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Abstract: Background: The need for minimally invasive biomarkers for the early diagnosis of type 2
diabetes (T2DM) prior to the clinical onset and monitoring of β-pancreatic cell loss is emerging. Here,
we focused on studying circulating cell-free DNA (ccfDNA) as a liquid biopsy biomaterial for accurate
diagnosis/monitoring of T2DM. Methods: ccfDNA levels were directly quantified in sera from
96 T2DM patients and 71 healthy individuals via fluorometry, and then fragment DNA size profiling
was performed by capillary electrophoresis. Following this, ccfDNA methylation levels of five β-
cell-related genes were measured via qPCR. Data were analyzed by automated machine learning to
build classifying predictive models. Results: ccfDNA levels were found to be similar between groups
but indicative of apoptosis in T2DM. INS (Insulin), IAPP (Islet Amyloid Polypeptide-Amylin), GCK
(Glucokinase), and KCNJ11 (Potassium Inwardly Rectifying Channel Subfamily J member 11) levels
differed significantly between groups. AutoML analysis delivered biosignatures including GCK,
IAPP and KCNJ11 methylation, with the highest ever reported discriminating performance of T2DM
from healthy individuals (AUC 0.927). Conclusions: Our data unravel the value of ccfDNA as a
minimally invasive biomaterial carrying important clinical information for T2DM. Upon prospective
clinical evaluation, the built biosignature can be disruptive for T2DM clinical management.

Keywords: type 2 diabetes; circulating cell free DNA; DNA methylation; machine learning

1. Introduction

Just under half a billion people are living with diabetes worldwide, and the number
is projected to increase by 25% in 2030 and 51% in 2045 [1]. Diabetes is a serious cause
of blindness, kidney failure, stroke and amputations. Type 2 Diabetes mellitus (T2DM),
the most common type of diabetes, is characterized by inadequate beta-pancreatic cell
(β-cell) function, insulin insensitivity and chronic inflammation, all of which progressively
lead to impaired glucose homeostasis [2]. In post-mortem specimens of T2DM patients,
β-cell mass is reduced by 30–40% compared with specimens from non-diabetic subjects [3].
Increased β-cell apoptosis and reduced functional capacity of the remaining cells are
important factors that contribute to the onset and the progression of the disease [4]. The
inability to detect diabetes before the development of hyperglycemia limits our power for
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diagnosis prior to clinical onset and for earlier interventions to preserve significant β-cell
mass. Established biomarkers for monitoring T2DM progression such as HbA1c levels are
unable to consistently and non-invasively detect/monitor the ongoing β-cell destruction
in islets. Thus, as the number of people with T2DM worldwide keeps on rising, there is
an emerging need for the development of minimally invasive biomarkers for the early
diagnosis of diabetes as well as the development of monitoring potential, both of which
could lead to better therapeutic decisions.

Given the significant obstacle of directly accessing the pancreas for biopsy, special
attention has been recently given to minimally invasive biomarkers for monitoring or
diagnosing the disease early. Towards this direction, epigenetic information detected in
circulating cell-free DNA (ccfDNA) is currently tested as a clinically valuable biomarker of
β-cell death in Type 1 Diabetes Mellitus (T1DM) by several groups [5–12]. These biomarkers
rely on the principles that necrotic or apoptotic cells or even viable cells release amounts of
their DNA into the bloodstream and/or other biofluids that can be easily detected [13] and
that each cell type has a unique and stable methylome that controls gene expression [14].

In the field of biomarker discovery, it becomes increasingly apparent that a single
biochemical or epi/genetic feature is unlikely to bear the sensitivity/specificity required to
disrupt clinical practice, and more effort is put into describing feature patterns or models.
Machine Learning (ML) is the application of artificial intelligence on data analysis to build
trained models [15]. ML has penetrated biomarker discovery in many diseases [16–19]
and in diabetes [20,21]. Nowadays, Automate ML (AutoML) tools have become available.
They promise to democratize data analysis to non-experts, improve the replicability of the
statistical analysis, and shield against common methodological analysis pitfalls such as
overfitting [22]. AutoML had been used for the prediction and diagnosis of diseases such
as Alzheimer’s disease [23], lung and breast cancer [24–26], and suicide prediction amongst
depressive patients [27].

In the present study, we focused on ccfDNA as a liquid biopsy biomaterial in T2DM,
its characteristics and potential for clinical use. We first quantified ccfDNA levels of
T2DM patients and healthy volunteers directly in serum, and we studied its fragment
size distribution in order to evaluate its cellular release mechanism. We then evaluated
the methylation profile of a panel of β-cell-related specific genes—INS (Insulin), IAPP
(Islet Amyloid Polypeptide-Amylin), GCK (Glucokinase), KCNJ11 (Potassium Inwardly
Rectifying Channel Subfamily J member 11), and ABCC8 (ATP Binding Cassette Subfamily
C member 8)—via quantitative SYBR Green-based methylation-specific PCR. We selected
this panel of β-cell-related specific genes based on existing literature proposing them as
promising biomarkers for β-cell death (INS, IAPP and GCK) [28], as well as based on
their implication for β-cell physiology (INS, IAPP, GCK, KCNJ11 and ABCC8) [5–12,29]
and potential response to antidiabetic therapy [30]. Most importantly, ad-hoc AutoML
technology was applied on our ccfDNA experimental parameters in combination with
patient demographical data (i.e., age, gender, BMI and smoking) to build accurate di-
agnostic/monitoring predictive biosignatures of clinical value for personalized diabetes
management. Our study’s workflow is presented in Figure 1.
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Figure 1. Workflow of our study. Abbreviations: TD2M: Type 2 diabetes mellitus, ccfDNA: 
circulating cell free DNA, qMSP: quantitative Methylation Specific PCR, AutoML: Automated 
Machine Learning.  

2. Results 
2.1. ccfDNA Levels in T2DM Patients and Healthy Volunteers 

Total ccfDNA levels were directly quantified in sera from T2DM patients and healthy 
individuals (control group). Interestingly, ccfDNA levels did not differ between healthy 
individuals and diabetes patients (700(400–1590) ng/mL vs. 820(490–2430) ng/mL, 
respectively, p = 0.552) (Figure 2). Then, ccfDNA levels were compared within the group 
of diabetes patients in relation to different clinical characteristics. T2DM patients with 
more than 14 years of diabetes showed significantly higher ccfDNA levels than those with 
less years (p = 0.010). Other clinical parameters, such as gender, smoking, Body Mass Index 
(BMI), and insulin or oral antidiabetic treatment, showed no correlations to ccfDNA 
levels. 

Figure 1. Workflow of our study. Abbreviations: TD2M: Type 2 diabetes mellitus, ccfDNA: circulating
cell free DNA, qMSP: quantitative Methylation Specific PCR, AutoML: Automated Machine Learning.

2. Results
2.1. ccfDNA Levels in T2DM Patients and Healthy Volunteers

Total ccfDNA levels were directly quantified in sera from T2DM patients and healthy
individuals (control group). Interestingly, ccfDNA levels did not differ between healthy
individuals and diabetes patients (700(400–1590) ng/mL vs. 820(490–2430) ng/mL, re-
spectively, p = 0.552) (Figure 2). Then, ccfDNA levels were compared within the group of
diabetes patients in relation to different clinical characteristics. T2DM patients with more
than 14 years of diabetes showed significantly higher ccfDNA levels than those with less
years (p = 0.010). Other clinical parameters, such as gender, smoking, Body Mass Index
(BMI), and insulin or oral antidiabetic treatment, showed no correlations to ccfDNA levels.

2.2. ccfDNA Fragment Size Analysis in T2DM Patients and Healthy Volunteers

DNA fragment size analysis was performed in isolated ccfDNA samples in order to
reveal information about the cellular process of its release in the tissue of origin. It has
been reported that samples containing DNA fragments of ~160 bp and multiples indicate
release during apoptosis, whereas larger DNA fragments of ~2000–3000 bp are indicative of
active release and above 10,000 bp are indicative of necrosis [31,32]. In the patients’ group,
peaks of~160 bp (and multiples ×160 bp) were detected more often (47% of samples) than
in healthy controls (21% of samples), indicating greater incidence of apoptosis (although
the difference between percentages was not statistically significant). Peaks of larger DNA
fragments of~2000–3000 bp were observed in both groups. Notably, the ~2000 bp fragments
appeared more often in T2DM patients with higher BMI, considered a continuous variable
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(p = 0.037). In Figure 3, representative electropherograms from two T2DM patients and one
healthy individual are presented, showing a different pattern.
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and T2DM patients (p = 0.001). (C) Box plot of IAPP unmethylated alleles between healthy individ-
uals and T2DM patients (p < 0.001). (D). Box plot of GCK unmethylated alleles between healthy 
individuals and T2DM patients (p < 0.001). (E) Box plot of KCNJ11 unmethylated alleles between 
healthy individuals and T2DM patients (p < 0.001). (F) Box plot of ABCC8 unmethylated alleles be-
tween healthy individuals and T2DM patients (p = 0.534). Small circles (°) correspond to “outlier” 
values and stars (*) to the “extreme” values of the dataset. Abbreviations: T2DM: Type 2 diabetes 
mellitus, ccfDNA: circulating cell free DNA. 

2.2. ccfDNA Fragment Size Analysis in T2DM Patients and Healthy Volunteers 
DNA fragment size analysis was performed in isolated ccfDNA samples in order to 

reveal information about the cellular process of its release in the tissue of origin. It has 
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Figure 2. (A) Box plot of serum ccfDNA levels between healthy individuals (n = 71) and T2DM
patients (n = 96) (p = 0.552). (B) Box plot of INS unmethylated alleles between healthy individuals and
T2DM patients (p = 0.001). (C) Box plot of IAPP unmethylated alleles between healthy individuals and
T2DM patients (p < 0.001). (D). Box plot of GCK unmethylated alleles between healthy individuals
and T2DM patients (p < 0.001). (E) Box plot of KCNJ11 unmethylated alleles between healthy
individuals and T2DM patients (p < 0.001). (F) Box plot of ABCC8 unmethylated alleles between
healthy individuals and T2DM patients (p = 0.534). Small circles (◦) correspond to “outlier” values
and stars (*) to the “extreme” values of the dataset. Abbreviations: T2DM: Type 2 diabetes mellitus,
ccfDNA: circulating cell free DNA.
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Abbreviations: T2DM: Type 2 diabetes mellitus, ccfDNA: circulating cell free DNA, bp: base pairs. 

2.3. Methylation Analysis of β-Cell-Specific Genes 
Developed qMSP assays were validated in terms of analytical specificity, sensitivity, 

reproducibility, linearity and efficiency. The analytical specificity of all our developed as-
says was found to be 0.5% in the detection of methylated DNA molecules in a background 
of unmethylated DNA and 0.5% in the detection of unmethylated DNA molecules in a 
background of methylated DNA (specificity curves are presented in Supplementary Fig-
ure S1). The analytical sensitivity was found to be up to 0.1 ng for both methylated and 
unmethylated DNA molecules (sensitivity curves are shown in Supplementary Figure S1). 
The efficiency of all our developed assays ranged between 93 and 97%. Furthermore, high 
within—and between—sample reproducibility was also observed for all assays (CV rang-
ing from 0.5% to 1.2%). 

Figure 3. Representative capillary electropherograms showing DNA fragment size distribution in
ccfDNA isolated from sera of two T2DM patients and one healthy control. (A) A T2DM patient
ccfDNA sample showing a peak at ~160 bp indicative of apoptosis. (B) Another T2DM patient
ccfDNA sample showing multiple peaks at ~160 bp, ~300 bp and ~500 bp indicative of apoptosis
and an additional wide peak at ~2000–3000 bp indicative of active release. (C). A healthy volunteer
ccfDNA sample with a wide peak at ~2000–3000 bp indicative of active release. Peaks at 35 bp and
10,380 bp in all electropherograms represent high and low ladders, respectively. (D) Distribution of
ccfDNA fragment analysis in the patient’s group and the healthy volunteer’s group, respectively.
Abbreviations: T2DM: Type 2 diabetes mellitus, ccfDNA: circulating cell free DNA, bp: base pairs.

2.3. Methylation Analysis of β-Cell-Specific Genes

Developed qMSP assays were validated in terms of analytical specificity, sensitivity, re-
producibility, linearity and efficiency. The analytical specificity of all our developed assays
was found to be 0.5% in the detection of methylated DNA molecules in a background of
unmethylated DNA and 0.5% in the detection of unmethylated DNA molecules in a back-
ground of methylated DNA (specificity curves are presented in Supplementary Figure S1).
The analytical sensitivity was found to be up to 0.1 ng for both methylated and unmethy-
lated DNA molecules (sensitivity curves are shown in Supplementary Figure S1). The
efficiency of all our developed assays ranged between 93 and 97%. Furthermore, high
within—and between—sample reproducibility was also observed for all assays (CV ranging
from 0.5% to 1.2%).

INS, IAPP, GCK and KCNJ11 methylation differed significantly between T2DM pa-
tients and healthy individuals (p = 0.001, p < 0.001, p < 0.001 and p < 0.001, respectively),
while ABCC8 methylation did not differ between groups (p = 0.534) (Figure 2). Receiver
operating characteristic (ROC) curve analysis showed that GCK methylation could pro-
vide high discrimination between T2DM patients and healthy individuals (AUC 0.848
(95% CI 0.787–0.910)) (Figure 4), while IAPP and KCNJ11 methylation could offer lower
discrimination between groups (AUC 0.727 (95% CI 0.649–0.805) and AUC 0.712 (95%
CI 0.619–0.806), respectively) (Figure 4). INS methylation showed poor discrimination
capacity between patients and controls (AUC 0.650 (95% CI 0.562–0.737)) (Figure 4).
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Figure 4. ROC curve analysis results. (A) ROC curve of age reaching an AUC of 0.566 (95%
CI 0.468–0.664). (B) ROC curve of BMI reaching an AUC of 0.658 (95% CI 0.573–0.743). (C) ROC
curve of ccfDNA levels reaching an AUC of 0.527 (95% CI 0.438–0.616). (D) ROC curve of INS gene
reaching an AUC of 0.650 (95% CI 0.562–0.737). (E) ROC curve of IAPP gene reaching an AUC of 0.727
(95% CI 0.649–0.805). (F) ROC curve of GCK gene reaching an AUC of 0.848 (95% CI 0.787–0.910).
(G) ROC curve of KCNJ11 gene reaching an AUC of 0.712 (95% CI 0.619–0.806). (H) ROC curve of
ABCC8 gene reaching an AUC of 0.528 (95% CI 0.439–0.617). Abbreviations: ROC curve: receiver
operating characteristic curve, BMI: Body Mass Index, AUC: area under the curve, CI: confidence
interval, ccfDNA: circulating cell free DNA.

Methylation profiles of T2DM patients with complications were similar in all studied
genes to those of patients without complications. Moreover, the duration of diabetes (less
or more than 15 years of disease) and the levels of HbA1c (less or more than 8%) did
not correlate with gene methylation. Analysis of methylation with respect to the other
clinicopathological characteristics, such as gender, smoking, Body Mass Index (BMI), and
insulin or oral antidiabetic treatment, did not reveal significant correlations.
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2.4. AutoML Predictive Analysis

Our data were further analyzed by ML techniques in order to produce diagnos-
tic/monitoring biosignatures of clinical value, combining the novel liquid biopsy-based
methylation data emerged by our study and the clinical and demographical data of the
study’s groups. The JADBio automated machine learning (AutoML) platform employed
for this analysis automatically performs and compares all standard, best practices and ad-
vanced ML techniques, and it produces upon feature selection the optimal best-performing
model along with the most interpretable one.

In our AutoML analysis, the task was to predict T2DM versus health from the avail-
able ccfDNA parameters and the demographical patient data (age, gender, BMI, etc.). We
first analyzed the whole dataset of the 96 T2DM patients on treatment and the 71 healthy
individuals (control group). In this analysis, JADBio trained 3017 different machine learn-
ing pipelines (also called configurations), corresponding to different model types. Each
one was employed many times during cross-validation (a repeated 10-fold CV without
dropping), leading to fitting 90,510 model instances (https://app.jadbio.com/share/d59a0
8fb-e7ea-42e8-8eae-b225f512a38b, accessed on 13 January 2022). This classification analysis
produced a best-performing five-feature biosignature via the Classification Random Forests
algorithm that was able to discriminate between T2DM patients and healthy individu-
als with an AUC of 0.927 (95% CI 0.874–0.967) and an average precision of 0.951 (95%
CI 0.914–0.980). Biosignature’s features included GCK, IAPP and KCNJ11 methylation as
well as age and BMI, and their contribution in the model’s performance defined as the
percentage drop in predictive performance when the feature is removed from the model
is shown in Figure 5C. The best-performing biosignature’s performance is presented in
Figure 5A,B. The most interpretable five-feature biosignature was also built via a ridge
logistic regression algorithm reaching an AUC of 0.915 (95% CI 0.868–0.957) and an average
precision of 0.941 (95% CI 0.901–0.975). This biosignature included as features GCK, IAPP
and KCNJ11 methylation, smoking status and BMI.

Most importantly, the size of the dataset allowed for further model automated valida-
tion. The whole dataset was split randomly into training and test sub-datasets by a 70/30
ratio via JADBio. In this analysis, JADBio trained 3017 different machine learning pipelines,
corresponding to different model types and fitted 150,850 model instances (https://app.
jadbio.com/share/42c8c603-06d4-47e7-8276-97d4fa970d6c, accessed on 13 January 2022).
The training data from 66 T2DM patients and 51 healthy individuals (control group) led to
a similar but not identical best-performing five-feature biosignature via the Classification
Random Forests algorithm, which was able to discriminate between patients and healthy
individuals with an AUC of 0.898 (95% CI 0.845–0.944) and an average precision of 0.937
(95% CI 0.893–0.968) (Figure 5D,E). The biosignature’s features included GCK, IAPP and
KCNJ11 methylation as well as BMI and ccfDNA concentration, all but the last common
to the original model from the whole dataset. Validating the model in the test sub-group
data from 30 T2DM patients and 20 healthy individuals showed an AUC of 0.923 and an
average precision of 0.945, verifying the model’s performance stability. The best-performing
biosignature is presented in Figure 5D–F. The most interpretable five-feature biosignature
was also built via the Ridge Logistic Regression algorithm reaching an AUC of 0.879 (95%
CI 0.826–0.927) and an average precision of 0.921 (95% CI 0.881–0.957). This biosignature’s
features included again GCK, IAPP and KCNJ11 methylation, as well as BMI and ccfDNA
concentration. In validation in the test dataset, model reached an increased AUC of 0.958
and an average precision of 0.972, again verifying no overfitting in the model construction.
Supplementary Table S1 displays the algorithms and tuning hyper-parameter values that
JADBio’s AI decided to try in the analysis of the splitted training dataset.

https://app.jadbio.com/share/d59a08fb-e7ea-42e8-8eae-b225f512a38b
https://app.jadbio.com/share/d59a08fb-e7ea-42e8-8eae-b225f512a38b
https://app.jadbio.com/share/42c8c603-06d4-47e7-8276-97d4fa970d6c
https://app.jadbio.com/share/42c8c603-06d4-47e7-8276-97d4fa970d6c
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Figure 5. Predictive modelling results. (A) ROC curve of whole dataset reaching an AUC of 0.927
(95% CI 0.874–0.967). (B) Supervised Principal Component Analysis (PCA) plot of whole dataset
depicting discrimination between T2DM patients and healthy individuals. (C) Feature importance
plot of the features of the best-performing model for the whole dataset. Feature importance is defined
as the percentage drop in predictive performance when the feature is removed from the model.
(D) ROC curve of train sub-dataset (blue line) reaching an AUC of 0.898 (95% CI 0.845–0.944) and test
sub-dataset (green line) showing an AUC of 0.923 for the best-performing model. (E) PCA plot of test
sub-dataset depicting discrimination between T2DM patients and healthy individuals. (F) Feature
Importance plot of the features of the best-performing model in the train/test 70/30 split sub-datasets.
Abbreviations: ROC curve: receiver operating characteristic curve, AUC: area under the curve, CI:
confidence interval, T2DM: type 2 diabetes mellitus.

3. Discussion

ccfDNA is released into the blood, urine, and other biological fluids after cell apopto-
sis/necrosis or by active release from living cells [13]. Currently, ccfDNA-based biomarkers
have emerged as promising minimally invasive options for the early diagnosis and monitor-
ing of T1DM in several studies [5,8,11]. According to El Tarhouny et al., ccfDNA levels were
significantly elevated in T2DM patients with or without complications compared to healthy
individuals, indicating that ccfDNA can also be of significant clinical value in T2DM per-
sonalized management [33]. To expand knowledge on ccfDNA in T2DM with potentially
valuable clinical applications, we investigated the levels, the fragment size distribution
as well as the methylation profile of ccfDNA in a cohort of T2DM patients and healthy
individuals with the ultimate goal of the production of diagnostic/monitoring biosigna-
tures. To the best of our knowledge, this is the first study to evaluate such ccfDNA-based
experimental parameters in a multi-level approach in diabetes.

By directly measuring ccfDNA in sera via fluorometry, our data revealed that ccfDNA
levels were similar between T2DM patients and healthy individuals. This discrepancy with
the data of El Tarhouny et al. [33] can possibly be attributed to different quantification meth-
ods and patient classification criteria. Thus, in our study, ccfDNA levels were quantified
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via fluorometry, counting both nuclear and mitochondrial fractions of free/naked ccfDNA
(unbounded DNA). On the other hand, the quantification of extracted ccfDNA by PCR for
the GAPDH gene that was used by El Tarhouny et al. measures only the nuclear fraction of
extracted ccfDNA and both the unbounded and bounded DNA in protein complexes.

Plasma ccfDNA is a popular specimen for liquid biopsy approaches, although in
several previous studies on beta-cell death serum samples were used for ccfDNA isolation,
so we decided to keep up with these approaches in order to have comparable results [5,8,9].
In any case, our pilot experiments not included in the manuscript showed no significant
differences in the yield and quality of ccfDNA isolated between plasma and serum blood
fractions. Serum volumes as low as those used here have not been highly reproducible in
past assessments of similar assays; indeed, the cancer field where these assays are most
highly advanced are in many cases moving toward sample volumes an order of magnitude
larger than those used here. Our results from direct and indirect quantifications demon-
strate that used sample volume was sufficient for the downstream analysis, as previously
demonstrated by our group and others [9,25]. In addition, taking into consideration the
short half-life of ccfDNA fragments and in order to avoid significant loss, isolation protocol
was initiated within two hours of collection.

Several suggested cellular processes are responsible for ccfDNA release into biological
fluids and the size of the DNA fragment content is informative for each one of them.
Apoptosis is characterized by ~160 bp and multiple fragments, necrosis delivers fragments
above ~10,000 bp, while active release delivers ~2000–3000 bp fragments [31,32]. We have
recently shown that in breast cancer patient samples, DNA fragments of ~160 bp and
multiples and those of ~10,000 bp appeared more often (in 60.0% and 53% of patients,
respectively) than DNA fragments of ~2000 bp (in 37% of patients) [25]. In our previous
study, using two cancer cell lines, we have shown that induction of apoptosis in vitro
resulted in the release of these short ~160 bp and multiple fragments, confirming these
data [34]. To reveal the mechanism(s) of ccfDNA release into the circulation in T2DM,
fragment analysis by capillary electrophoresis showed mainly fragments of ~160 bp and
multiples and that of ~2000 bp inT2DM patients, indicating greater incidence of apoptosis,
although not reaching statistical significance. This could be attributed to the ongoing
apoptosis of remaining functional insulin-producing β-cells in accordance with the fact that
β-cell destruction is an important etiological factor in the development and progression of
T2DM [35]. Moreover, in obese T2DM patients, peaks of ~2000 bp fragments were observed
more often than in non-obese patients, possibly suggesting that obesity-induced DNA
release from adipocytes is via active release.

In order to examine the tissue origin of ccfDNA in T2DM, we investigated the methy-
lation status of five β-cell-specific genes based on previous literature findings that propose
them as promising biomarkers for β-cell death (INS, IAPP and GCK), as well as their
implication on β-cell physiology (INS, IAPP, GCK, KCNJ11 and ABCC8). As methylation
is a tissue-specific event, genes expressed exclusively in β-cells are unmethylated only in
this cell type, and this status is expected to be detectable also in ccfDNA released by them.
It has been previously shown that INS, IAPP and GCK are found to be unmethylated in
serum ccfDNA of T1DM patients in relation to healthy individuals [5,6,8–11]. We have
also previously studied the methylation levels of KCNJ11 and ABCC8 in another cohort of
T2DM patients regarding their response to antidiabetic therapy, and we were interested in
investigating further their use as biomarker of T2DM [30]. Here, we focused on T2DM and
the methylation status of INS, IAPP, GCK and KCNJ11, and ABCC8 is investigated for the
first time in serum ccfDNA of T2DM patients. All but the ABCC8 gene showed statistically
significant differential methylation levels between patients and controls. Higher percent-
ages of unmethylated alleles show the beta-pancreatic origin of ccfDNA in the blood of
T2DM patients. It can be concluded that while on an apoptotic cell death pathway, β-cells
release ccfDNA and enrich the physiological pool of free nucleic acids in the circulation.

To further exploit our ccfDNA experimental observations in order to build classifying
biosignatures of higher diagnostic/monitoring performance, we performed classification
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analysis by employing an innovative AutoML approach. We used JADBio, an AutoML
platform that uses state-of-the-art statistical and machine learning methods [22]. Another
innovative element of our approach was combining all ccfDNA experimental parameters
(including levels and gene methylation) with clinical and demographical patient charac-
teristics in one analysis executing feature selection and therefore eliminating redundancy.
AutoML analysis in the dataset as a whole delivered a best-performing five-feature biosig-
nature via the Classification Random Forests algorithm, including GCK, IAPP and KCNJ11
methylation and age and BMI, showing very high performance in discriminating T2DM pa-
tients from healthy individuals (AUC 0.927). Similarly, the AutoML of split train/validation
data led to a best-performing five-feature biosignature via the Classification Random Forests
algorithm with the same but one new feature, i.e., GCK, IAPP and KCNJ11 methylation and
BMI and ccfDNA concentration, showing nearly as high discrimination capacity between
groups (AUC 0.898). This was expected, as models built in smaller datasets demonstrate
compromised performance. Most importantly, the validation of this biosignature in the
independent validation subgroup showed an AUC of 0.923, verifying the model’s perfor-
mance stability and the absence of overfitting, which confirms what claimed to be achieved
by the AutoML tool used. In both models, GCK and IAPP methylation are found to be
the major features contributing to the performance, highlighting their value as biomarkers
in diabetes.

To fully assess clinical relevance, we next plan to validate these biosignatures in inde-
pendent, blinded validation cohorts of T2DM patients, obese and prediabetic individuals
from a different clinical setting (cross-dataset analysis). We should note, however, that
JADBio implements internal cross-validation with the bootstrap corrected cross-validation
(BBC-CV) algorithm [36,37], shown to substitute external validation. The bootstrapping
technique performs a correction to the estimation of out-of-sample performance of the
final model. The correction (adjustment) is required because JADBio tries thousands of
machine learning pipelines to identify the best one that produces the optimal, final model.
The correction is conceptually similar to the Bonferroni adjustment required for multiple
hypotheses testing due to performing multiple tests. Intuitively, the selection process,
which selects the best out of numerous pipelines is bootstrapped. Internally, JADBio holds
out a subset of the training data to test the generalization performance (out-of-sample) of
the produced model, effectively simulating the presence of an external dataset. In fact,
JADBio performs this training and test procedure numerous times to reduce the variance of
the estimation. Specifically for small sample sizes, it employs a stratified, K-fold, repeated
cross-validation protocol that exhibits small estimation variance. In addition, the final
estimate is corrected for the fact that numerous machine learning pipelines have been
tried (a form of the “winner’s curse”) using the recently developed bootstrap corrected
cross-validation (BBC-CV) algorithm. This technique has been shown to produce conser-
vative estimates of performance in massive evaluation experiments with general types of
data [22]. In addition, the accurate estimation of AUC by JADBio in small sample settings
has been tested in numerous studies. Indeed, we and others have previously shown in
multimodal datasets that AUC estimations did not drop upon external validation, showing
no over-estimations [25–27,38–40]. This body of work proves that JADBio estimates can be
trusted and there is no need to have a separate hold-out dataset to statistically validate the
results, a feature of particular importance for maximal extrapolation of precious biomed-
ical datasets. In the case presented here, the model built in the dataset as a whole had
marginally better performance that the one built in 70/30 train/test. Still, as we ourselves
would like to promote trustworthiness of this ML approach, we plan to re-optimize and
externally evaluate the biosignatures built in real-world prospective setting.

A relatively small sample size is a limitation in this study. We [22] and others [40] argue
that sample size is one of many important design elements contributing to the successful
implementation in biomarker discovery. Machine learning, quickly penetrating the field, is
there in order to overcome such limitations, aiding robust, optimized and maximal data
extrapolation from small cohorts. As such, it is included in the recommended generic
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steps for robust model building and evaluation. The novel biosignatures presented in our
study, based on qMSP rather than whole-genome or digital PCR methodologies, have a
great translatability to cost-effective assays, which can be implemented in any standard
molecular diagnostic laboratory. They are, therefore, readily available to offer feasible liquid
biopsy-based assays for predicting or diagnosing early diabetes as well as monitoring β-cell
death upon prospective clinical validation.

Previous studies leveraged demographical, clinical and laboratory data, such as age,
BMI, glycated hemoglobin (HbA1c), hypertension, smoking and glucose, and employed
ML tools for predicting risk of diabetes with promising results [20,21,41]. The predictive
abilities of the models built, however, (AUC ranging from 0.826 to 0.872) were inferior to
those presented here (AUC reaching 0.927) incorporating for the first time parameters of a
liquid biopsy biomaterial such as ccfDNA with demographical data.

Other approaches focusing on liquid biopsy biomarkers for the management of
diabetes have examined methylation of INS, IAPP and GCK either as single parame-
ters [5,8,9,12] or as combined parameters, i.e., INS and CHTOP in a duplex assay [42].
Previous reports showed that GCK methylation is a more suitable marker than INS methy-
lation for the detection of β-cell death in T1DM and therefore can present an early diabetes
biomarker [9]. Furthermore, the recent study of Arosemena et al. reported that none of the
four groups (lean controls with normal glucose tolerance; overweight/obese with normal
glucose tolerance; impaired glucose tolerance; and T2DM patients) showed statistically
significant differences in INS methylation compared to the healthy controls [43]. These
findings are in agreement with our observations in T2DM, where INS methylation showed
a low capacity to discriminate T2DM, and GCK methylation revealed the best capacity,
highlighting its potential clinical value as a minimally invasive biomarker for T2DM per-
sonalized management. Our model incorporates this biomarker with the maximal feature
importance (GCK) in the model’s performance, which, however, is dramatically increased
by including other selected pancreatic gene methylation biomarkers and other parameters.
These corroborated findings considered together, support the value of the herein model in
the early detection of diabetes onset.

4. Materials and Methods
4.1. Study Groups and Serum Sampling

Our study’ s groups consisted of 96 T2DM patients on treatment and 71 healthy
individuals (control group) of similar age without a history of diabetes. All samples were
of Caucasian origin. T2DM was diagnosed according to the ADA guidelines [44]. All
T2DM patients were on oral antidiabetic therapy of metformin, and 5 of them also received
sulfonylureas treatment. Almost half of patients (n = 42) were also on insulin therapy.
Demographic and clinical data of study groups are shown in Supplementary Table S2.
Inclusion criteria of the study included age between 25 and 75 years old and ability to
give informed consent. Exclusion criteria of all participants included the presence of a
(another) chronic disease, underlying malignancies and systemic lupus erythematosus.
Serum samples were obtained within 2 h of blood sampling through centrifugation at
3000× g for 10 min. An additional high-speed centrifugation step at 14,000× g for 10 min
was performed to remove any cellular debris and contaminants, such as gDNA from
damaged blood cells. Serum samples were stored at −80 ◦C until further use.

4.2. Direct Quantification of ccfDNA

The direct quantification of free unbounded/naked ccfDNA in 20 µL of serum was
performed utilizing the Quant-iT dsDNA High-Sensitivity Assay Kit in Qubit 3.0 Fluorome-
ter (Invitrogen, Karlsruhe, Germany) according to manufacturer specifications. A standard
curve was generated using provided standards (0 and 10 ng/µL).
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4.3. ccfDNA Isolation

All ccfDNA (naked, bound in nucleosomes or proteins, or internalized in vesicles)
was extracted from 600 µL of serum using the QIAamp Blood Mini kit (Qiagen, Hilden,
Germany) in a final elution volume of 30 µL, as specified by the manufacturer. ccfDNA
isolation was performed manually in batches of 10 samples and no carrier DNA was used.
Specifically, 20 µL Protease and 600 µL of each sample were added to a microcentrifuge tube,
and then 200 µL Buffer AL was added to each sample. After lysis, samples were incubated
for 10 min at 56 ◦C, and 200 µL 100% ethanol were added to each sample. Following this,
the mixtures were applied to a QIAamp Mini spin column and two steps of wash and
centrifuging at 6000× g were followed. Finally, 30 µL Buffer AE was added, and, through a
new centrifugation step, serum ccfDNA was eluted.

The extracted ccfDNA was stored at −20 ◦C until further use. Then, 4 µL of extracted
ccfDNA was subjected to quantitative PCR (qPCR) for the nuclear GAPDH gene to de-
termine isolation efficiency in terms of ccfDNA quantity and quality following MIQE
guidelines [45]. Primer sequences are shown in Supplementary Table S2.

4.4. Capillary Electrophoresis of Extracted ccfDNA

The High-Sensitivity DNA Kit on 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA), an automated on-chip electrophoresis system, was used for the fragment size
evaluation of 2 µL of extracted ccfDNA, following the manufacturer’s instructions.

4.5. Methylation Analysis

A total of 20 µL of extracted ccfDNA was treated with sodium bisulfite (SB) using the
EZ DNA Methylation-Gold kit (ZYMO Research Co., Irvine, CA, USA) in a final elution
volume of 10 µL, following the manufacturer’s procedure. In each reaction, CpGenome
Human methylated and non-methylated DNA controls (Merck Millipore, Darmstadt,
Germany) were included as negative and positive control samples, respectively. The
SB-treated ccfDNA was stored at −80 ◦C until further use.

A methylation-independent PCR assay for the β-actin gene (ACTB) was used in order
to verify sufficient quality and quantity of SB-treated ccfDNA. Methylation levels of β-cell-
related genes INS, IAPP, GCK, KCNJ11 and ABCC8 were analyzed using quantitative SYBR
Green-based methylation-specific PCR assays. For all genes, primers specific for methylated
(m) and unmethylated (u) alleles were either newly designed using the MethPrimer [46]
program or were based on bibliography with some modifications. Primer sequences are
provided in Supplementary Table S3. To set up robust qMSP assays, extensive optimization
was performed. Specificity and cross-reactivity of primers were evaluated using uncon-
verted DNA, SB-treated methylated DNA and non-methylated DNA controls. Analytical
specificity of qMSP assays was evaluated by using mixes of SB-converted methylated and
non-methylated DNA standards (100%, 50%, 10%, 5%, 0.5%, 0%). Analytical sensitivity of
assays was evaluated using serial dilutions of SB-treated methylated and non-methylated
DNA controls in H2O. The reproducibility (calculated as coefficients of variation, CVs), the
efficiency and the linearity were also evaluated in order to complete the validation file of
the established assays. All samples were run in duplicates. The percentage of methylation
in a sample was estimated using following formula by Lu et al. [47]:

1 − 1
1 + 2(−∆Ct)

× 100% (1)

where
∆Ct = Ctunmeth − Ctmeth (2)

Following this, the percentage of methylation was multiplied by the concentration of
total serum ccfDNA.
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4.6. Statistics

Initially, Kolmogorov–Smirnov test was applied to check for normality in distribu-
tion of continuous data. Due to lack of normality in our data, non-parametric statistics
were used for comparisons between groups (Kruskal–Wallis test or Mann–Whitney U
test). The Spearman correlation coefficient was used as a measurement of correlation for
continuous variables. The predictive power of the ccfDNA levels and β-cell-related genes
methylation was tested using receiver operating characteristic (ROC) curve analysis and
Area Under the Curve (AUC) metric. Continuous variables are expressed as median value
(25th–75th percentile, interquartile range). Categorical variables are shown as absolute
frequencies (percentage). In all tests performed, statistical significance was set at two-sided
p value < 0.050. Standard statistical analysis was carried out with the SPSS version 21.0
statistical software package for Windows (IBM-SPSS Inc., New York, NY, USA).

4.7. AutoML Predictive Modelling with JADBio

The innovative AutoML technology JADBio, version 1.2.8 (https://www.jadbio.com/,
accessed on 13 January 2022) [22], was applied to produce diagnostic/monitoring biosigna-
tures/classifiers based on the ccfDNA parameters, methylation data and demographical
information. Given a 2D matrix of data, JADBio automatically preprocesses data (Mean
Imputation, Mode Imputation, Constant Removal, Standardization), performs feature selec-
tion by employing LASSO or Statistical Equivalent Signatures (SES) algorithms, tries several
algorithms (Classification Random Forests, Support Vector Machines (SVM), Ridge Logistic
Regression and Classification Decision Trees) and thousands of algorithmic configurations,
and then selects the best-performing model, estimates the out-of-sample model’s perfor-
mance after bootstrap correction and cross-validation, and provides several visualizations.

The training set is used to train multiple machine learning pipelines that include
the steps of preprocessing, imputation, feature selection, and modeling. Internally and
automatically, JADBio holds out a subset of the training data to test the generalization
performance (out-of-sample) of the produced model, effectively simulating the presence of
an external dataset. In fact, JADBio performs this training and test procedure numerous
times to reduce the variance of the estimation. Specifically, for small sample sizes, it
employees a stratified, K-fold, repeated cross-validation protocol BBC-CV algorithm [37]
that exhibits small estimation variance and removes the estimation bias due to the fact that
it was selected among many. The features selected in the winning pipeline are the ones
included in the returned model. In addition, our dataset was randomly automatically split
into train and validation sub-datasets by a 70/30 ratio via JADBio.

For our AutoML classification analysis, we used extensive model tuning effort, we
chose the AUC metric for optimization of performance and we set classifier maximum size
to five features. The predictive power of the biosignature was assessed using AUC and
average precision (also known as area under the precision–recall curve) metrics.

5. Conclusions

The identification of markers that can predict future onset of type 2 diabetes is of great
interest to the field; the ability to measure such markers consistently and uninvasively is
critical. Our data unravel the value of ccfDNA as a liquid-biopsy biomaterial carrying
important clinical information for minimally invasive T2DM diagnosis and monitoring.
Overall, by adopting ad-hoc AutoML technology in our study, a highly potent predictive
biosignature based on ccfDNA methylation parameters in combination with demographical
data has emerged, readily available to be translated into a cost-effective laboratory test.
Upon prospective clinical evaluation, our biosignature could aid the early diagnosis and
monitoring of T2DM, meeting the need for a minimally invasive advancement in the
direction of personalized diabetes management.

https://www.jadbio.com/


J. Clin. Med. 2022, 11, 1045 14 of 16

6. Patents

The contents of this manuscript were included in an EPO patent filing. Makrina
Karaglani, Ioannis Tsamardinos and Ekaterini Chatzaki act as inventors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm11041045/s1, Figure S1: (a) Specificity of ABCC8 qMSP assay for the methylated primers
set: amplification curves of 100%, 50%, 10%, 5% and 0.5% SB-converted methylated DNA standards;
(b) Sensitivity of KCNJ11 qMSP assay for the unmethylated primers set: amplification curves of 10-
fold serially diluted 100% SB-converted non-methylated DNA standard-efficiency 93%; (c) Sensitivity
of INS qMSP assay for the unmethylated primers set: amplification curves of 10-fold serially diluted
100% SB-converted non-methylated DNA standard-efficiency 97%; (d) Specificity of INS qMSP assay
for the methylated primers set: amplification curves of 100%, 50%, 10%, 5% and 0.5% SB-converted
methylated DNA standards; (e) Sensitivity of IAPP qMSP assay for the unmethylated primers set:
amplification curves of 10-fold serially diluted 100% SB-converted non-methylated DNA standard-
efficiency 96%; (f) Specificity of GCK qMSP assay for the unmethylated primers set: amplification
curves of 100%, 50%, 10%, 5% and 0.5% SB-converted non-methylated DNA standards; Table S1:
Demographic and clinical data of study groups; Table S2: Primer sequences, genomic locations, and
related references (where relevant) used for qMSP assays.
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