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Abstract

The current COVID-19 pandemic has demonstrated that we are not prepared to deal
with food security amid unexpected situations; the FAO (Food and Agriculture
Organization) has stipulated that the future of our food & agriculture looks challenging
toward the year 2050; primarily in response to the fact that global population is
expected to increase by 9 billion people by 2050. Although entomophagy has been
practiced by humans for thousands of years, until recently, edible insects have gained
special attention due to their high nutritional value (particularly their high protein and
essential amino acid content) and lower environmental impact that could help
alleviate the global food demand. Edible insects are classified into eight main orders
belonging to Blattodea (cockroaches and termites), Coleoptera (beetles), Diptera
(flies), Hemiptera (cicadas, stink bugs), Hymenoptera (bees, wasps, ants), Lepidoptera
(butterflies, moths), Odonata (dragonflies), and Orthoptera (crickets, grasshoppers,
locusts). Several traditional cooking (e.g., boiling, roasting, sun-drying) and processing
technologies (e.g., pasteurization, enzymatic proteolysis, high pressure processing) have
shown that it is feasible to prepare safe and nutritious insects and/or foods with insects.
Nevertheless, challenges associated with consumers acceptance to eat insects, as well
as potential presence of anti-nutritive factors and allergens, need to be carefully eval-
uated as the industry grows in the coming years. Foreseeing such food shortages during
pandemics and future food security concerns, consumers, scientists, and the food
industry need to consider the value of farming insects as promising protein sources.
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1. Humand entomophagy: Historical, nutritional
and sustainability perspective

Historical evidence shows that insects have been used as a food source,
a term known as entomophagy. Although entomophagy is defined as the
dietary consumption of insects by any organism, it is most likely used to
refer to the human consumption of insects (Costa-Neto & Dunkel,
2016). The fact is that entomophagy has been practiced since early hominids
like Paranthropus (or Australopithecus) robustus (Late Pliocene and Early
Pleistocene) in South Africa, who used bone tools do dig into termite
mounds. In Northern Spain, dental plaque from an early hominid revealed
microfossils of insect fragments, while coprolites found in the Lakeside cave
(Utah, USA), suggest that migratory grasshoppers (Melanoplus sanguinipes)
were consumed by humans; other prehistoric human coprolites containing
chitinous exoskeletons from insects were also found in difterent States of the
USA as well as in Mexico and Peru (Van Huis, 2017). Based on these find-
ings, paleoanthropologists believe that insects could have indeed played an
important role in the diet of early humans.

As we go through historical records, we have evidence from Aristotle in
the Historia Animalium that cicadas were harvested and considered a delicacy
in ancient Greece, while Pliny the Elder (AD 23/24-79) wrote that Romans
consumed “cossus,” a highly coveted dish consisting of larvae from the long-
horn beetle (Van Huis et al.,, 2013). The Old Testament in the Bible
describes the four kinds of locusts which the Hebrews were allowed to
eat (Leviticus, XI: 21-22), and the New Testament (Mark 1:6) describes
John the Baptist’s food as consisting of “locusts and wild honey” (Costa-
Neto & Dunkel, 2016). Moving into our modern-day cultures, we know
that pre-Hispanic Mesoamerican cultures also practiced entomophagy.
For example, documents from the New Spain (Nueva Espana) describe that
the Aztecs consumed a variety of insects, including winged ants, grasshop-
pers, mosquito eggs, and worms from the maguey plant (Novo, 1997).
Interestingly, many of these insects are still consumed today in public
markets in Mexico City (Fig. 1) (Liceaga, 2021). Indigenous peoples from
the United States and Canada were also known to eat insects such as grasshop-
pers, crickets, caterpillars, flies, cicadas, beetles, ants, bees and yellowjackets
(Capinera, 2008). For example, the Tlicho from the Northwest Territories
of Canada ate warble fly larvae (Oedemagena or Hypoderma) collected during
the butchering of caribou carcasses (Lesnik, 2018). Some cultures also give
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Fig. 1 Degustation plate of insects traditionally eaten by the Aztecs and still available in
pubic markets in Mexico City. Insects, clockwise from the top, are grasshoppers (plain),
chicatana ants, jumiles (stink bugs), chinicuiles (red maguey worms), cocopache
(leaf-footed bug), grasshoppers (salted), grasshoppers (adobo), ahuautles or “mosco
de rio” (water fly), and acociles (crayfish). Scorpions are in the center of the plate.
Photo by Andrea M. Liceaga.

spiritual attributes to certain insect species, such as consuming wasps for bring-
ing prosperity, protection and abundance (Ramos-Elorduy, 2009).
Although through history several plant and animal species have been
domesticated and become part of our modern-day staple diet, we know that
nearly 2.5 million people worldwide who continue to eat insects and have
remained as an important aspect of their culture (van Huis, Dicke, & Van
Loon, 2015). In countries such as Thailand, China, Africa, Mexico and
Colombia, insects are well known for their nutritional benefits and considered
dietary staples (Pal & Roy, 2014), while in southern Ghana, palm weevil
larvae (locally known as “Gbamedo”) are one of the most widely consumed
insects considered a delicacy (Agbematle, Hadzi, Amagloh, Zotor, & Reddy,
2020). There are close to 2000 edible insect species catalogued to this day,
classified within 8 main orders belonging to Blattodea (cockroaches and
termites), Coleoptera (beetles), Diptera (flies), Hemiptera (cicadas, stink bugs),
Hymenoptera (bees, wasps, ants), Lepidoptera (butterflies, moths), Odonata
(dragontflies), and Orthoptera (crickets, grasshoppers, locusts) (Liceaga,
Aguilar-Toala, Vallejo-Cordoba, Gonzilez-Cérdova, & Hernandez-
Mendoza, 2021). Worldwide, more families of Lepidoptera are reared by
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humans than any other insect. In the United States, the waxworm
(G. mellonella) is a lepidopteran commonly mass-reared for the animal feed
industry as well as for fish bait (Dossey, Tatum, & McGill, 2016). However,
worldwide the house cricket (order: Orthoptera) and yellow mealworm
(order: Coleoptera) are the most popular farmed insects exclusively for human
consumption (Melgar-Lalanne, Hernfmdez—Alvarez, & Salinas-Castro, 2019).
Most edible insect species have nutritional yields comparable to conventional
meat on a per-gram basis (Table 1). A compilation of the nutrient compositions
of over 200 edible insect species showed that these insects are composed pri-
marily of protein and fat, followed by fiber, nitrogen free-extract, non-fiber
carbohydrates and ash (Rumpold & Schluter, 2013). Insects can primarily
be an excellent source of protein, as they contain all essential amino acids.
The protein content will vary by insect species and their life-cycle stage, with
crickets, grasshoppers and locusts (order: Orthoptera) having overall the
highest protein content (61% dry basis), followed by dragontlies and damselflies
(order: Odonata) with 55% protein (dry basis); cockroaches and termites
(order: Blattodea) have the lowest overall protein content (35% dry basis)
(Fig. 2) (Liceaga et al., 2021).

Table 1 Comparison of nutritional composition found on traditional (raw) protein
sources and two domesticated insects (crickets and yellow mealworms) used for human
consumption.

Nutrien Salmon® Chicken® Beef* Pork® Crickets® Yellow mealworms®
Protein 222%  222%  22.5% 21.0% 21.3%% 20.3%
Fat 4.7% 2.6% 87% 22% 7.3% 13.8%
Carbohydrates 0.0% 0.0% 0.0% 0.0% 4.1% 3.1%
Fiber 0.0% 0.0% 0.0% 0.0% 3.2% 1.7%

*National Nutrient Database for Standard reference (ndb.nal.usda.gov): report 173691 Salmon, sock-
eye, raw.
"National Nutrient Database for Standard reference (ndb.nal.usda.gov): report 05062 Chicken, broiler or
fryers, breast, skinless, boneless, meat only, raw.

“National Nutrient Database for Standard reference (ndb.nal.usda.gov): report 1390 Beef Round,
grime, raw.

National Nutrient Database for Standard reference (ndb.nal.usda.gov): report 10060, Pork, fresh, lion,
tenderloin, separable lean only, raw.

“Whole, raw crickets and mealworms (wet basis with 69.07% and 62.44% moisture content, respectively).
Data adapted from Finke, M. D. (2004). Nutrient content of insects: Springer.; Liceaga, A. M., Aguilar-
Toali, J. E., Vallejo-Cordoba, B., Gonzilez-Cérdova, A. F., & Hernindez-Mendoza, A. (2021). Insects
as an Alternative Protein Source. Annual review of food science and technology, 13, 19-34; Rump-
old, B. A., & Schliiter, O. K. (2013). Nutritional composition and safety aspects of edible insects.
Molecular nutrition & food research, 57(5), 802-823.
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Fig. 2 Approximate protein content for the eight most common edible insect orders.
Figure created with BioRender.com

In most western cultures, particularly North American and European,
entomophagy is exercised sparingly and insects are mainly considered a food
novelty rather than a source of nutrients (Raubenheimer & Rothman,
2013). In fact, in several western countries, human consumption of insects
is regarded as a cultural taboo and opinions on eating insects are associated
with feelings of disgust and reluctance (Pal & Roy, 2014). However, this
perception has slowly begun to change as reports from the Food and
Agriculture Organization (FAO) for the United Nations indicate that the
global population is likely to increase to 9 billion by 2050 (Van Huis
et al., 2013). Currently, nearly 1 billion people go hungry; therefore, as
the population continues to rise, so will the amount people that go without
food. It is well documented that agricultural land is already pressured by the
food demand of the current population. Thus, by the year 2050, world food
demand will need to increase by at least 50% with farmers producing 60%
more crop calories (7400 trillion calories), and increasing land use by 593
million hectares (twice the size of India) (Searchinger, Walte, Hanson, &
Ranganathan, 2019). Exploring other sources of protein that are also more
sustainable should alleviate pressures on current food sources such as live-
stock. Domesticated (farmed) insects are highlighted among such alterna-
tives because they already are integrated in many food cultures around
the globe. At present, the FAO encourages entomophagy due to the high
economic opportunity that insect farming represents and lower environ-
mental impact (Hall, Jones, O’Haire, & Liceaga, 2017). Compared to other
domesticated animals, farm-raised insects require less resources to produce
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Fig. 3 Comparison of estimated resources needed to produce 1 kg of protein from live-
stock and farmed (domesticated) insects, respectively. Figure created using data from
Goodland, R., & Anhang, J. (2009). Livestock and climate change: What if the key actors in
climate change are.. cows, pigs, and chickens? World Watch; Van Huis, A, Van
Itterbeeck, J,, Klunder, H., Mertens, E., Halloran, A, & Vantomme, P. (2013). Edible Insects:
Future Prospects for Food and Feed Security. Food and Agriculture Organization of the
United Nations. FAO Forestry Paper, FAO, Rome (187 pp). Figure created with BioRender.com.

the same amount of protein. Overall, insect breeding requires much less
food and land relative to livestock production. Furthermore, reared (farmed)
insects inflict a smaller climate impact in terms of greenhouse gases (GHG)
and ammonia emissions. Insects can be reared on less land for short periods,
due to their short life cycle, requiring significantly less water and energy with
a higher intrinsic growth rate than traditional livestock (Fig. 3).

For example, reared crickets use 15m? ofland to produce 1kg of protein,
while cattle use 200m?, they emit lower GHG emissions and ammonia per
unit of protein, use less water and feed. In perspective, livestock can produce
up to 100 times more GHG than mealworms (Tenebrio molitor) and emit
8—12 times more ammonia compared to house crickets (Acheta domesticus)
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(Goodland & Anhang, 2009; Oonincx et al., 2010). Another important con-
sideration when selecting sustainable protein sources relates to the efficiency
conversion of ingested food (ECI), which estimates the ability of the animal
to convert feed into body mass. In some insects, the ECI can be up to 44%;
crickets in particular are twice as efficient as pigs and broiler chickens, four
times greater than sheep, and six times higher than a steer (Nakagaki &
Defoliart, 1991). These data confirm the need to develop an alternative agri-
culture system beyond conventional food sources that considers the rising
global population. It has been proposed that substituting at least 25% of
protein from livestock with other more sustainable proteins, would allow
the reforestation of agrarian land and reduce 4% or more of agricultural
greenhouse gases (GHG), equivalent to 23 million metric tons per year
(EPA, U. S. E. P. A, 2017; Searchinger et al., 2019; Steinfeld, Gerber,
Wassenaar, Castel, & de Haan, 2006). In this sense, insect farming (rearing)
has gained attention as a nutritional and sustainable approach to this prob-
lem. In fact, insect farming has been labeled as an emerging “mini-livestock
production system” (Abbasi & Abbasi, 2016). Currently, the majority of
industrial-scale edible insect farms are located in Europe (e.g., France and
the Netherlands) and North America (e.g., Canada and USA) (Fig. 4).
These vertical, sustainable farms rear mainly crickets (e.g., Acheta domesticus)
and yellow mealworms (Tenebrio molitor) and rely on their own core breed-
ing stock to ensure a great production of insect biomass, thus limiting
the possibility of introducing diseases into the system (Baiano, 2020).
Another major advantage of farmed insects is that current farming practices
do not utilize chemical agents, for example, antibiotics, steroids, hormones,
pesticides, or other synthetic chemical components that are often used in
vertebrate livestock operations (Dossey et al., 2016).

2. Traditional methods and commercial processing
technologies used for insects

Edible insects are customarily prepared using traditional methods such
as sun-drying, roasting, boiling, steaming, baking, frying, and stewing,
among others (Table 2). Nowadays, they are typically consumed as whole
insects (raw or cooked), processed (non-recognizable form), and in the form
of extracts (Liceaga et al., 2021). The food industry is showing interest in this
novel protein source, as evidenced by several startup companies and number
of scientific publications in the last decade, with market trends leading
toward a global edible insect market of approximately USD 8 billion in
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Fig. 4 (A) Aspire Food Group’s 100,000sqft fully-automated cricket production and
processing facility located in London, Ontario, Canada. Once operational, this landmark
plantis expected to produce 10,000 tons of crickets/year. (B) An early iteration of robotic
watering technology at Aspire Food Group Research & Development facility in Austin,
Texas, USA. Photographs reprinted with permission of Aspire Food Group.

the next 10 years (Liceaga et al., 2021). As a result of this market increase
aimed toward Western cultures, other approaches to preparing insects must
rely in processing methods that render insects into non-recognizable forms,
like flours or powders, protein hydrolysates, fermentable substrates, etc.
(Table 2) (Liceaga, 2021; Melgar-Lalanne et al., 2019). The use of different
drying technologies seems to be the most commonly used approach for
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Table 2 List of some traditional cooking and commercial processing methods reported

in literature for edible insects.
Cooking or processing
Insect species method used

References

Alphitobius diaperinus Boiling (submerged

(beetle) in boiling water),
Ruspolia differens blanching, steaming,
(grasshopper) sautéed

Tenebrio molitor
(yellow mealworm)
Archea domesticus
(house cricket)

Wynants et al. (2018), Grabowski
and Klein (2017), Fombong, Van
Der Borght, and Vanden Broeck
(2017), Purschke, Bruggen,
Scheibelberger, and Jager (2018),
Kamau et al. (2018), Ssepuuya,
Aringo, Mukisa, and Nakimbugwe
(2016), and Nyangena et al. (2020)

Ruspolia nitidula Drying (sun/solar,
(grasshopper) oven, freeze-drying,
Rhynchophorus pan-fried, fluidized
phoenicis (palm bed,

weevil) microwave-assisted
Ruspolia differens drying)

(longhorn

grasshopper)

Tenebrio molitor
(vellow mealworm)
Polyrhachis vicina
Roger (Black ant)
Nauphoeta cinerea

(speckled cockroach)

Tiencheu et al. (2013), Fombong
etal. (2017), Purschke et al. (2018),
Alves, Sanjinez-Argandona,
Linzmeier, Cardoso, and Macedo
(2016), Bubler et al. (2016),
Wynants et al. (2018),
Vandeweyer, Lenaerts, Callens,
and Van Campenhout (2017),
Kroncke, Boschen, Woyzichovski,
Demtroder, and Benning (2018),
de Oliveira, da Silva Lucas,
Cadaval, and Mellado (2017), and
Hernéndez—Alvarez, Mondor,
Pina-Dominguez, Sanchez-
Velazquez, and Melgar Lalanne
(2021)

Acheta domesticus Enzymatic proteolysis;
(house cricket) sonication,

Schistocerca gregaria fermentation,

(desert locust) ultrasound-,

Spodoptera littoralis pasteurized-liquid, and
(leaf worm), microwave-assisted
Gryllodes sigillatus extractions, extrusion
(tropical banded

cricket)

Tenebrio molitor
(yellow mealworm)

Hall et al. (2017), Zhao, Vazquez-
Gutiérrez, Johansson, Landberg,
and Langton (2016), Mishyna,
Martinez, Chen, and Benjamin
(2019), Zielinska, Karas, and
Baraniak (2018), Mendoza-Salazar
etal. (2021), Carcea (2020), Otero,
Gutierrez-Docio, Del Hierro,
Reglero, and Martin (2020), Del
Hierro, Gutiérrez-Docio, Otero,
Reglero, and Martin (2020)

preserving and processing edible insects.

However, each drying method

used will have different effects on the insects’ nutritional composition and
stability. For example, (Kroncke et al., 2018) reported that drying tech-
niques caused minor changes in protein, fat, and fiber content of yellow
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mealworms (Tenebrio molitor). However, oven drying, microwave drying,
fluidized bed drying, and drying with a vacuum decreased (P<0.05) the
protein solubility, while freeze dried mealworms exhibited the highest lipid
oxidation compared to the other drying methods. Overall, vacuum oven
and microwave drying technologies were reported to be an alternative to
conventional oven drying and freeze drying. In contrast, Lenaerts, Van
Der Borght, Callens, and Van Campenhout (2018) showed that freeze
drying Tenebrio molitor increased lipid oxidation compared to microwave
drying, which displayed minor changes in protein, fat, and ash content of
the mealworms; the application of a vacuum during the microwave drying
process did not add an advantage, since the proximate and fatty acid com-
position of the mealworms were not significantly affected. Strategies for
process-optimized drying of edible insects are still needed to ensure nutrient
quality and product functionality.

There are clear indications that Western consumers are more inclined to
eat insect protein when insects are in non-visible or unrecognizable form in
the food or masked by a familiar flavor (e.g., chocolate covered). Studies
report that showing a full image of the insect as a marketing strategy for
insect-based food products in a retail setting, significantly decreased con-
sumers’ willingness to buy that particular food product (Baker, Shin, &
Kim, 2016). This demonstrates the frail acceptance by consumers toward
edible insects and/or entomophagy. Additionally, consumers have shown
a more positive emotional response to food products that were formulated
with the incorporation of non-recognizable insects (i.e., in the form of a
flour or powder) compared to those foods that were formulated with insects
that remained in a recognizable (i.e., visible) form (Gmuer, Nuessli Guth,
Hartmann, & Siegrist, 2016). Sensory evaluation studies also indicate that
meals containing visible insects were rated much more negatively in terms
of attractiveness and likelihood of eating it, compared to foods formulated
with insect protein or insect flours (i.e., pulverized insects into a fine pow-
der) (Caparros Megido et al., 2014; Schosler, De Boer, & Boersema, 2012;
Tranter, 2013; Tucker, 2014). Dossey et al. (2016) indicates that caution
should be used when using terms such as “insect flour” as this may cause
confusion in consumers who might think that the insect flour will have
the same properties for cooking and baking as those found in products like
grain flours. The authors explain that while insects are composed primarily
of protein, followed by fat and fiber (chitin), true flours (e.g., wheat) are
made primarily of starches and fiber, followed by protein. Nevertheless, food
extrusion, typically used in the production of cereal-based foods using flours,
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is a good example of a processing method that has allowed for the incorpo-
ration of insects as enrichment ingredients, into baked goods and pasta
(Carcea, 2020). Other methods reported in literature for processing edible
insects rely on separating the protein from the insect exoskeleton (high
in chitin) by means of controlled, enzymatic proteolysis with commercial
food-grade proteases such as alcalase (Liceaga, 2019). The resulting protein
hydrolysates or protein powders tend to have an overall improvement on the
protein’s functional properties (e.g., solubility, emulsifications, foaming)
by effectively separating the insoluble chitin from the protein; these
highly-soluble protein hydrolysates can be used in food formulation as pro-
tein supplements, emulsifiers and stabilizers, and flavor enhancers, among
others (Liceaga, 2019). In one study, corn tortillas were successfully formu-
lated with 20% cricket protein powder, which increased the limiting amino
acid lysine from 0.2¢g to 1.0g/100g and also received positive acceptability
scores (degree of liking >6.5) for aroma and flavor, despite panelists
(n=112) knowing that the tortillas contained cricket protein (Calzada-
Luna, Martin-Gonzalez, Mauer, & Liceaga, 2021). This demonstrates the
potential to develop familiar or staple food products that have some of their
traditional protein replaced by insect protein derived from a processing
method that transforms the insect into a non-recognizable form.

As with other traditional protein sources (e.g., dairy, meat, etc.),
processing methods that involve heat treatments like pasteurization and
commercial sterilization, are known to effectively decrease microbial loads,
inactivate enzymes as well as increase the nutritional quality, and digestibility
of insects (Agbemafle et al., 2020; Liceaga, 2021). There is limited scientific
literature available on commercial thermal processing methods applied to
edible insects and their eftect on the safety, nutritional quality, and protein
functionality. This is because the insects-as-food industry remains in the early
stages of production, processing, and commercialization in comparison
to the other long-established food industries (e.g., dairy, meat, poultry)
(Cho, Zhao, Kim, Kim, & Chung, 2018). Meyer-Rochow, Gahukar,
Ghosh, and Jung (2021) provide a detailed description on the effects of
different traditional cooking and processing methods, grouped by insect
order, on final product quality.

In terms of microbial safety, studies on raw and heat-treated yellow meal-
worm (Tenebrio molitor) and house crickets (Acheta domesticus) indicate that
thermal processing was effective at eliminating pathogenic bacteria
(Klunder, Wolkers-R ooijackers, Korpela, & Nout, 2012). Grabowski and
Klein (2017) evaluated the microbial quality of a variety of processed edible
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insect species (e.g., deep fried, seasoned, cooked, dried, powdered, and fro-
zen). Their results showed that dried and seasoned insects contained higher
microbial counts than those that were cooked or deep fried. All samples
tested negative for Salmonella, L. monocytogenes, E. coli and Stapyhlococcus
aureus; however, dried and powdered insects contained B. cereus, coliforms,
Listeria ivanovii, Aspergillus spp., Penicillium spp., and Cryptococcus neoformans
(Grabowski & Klein, 2017). In another study, Nyangena et al. (2020) exam-
ined the effects of different traditional processing techniques (i.e., boiling,
toasting, solar-drying, and sun-drying, etc.) on the proximate composition
and microbiological quality of different edible insect species (Acheta dome-
sticus, Ruspolia differens, Hermetia illucens and Spodoptera littoralis) relative to
the raw and/or un-processed insects. Authors reported that boiling and
roasting or toasting were the most effective methods for increasing the pro-
tein content and decreasing or eliminating aerobic mesophilic bacteria,
Staphylococcus aureus, Salmonella, yeasts, and molds. BuBler et al. also reported
a 3-log microbial reduction was achieved for Tenebrio molitor flour following
exposure to cold atmospheric pressure plasma for 15 min; whereas equally
long thermal treatments at 120°C and 140°C were found to completely
inactivate the native microorganism flora (BuBler et al., 2016). Lastly, other
studies have reported that fermentation of soy sauce-analog using Tenebrio
molitor, Bacillus licheniformis, and Aspergillus oryzaep, resulted in the amino-
nitrogen and aromatic compound content increasing indicating protein
degradation that did not affect the nutritional and sensory quality of the
fermented sauce (Cho et al., 2018; Mouritsen, Duelund, Calleja, & Frost,
2017; Y1, Van Boekel, Boeren, & Lakemond, 2016).

Another important consideration is that applying processing technologies
insects can lead to development of insect-based food ingredients beyond pro-
teins, including fiber, lipids, and other insect components (e.g., polyphenols)
that could serve multiple functions in the food and beverage industries. In
addition to fermentation, methods like enzymatic proteolysis, microwave-
extraction, ultrasonication, and high-pressure processing are capable of releas-
ing bioactive compounds such as peptides, phenolic compounds, and chitin
that can have potential benefits to human health in the prevention or control
of diseases such as hypertension, inflammation, and type-II diabetes (Hall &
Liceaga, 2020). For example, edible cricket chitosan obtained from the chitin,
a by-product of the protein extraction using microwave-assisted enzymatic
proteolysis, was shown to have antimicrobial and hypolipidemic activity com-
parable to that of commercial shellfish chitosan (Malm & Liceaga, 2021);
whereas some phenolic compounds with antioxidant and antimicrobial
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activity were successfully extracted and characterized from farmed edible
crickets (Nino, Reddivari, Ferruzzi, & Liceaga, 2021).

3. Applications of insect protein in food and beverage
formulations

Several applications using edible insects have been considered for the
food and beverage industries. The most common application of edible
insects has been in bakery and cereal-based products such as cookies, bread,
tortillas, and pasta. For example, roasted speckled cockroach (Nauphoeta cin-
erea) powder ranging from 5% to 15% (w/w) was used as protein enrichment
of wheat flour to formulate bread. Results showed that the 10% enrichment
formulation was the most similar to the whole what bread control, and also
presented the best nutritional characteristics including higher protein (22.6%
vs 9.7%, dry basis) and fiber (2.3% vs 2.0%, dry basis) and an acceptability
index above 75% (de Oliveira et al., 2017).

Replacing wheat flour with 5% insect flour from house cricket
(A. domesticus), mealworm, and black soldier fly (Hermetia illucens), resulted
in bread loafs with decreased water absorption and increased dough forma-
tion and stability (Gonzalez, Garzén, & Rosell, 2018). Cricket powder
(10-30%) was also used to enrich wheat bread. Compared to control breads
(using only wheat flour), breads containing cricket powder showed a higher
nutritional profile in terms of fatty acid composition, high protein content
and also showed a significant enrichment in the essential amino acids lysine,
tyrosine, valine, and methionine (Osimani et al., 2018). In another study,
microwave-dried yellow mealworm powder (20%) was used to enrich
wheat flour and produce different cereal-based snacks using 3D printing
technology (Severini, Azzollini, Albenzio, & Derossi, 2018). Corn tortillas
1s another example of a baked cereal product fortified with edible insects. In
this study, 20% cricket (Acheta domesticus) protein powders were used to for-
mulate corn tortillas. The improved nutritional quality (including essential
amino acids) as well as comparable physico-chemical and sensory acceptabil-
ity scores of the fortified products, compared to control tortillas, demon-
strates the high potential of using edible insects to fortify staple food
products that have limiting essential amino acids without compromising
the palatability (Calzada-Luna et al., 2021).

Reports indicate that companies are currently working on extraction and
restructuration of insect proteins into versatile food ingredients, like soluble
protein powders for beverages and textured insect proteins for meat
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analogues, and egg or dairy replacements in baking and food processing appli-
cations (Shockley, Lesnik, Allen, & Munoz, 2018). Minced cooked insects are
also being used to formulate meat analogue foods like hamburgers, meatballs,
and sausages (Elhassan, Wendin, Olsson, & Langton, 2019; Fraqueza &
Patarata, 2017). Efforts to produce protein supplements, beverages and energy
bars based on insect powder are also documented (Mutungi et al., 2019). One
study looked at the application of insects to formulate animal-sourced foods as
a strategy to achieve protein and micronutrient density of infants and young
children in developing countries. In this study, crickets and palm weevil larvae
were blended with a sweet potato porridge and compared to the maize-
peanut-soybean blend (Weanimix). The results showed that the edible insect
foods had several advantages over the mainstream blend, including ease of
preparation, improved nutritional composition (e.g., meeting protein require-
ments), and lower risk of aflatoxin contamination (Agbemafle et al., 2020).
Other recent applications include the incorporation of edible insects for space
food applications such as the Mars mission. In this context, the required
food to support life in a space mission and/or closed ecological environments
could be harvested from enclosed agriculture systems. Because protein from
animal origin will be difficult to produce due to its constraints related to the
extraterrestrial environment, efficiency in the use of biomass energy, such as
reared edible insects, should be considered (Katayama, Yamashita, Wada, &
Mitsuhashi, 2005).

In addition to the use of insects and their protein to formulate foods,
some studies have investigated the application of other insect components
for food formulation. For example, lipids derived from insect biomass of
two species (Hermetia illucens and Tenebrio molitor) were applied as an alter-
native for plant and animal lipids in spreadable products like margarine or
butter (Smetana, Leonhardt, Kauppi, Pajic, & Heinz, 2020). Authors
reported that it was possible to substitute up to 75% of the lipids with
insect-derived fats without negative effects on the spreading ability or color
of the products. In another study, cookies prepared with insect oils had
higher omega-3 fatty acids, flavonoids, and vitamin E than the cookies for-
mulated with plant oils. Consumers’ acceptance was also high for those
cookies prepared with Ruspolia differens and sesame oils, respectively, com-
pared to those formulated with olive and Schistocerca gregaria oils (Cheseto,
Baleba, Tanga, Kelemu, & Torto, 2020).

Finally, the effort to develop novel processing methods and foods that
incorporate edible insects can also be evidenced by the vast number of patent
applications. Baiano (2020) lists the most recent patents containing edible
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insects or insect powders. These include cookies, rice cakes, energy bars,
soup, tea, rice noodles, jerky, coffee, salad dressing, and tofu, among others.
These commercial patent applications highlight the broad interest by scien-
tists and the private sector to include edible insects in food and beverage
formulations.

4. Challenges and future prospects of insect protein

One of the major challenges facing edible insects is the acceptance by
consumers particularly in Western society, where food neophobic factors
have resulted in edible insects being regarded with a feeling of disgust or
viewed as a cultural taboo (Gmuer et al., 2016). Food neophobia is regarded
as the fear to eating new foods and can occur in all type of consumers;
however, the level of neophobia response will vary amongst consumers
depending on their age, gender, education, social status, among others
(Tuorila, Lahteenmaki, Pohjalainen, & Lotti, 2001). In this sense, studies
have shown that consumers categorized as neophobics have a low willing-
ness to purchase food products containing edible insects, compared to con-
sumers who have a positive disposition to eat new foods (neophilics)
(Lombardi, Vecchio, Borrello, Caracciolo, & Cembalo, 2019). However,
there is no evidence confirming that neophobics will not accept edible
insects. As previously discussed in this chapter, research suggests that incor-
porating insects as part of an ingredient within a familiar food will help
alleviate some of those neophobic, psychological constrains. Moving for-
ward, education and industry efforts will need to find pathways to promote
edible insects in order to eventually normalize their consumption just as it
has been done over decades with other “novel” foods like sushi, plant-based
meat-analogues, etc.

Although insects are consumed by many people all over the world, safety
aspects remain important challenges. This chapter has already discussed some
of the microbial safety concerns associated with edible insects and the
processing methods that have shown to decrease their microbial load.
Other safety concerns are related to the anti-nutrient content in some edible
insect species. Due to insects’ herbivore feeding behavior, farmed insects are
primarily fed plant-based diets rich in allelochemicals such as phenolic com-
pounds (Nino et al., 2021). These allelochemicals can be a good source of
antioxidants, but some can also have anti-nutritive eftects. For example,
crickets are reported to have 3159mg/100g and 900mg/100g of phytate
and tannins, respectively; while grasshoppers have 1100mg/100g and
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1050 mg/100 g of phytate and tannins, respectively (Meyer-Rochow et al.,
2021). Nevertheless, similar to antinutritive compounds found in other
foods, most processing methods (e.g., boiling, drying) can decrease their
content (Liceaga et al., 2021). Furthermore, the advantage of farming edible
insects will allow for selecting carefully-designed plant diets that can mini-
mize the concentration of these compounds.

Other insect compounds, like chitin and allergens, can also present
challenges. Excessive consumption of chitin, found primarily in the insect’s
exoskeleton, is speculated to increase risks of urinary stone formation
and chronic degenerative disease (Yhoung-aree, 2008). Potential allergic
responses from insect chitin ingestion have also been reported (Bush,
2008). However, there is no clear link to these effects with chitin consump-
tion. The presence of protein allergens, on the other hand, remains a major
safety concern surrounding edible insects. Ongoing studies have identified
antigens and IgE-binding proteins from several insect species that are
correlated to an allergic reaction upon exposure or consumption (Feng
et al., 2018; Pali-Scholl et al., 2019; Ribeiro, Cunha, Sousa-Pinto, &
Fonseca, 2018). For instance, immunoreactions have been associated with
silkworm (Bombyx mori) (Liu, Tian, & Chen, 2001), teak caterpillar cocoons
(Hyblaea puera) (Lukiwati, 2010), grasshoppers (Srivastava, Babu, & Pandey,
2009; Vetter, 1995), house crickets (Acheta domesticus) (Abdelmoteleb
et al., 2018) and farmed tropical banded crickets (Gryllodes sigillatus) (Hall,
Johnson, & Liceaga, 2018). The major shrimp allergen, tropomyosin, is
known to be a cross-sensitizing allergen in several edible insects due to its
reported immunological relationships between crustaceans and arthropods
(which include insects) (Abdelmoteleb et al., 2018; Ayuso, Reese, Leong-
Kee, Plante, & Lehrer, 2002; Hall & Liceaga, 2021; Wong, Huang, & Lee,
2016). This is because tropomyosin, a highly-conserved protein that can exist
in different isoforms, is present in all vertebrate species as well as among inver-
tebrate’s (e.g., insects) muscle and non-muscle cells (Leung et al., 1996).
Therefore, there is a high degree of cross-reactivity between homologous
proteins found in crustaceans (shellfish) and other arthropods (Leoni,
Volpicella, Dileo, Gattulli, & Ceci, 2019; Pali-Scholl et al., 2019;
Volpicella, Leoni, Dileo, & Ceci, 2019), suggesting that individuals with a
shellfish allergy should avoid eating insects (MacEvilly, 2000). Table 3 shows
the immunoinformatics results of shared sequence homology (>60% identity)
for cricket tropomyosin and allergens from various species of shellfish, insects,
and nematodes. It can be observed that the top matches were for tropomyosin
from Lep s 1 silverfish (Lepisma saccharina) and Pan b 1.0101 northern shrimp



Table 3 Cricket tropomyosin predicted sequence homology with reported allergens
derived from insects, shellfish and nematodes.

Full alignment®

Sequence link in

Species Allergen SwissProt/NCBI E-val %ID

Lepisma saccharina Leps 1 CAC84590 1.7e-050  81.50%
Pandalus borealis Pan b 1.0101  CBY17558 4.8e-049  78.50%
Penaeus monodon Penm 1 AAX37288 2.2e-040 67.30%
Penaeus aztecus Penal 11893851 1.2e-039  65.40%
Homarus americanus Hom a 1.0102 AAC48288 9.5e-042  69.30%
Litopenaeus vannamei Lit v 1.0101 EU410072 1.1e-040  67.30%
Homarus americanus Hom a 1.0101 044119 3.3e-041  67.80%
Periplaneta americana Per a 7.0102 AAD19606 2.9e-041  68.30%
Blattella germanica Bla g 7.0101 AAF72534 4.5e-041  68.30%
Dermatophagoides farinae  Der £10.0101  BAA04557 3.7e-041  67.80%
Chironomus kiiensis Chi k 10 CAA09938 7.4e-042  68.80%
Tyrophagus putrescentiae  Tyr p 10.0101  AAT40866 9.8e-038  65.60%
Blomia tropicalis Blo t 10.0101  ABU97466 1.4e-041  68.30%
Metapenaeus ensis Met e 1 Q25456 3.6e-039  66.80%
Panulirus stimpsoni Pans 1 061379 4.7¢-041  67.30%
Lepidoglyphus destructor ~ Lep d 10 QI9NFZ4 5.3e-038  66.20%
Dermatophagoides farinae  Der p 10 018416 6.5e-042  68.30%
Charybdis feriatus Cha f1 QY9N2R3 2.1e-040  67.30%
Ascaris lumbricoides Asc 13.0101 ACN32322 3.5e-042  68.80%
Anisakis simplex Anis 3 QYNAS5 5.8e-042  69.30%
Helix aspersa Hel as 1 CAB38044 3.7e-041  67.80%
Haliotis diversicolor Hal d 1 AAG08987 1e-039 65.40%
Mimachlamys nobilis Mimn 1 AAGO08989 6e-041 67.80%
Perna viridis Per v 1 AAG08988 2e-041 68.30%
Cerassostrea gigas Cragl AAK96889 1.1e-040 67.30%
Dermatophagoides farinae  Der p 11 AAO73464 3.7e-041  67.80%
Blomia tropicalis Blo t 11 AAMS3103 3.5e-042  69.30%
Dermatophagoides farina ~ Der £ 11.0101  AAK39511 4.2e-041  68.30%

*Parameters assessed are % Identity and E-score. Significance is assumed when the expected score is below
1.0 or a >50% identity match (www.allermatch.org). Duplicates were not included on the list.

Table reprinted from Hall, F., & Liceaga, A. (2021). Isolation and proteomic characterization of tropomyosin
extracted from edible insect protein. Food Chemistry: Molecular Sciences, 100049, with permission from Elsevier.
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(Pandalus borealis). Matches were also obtained with other insect allergens such
as house dust mite (Dermatophagoides farinae) paramyosin (Der £ 11), American
cockroach (Periplaneta americana) tropomyosin (Per a 7), and German cock-
roach (Blattella germanica) tropomyosin (Bla g 7) (Hall & Liceaga, 2021).
Further research is needed in order to establish the effect of the different
food processing technologies on edible insect allergens. For example,
studies report that treating insects with heat (e.g., baking, boiling), frying,
and high-pressure processing did not have much effect on lowering an
immuno-response (i.e., IgE-binding) (Broekman et al., 2015; Jeong
et al., 2016; Mills & Mackie, 2008; Phirtyangkul, Srinroch, Srisomsap,
Chokchaichamnankit, & Punyarit, 2015; Van Broekhoven, Bastiaan-Net,
de Jong, & Wichers, 2016). Conversely, Hall and Liceaga (2021) demon-
strated that microwave-heated and protease-treated cricket tropomyosin
had lower IgE and IgG reactivity compared to cricket tropomyosin treated
by convection heating. Based on immunoinformatics and proteomics ana-
lyses, the decreased allergenicity was associated with increased cleavage of
the epitope region of the tropomyosin that had been protease-treated with
microwave heating. This agrees with other reports by El Mecherfi et al.
(2011) and Ketnawa and Liceaga (2017) that microwave heating can increase
the rate of an allergenic protein’s unfolding, enhancing the exposure of its
epitope region, to proteases that would have not been otherwise accessible
under convection heating. As more edible insects become part of formulated
foods and beverages, it will be crucial to continue the assessment for the
presence of potential allergens, toxicants, and anti-nutritive factors.

5. Conclusion

Edible insects are gaining attention as potential protein sources that
could help alleviate the predicted protein demand by the year 2050. The
lower environmental impact of insect farming places them as leaders in
the future development of more sustainable foods worldwide. The incorpo-
ration of these novel protein sources as viable ingredients will largely depend
on consumers’ perception and acceptance of products containing edible
insects. Decades of research on processing technologies and product devel-
opment for the plant, meat and dairy industries have created the necessary
knowledge to overcome food processing and safety challenges to produce
safe and palatable foods for consumers. Like with traditional protein sources,
the incorporation of insect protein into food and beverage formulations will
present its challenges and limitations that will require extensive research to
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ensure that processing technologies and formulation strategies work in the
same form as they have done for traditional proteins. Overall, edible insects
are a highly nutritious source of protein, fiber, and lipids. Early education
efforts and mechanisms to process them into non-recognizable forms, will
allow for the normalized attitude towards eating insects by modern-day soci-
ety. Studies show that insects can be processed using similar technologies to
those applied for traditional proteins; therefore, the possibilities of develop-
ing convenient, safe, palatable, or even shelf-stable, insect-based food prod-
ucts is vast. Foreseeing food shortages during pandemics like the 2020
COVID-19 pandemic, and food security concerns towards the year 2050,
consumers, scientists, and the food industry need to consider the value of
farming insects as promising protein sources.
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