamese catfish (Pangasius
spp.) fillets as an example [49]. The hypothesis explored was “Pangasius fish produced in larger

Table 1. (Continued)

Reference Input uncertainty data Output results

Unit process
data

Characterization
factors

Propagation
method

Comparative
analysis

Sampling
method

Hypothesis Significance
test

This study Empirically
based

Empirically based Monte Carlo Yes Dependent Median(A) =
Median(B)

Wilcoxon

doi:10.1371/journal.pone.0121221.t001
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corporate farms have smaller PCFs per unit of fish than those produced in smaller family-
owned farms”. This hypothesis builds upon the assumption that corporations generally moni-
tor and manage their farms better than family-owned farms and rely more heavily upon com-
mercial feeds tailored to Pangasius fish. Thus, the null hypothesis tested assumed that the
mean PCF of 36 randomly sampled family-owned farms would be equal to that of 36 corporate
farms. While the absolute overall dispersions remain large, we managed to identify significant
trend differences between the different farming systems by using our proposed approach.

Methods
Data on the two farming systems and other related processes were collected between 2010 and
2013 as part of the EU FP7 SEAT project (S1–S3 Tables). Additional data were retrieved from
the literature and the ecoinvent v2.2 database (www.ecoinvent.org). A complete description of
the data used in the present research is available as supporting information (S1 Dataset) and in
SEAT deliverable D3.5 [50]. Unit process distributions and variances were developed using the
protocol presented in Henriksson et al. [30], reflecting inherent uncertainties (inaccuracies in
measurements and models), spread (variability resulting from averaging) and unrepresenta-
tiveness (mismatch between the representativeness and use of data). The Anderson-Darling
goodness-of-fit test was used to identify the distributions best representing data, limited to the
four available distributions and generically assumed lognormal data in ecoinvent v2.2 [30].

Fig 1. Procedures for propagating dispersions in data into product carbon footprints. PCFs can be propagated using either independent sampling
yielding absolute results, or dependent sampling yielding relative results. For comparative purposes, dependent sampling is the only relevant option, and
relative results can be a very useful way of presenting the LCA results for each sample. This also allows for paired statistical testing, increasing the probability
of correctly rejecting the null hypothesis.

doi:10.1371/journal.pone.0121221.g001
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The inventory flows were characterized using the GWPs and uncertainty distributions
(S4 Table) reported in the fifth IPCC assessment report [51,52](step 1). In introducing uncer-
tainties to GWPs, problems arise by the fact that the GWP of CO2 is 1 by definition (and thus
has no uncertainty), while the GWPs of all other GHGs are normalized by that of CO2. Under-
lying GWPs (in kg CO2-eq. kg

-1) are the absolute GWPs (AGWPs), which express the time-
integrated radiative forcing (in Wm-2 yr-1 kg-1) [51]. These AGWPs are uncertain, also for
CO2. By adopting the uncertainty distributions on the level of GWPs we assume that these
GWP uncertainties are based on dependent sampling of AGWPs in the models used by IPCC,
e.g. dividing the AGWP for CH4 in each run by the AGWP for CO2 in the same run, thus form-
ing a distribution of GWPs for CH4 and a point value of the GWP for CO2. The fifth IPCC as-
sessment report [52] does, to our knowledge, not specify if the uncertainty estimates in the
GWP of GHGs have been obtained through dependent or independent sampling, but judging
the values of the uncertainties, we believe that dependent sampling has been used, as it should
have been. Based on this assumption and in order to stay close to the traditional carbon foot-
print, we choose to use the GWPs with related uncertainty information for our characterization
calculations from the fifth IPCC report [51,52], thereby maintaining the relative units and
hence calculating carbon footprints in kg CO2-eq. The standard deviations (σ) supporting
these GWPs were back calculated from the 90% uncertainty ranges (σ = (P95-P05) / (2�1.645))
presented in the fifth IPCC report [51,52]. For more details, please see S4 Table and Myhre
et al. [51].

Results were scaled to one tonne of fish and propagated over 1 000 MC simulations using
dependent sampling (step 2) and the matrix-based algebra [53] implemented in the CMLCA
v5.2 (www.cmlca.eu) software. Statistical tests were conducted in SPSS (v.21).

Of the two groups, family-owned farms were more reliant on farm-made feeds and agricul-
tural byproducts (31% of all feeds) than large corporate farms, which almost exclusively (94%)
relied upon commercial feeds (Fig. 2). Apart from feeds, all other supporting processes differed
only in quantity, meaning that they rely upon the same shared supply chain, and hence on the
same drawn values in each MC run, as well as stochastic GWPs. Emissions resulting directly
from the fish ponds, however, were not shared between the two farming practices and therefore
resulted in independently sampled values. For a more complete list of the data used and more
specific results, see the supporting information to this article.

Results
Both ranges of results were associated with large dispersions (S1 Fig.). From these, the mean
difference between the two farming practices could be found by subtracting the result for fish
from large corporate farms from that of fish from small family-owned farms for each MC run
(Fig. 2). The mean difference between results did not follow a normal distribution and we
therefore tested the median difference using the non-parametric one-sample Wilcoxon Signed
Rank test (step 3), showing a highly significant (p< 0.001) difference of 824 kg CO2-eq. (see
Fig. 2), thus indicating a significantly larger median PCF for fish from family-owned farms
compared to fish from corporate farms (step 4).

Discussion
As inventory models are data limited, most data supporting PCFs are opportunistically collect-
ed, rather than following a random sampling design. Concepts such as experimental design
and statistical inference are therefore largely ignored in most footprinting exercises. Modeling
choices also influence outcomes, including the choices of emission models, model structure,
and mathematical equations. Product footprints are consequently influenced by conscious and
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unconscious choices, biasing statistical inference. Dependent sampling, however, reduces the
effect of such choices, as the underlying choices remain largely consistent. The greater statisti-
cal power offered by paired statistical tests also reduces the risk of Type II statistical errors.

Only considering relative uncertainties is also favorable in situations where the origins of
raw materials or products are untraceable. For example, aluminum derives from an energy in-
tensive process and enters the global market from a pool of countries. The metal is then often
traded, alloyed, worked up and assembled on geographically dispersed locations. The origin or
origins of the aluminum raw material are therefore next to impossible to trace, while the result-
ing GHG emissions may differ with two orders of magnitude amongst different origins (e.g.
China or Iceland) [52]. However, if only relative uncertainties are considered, the production
of aluminum could be horizontally averaged to a global level while different aluminum prod-
ucts still could be compared with relatively high accuracy without simplifying the data.

Where requirements such as normally distributed populations and equal variances are ful-
filled, a paired t-test is an appropriate test for comparing two products. However, in the case of
a comparison involving three or more alternatives (e.g. small, medium, and large sized ponds),
the paired comparison will not work due to the increased risk of type I errors. In such cases a
test for related multiple comparisons should be used, two-way ANOVA being the most obvious
choice, with an added Tukey test for post-hoc grouping into clusters of alternatives that differ
significantly from one another. A non-parametric alternative for comparisons of more than
two products is provided by the Friedman test. The clusters identified by the post-hoc test
could serve as the basis for eco-labeling schemes, where each cluster represents a rank or a
label (red, yellow or green), which easily could be communicated to e.g. consumers. Alterna-
tively, a baseline product could be used for each product group (e.g. farmed salmon in the cur-
rent example) to communicate results in ways more accessible to consumers.

Fig 2. Greenhouse gas emissions resulting from the production of one tonne of Pangasius fish in small and large farms. (a) Box-and-whisker plot
displaying the GHG emissions associated with fish from small (n = 36) and large (n = 36) sized Pangasius farms. Indicated are the median, the 25th
percentile and 75th percentile (box), and the 10th and 90th percentiles (whiskers). (b) Median difference between fish from small and large farms on a per MC
run basis, subtracting the GHG from the large farms from that of the small farms. Error bars indicate the 95% confidence interval of the median differences.

doi:10.1371/journal.pone.0121221.g002
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Conclusions
Product footprints were created to meet the need to steer our consumer society towards more
sustainable choices. However, carbon footprints constitute a highly politicized field of science,
where the decision stakes are high and system uncertainties large [53]. PCFs will therefore al-
ways be subject to intense scrutiny. In response, by re-evaluating PCFs as a strictly relative indi-
cator while acknowledging the level of underlying uncertainty, clusters of environmentally
superior products or production systems may be identified with a level of confidence. Our con-
clusions can be extended to other approaches for assessing products in a comparative sense, in-
cluding the water footprint [54] and life cycle costing [55].
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