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The biological consequences of exposure to explosive blast are extremely complex. Serum
protein biomarkers in blast-induced traumatic brain injury (bTBI) can aid in determining
injury severity, monitoring progress, and predicting outcome. Exposure to blast results in
varying degrees of physical injury. Explosive blast can also induce psychological stress that
can contribute to or amplify the extent of physical damage. Given the complexity, scale
of injury, and variety of symptoms, bTBI may be best described as a spectrum disorder.
In this focused review, we summarize the status of serum protein biomarkers in bTBI in
the context of the classification and pathological changes of other forms of TBI. Finally,
we recommend specific and easily implementable measures to accelerate serum protein
biomarker discovery and validation in bTBI.
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Serum protein biomarkers have long held promise in the treat-
ment of traumatic brain injury (TBI). They can aid in diagnosing
the disease, monitoring progress, predicting outcome, and provid-
ing pertinent molecular information about ongoing pathological
changes for designing evidence-based therapeutic interventions
(Kochanek et al., 2011). Serum protein biomarkers are of special
importance in blast-induced TBI (bTBI) because they are typically
associated with military operations with limited access to imaging
and other diagnostic tools of hospitals (Agoston et al., 2009).

The physical and biological consequences of explosive blast are
extremely complex. Blast generates high energy supersonic pres-
sure waves, heat, toxic gases, electromagnetic pulses, etc. (Cham-
pion et al., 2009;Ramasamy et al., 2009a,b; Hicks et al., 2010;
Nakagawa et al., 2011). How each of these forces, separately or
in a combinatorial fashion interact with the brain and body is still
poorly understood. While the cause of bTBI is exposure to blast,
injury severity may range from mild to severe and result in out-
comes that cover a wide set of symptoms (Mayorga, 1997; Guy
et al., 2000; Elder and Cristian, 2009; Elder et al., 2010; Rosenfeld
and Ford, 2010; Marion et al., 2011). Exposure to blast can also
cause severe psychological stress that can contribute to or amplify

Abbreviations: AQP4, aquaporin 4; C-tau, cleaved-tau protein; GFAP, glial fibrillary
acidic protein; HIF-1α, hypoxia-inducible factor 1, alpha subunit; Hsp70, heat shock
protein 70; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-8, interleukin-8; MBP,
myelin basic protein; MMP9, matrix metalloproteinase-9; NF-H, neurofilament-
heavy chain; NSE, neuron specific enolase; pNF-H, phosphorylated neurofilament-
heavy chain; S100β, S100 calcium binding protein B; SBPs, spectrin breakdown
products; TNF-α, tumor necrosis factor alpha; UCH-L1, ubiquitin C-terminal
hydrolase L1; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor.

the extent of physical damage (Kluger et al., 2004; Ling et al.,
2009; Wallace, 2009; Wolf et al., 2009; Ling and Ecklund, 2011).
Accordingly, bTBI may be best described as a spectrum disorder.
Similar to other forms of TBI, the classification of bTBI is cur-
rently based on subjective neurobehavioral evaluations including
the Glasgow Coma Scale (GCS) and the Military Acute Concussion
Evaluation (MACE; Cernak et al., 1999; Secer et al., 2007; Bochic-
chio et al., 2008; Peleg and Savitsky, 2009; Rosenfeld and Ford,
2010; Tarmey et al., 2011). These functional assessments are only
occasionally supplemented with information from neuroimaging
techniques, such as computed tomography (CT) and magnetic
resonance imaging (MRI; Ling and Ecklund, 2011).

In this paper, we provide a brief overview of the status of serum
protein biomarkers in bTBI. Because of the limited information
about protein biomarkers specific to blast injury, we will discuss
them in the context of the classification and pathological changes
of other forms of TBI.

EPIDEMIOLOGY OF TBI AND bTBI
Traumatic brain injury is an enormous public health concern. The
Centers for Disease Control and Prevention (CDC) estimates that
∼1.7 million Americans sustain TBI every year (Coronado et al.,
2011). TBI also contributes to about a third of all injury-related
deaths, resulting in over 52,000 deaths a year (Coronado et al.,
2011).

Improving TBI treatment for military personnel is especially
pressing. The incidence of TBI for armed forces, even during
peacetime, is greater than civilian populations (Ommaya et al.,
1996). Also, due in part to the nature of modern combat, the
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incidence rates of TBI have been increasing since 2000 (Sayer,
2012). Although it is difficult to assess exactly how many soldiers
are victims of TBI (especially because many are not properly diag-
nosed), estimates from Veterans Affairs medical records report that
about 7% of veterans from Iraq and Afghanistan received a TBI
diagnosis (Taylor et al., 2012). Other survey studies suggest that
11–23% of military personnel deployed to Iraq or Afghanistan
may have sustained at least mild TBI (Sayer, 2012). Studies from
the Rand Corporation estimate that about of fifth of returning
members suffer from TBI (Tenielian and Jaycox, 2008).

Blast injury from improvised explosive devices (IEDs) is an
especially common form of TBI among military populations.
According to the Joint Theater Trauma Registry, IEDs were
the source of about 80% of all casualties of veterans from
Iraq and Afghanistan between October 2001 and January 2005
(Owens et al., 2008). In another review of US Army casualties
in Afghanistan and Iraq between 2001 and 2007, explosions were
linked with 63% of all TBI diagnoses (Wojcik et al., 2010). Another
similar survey of US Navy and Marine casualties in Iraq in 2004
found that 52% of all TBI cases involved explosions (Galarneau
et al., 2008). Despite the variability of these studies, it is evident
that TBI and bTBI especially affects a great deal of soldiers, thus
requiring the need for improved diagnostics and treatments.

CLASSIFICATION OF BLAST-INDUCED TRAUMATIC BRAIN
INJURY
Individuals who experience less than 30 minutes of lost or altered
levels of consciousness after exposure to blast are classified as hav-
ing suffered mild bTBI (mibTBI; Figure 1; Trudeau et al., 1998;
Hoge et al., 2008; Elder et al., 2010; Levin et al., 2010; Rosenfeld
and Ford, 2010; Wilk et al., 2010). This initial period may be fol-
lowed by post-injury amnesia that lasts no longer than 24 hours.
There are typically no penetrating injuries to the head or other

organs, and neurological deficits (if any) are focal and transient
in nature. Concurrently, the GCS score is nearly perfect at 13–15.
The transient and mild neuropsychiatric deficits are typically fol-
lowed by full recovery. However, similar to other types of mild TBI,
a delayed onset of functional changes and long-term disabilities
may still occur, especially after multiple exposures to mild blasts
(Stern et al., 2011). Importantly, mibTBI shares symptoms and is
often comorbid with post-traumatic stress disorder (PTSD; Hoge
et al., 2008; Levin et al., 2010; Rosenfeld and Ford, 2010; Ursano
et al., 2010). The combination of physical damage and psycholog-
ical effects makes mibTBI especially difficult to diagnose. Thus,
serum protein biomarkers that can distinguish between the physi-
cal and psychological components of the injury would be of special
value (see also Figures 2 and 3 and discussion below).

Blast-induced traumatic brain injury is classified as moder-
ate if loss of consciousness is longer than 30 minutes, post-injury
amnesia lasts longer than 24 hours, and the initial GCS score is
between 9 and 12 (Figure 1; Thompson et al., 2008; Aarabi and
Simard, 2009; Wolf et al., 2009; Drake et al., 2010). The long-term
outcome of moderate bTBI (mobTBI) can include detectable and
significant levels of cognitive and neuropsychiatric abnormalities.
Moderate bTBI can also be comorbid with PTSD and injuries to
other organs.

According to the current classification system, bTBI is severe
if the GCS score is less than 9 (Figure 1; Ling and Marshall,
2008; Ling et al., 2009; Ling and Ecklund, 2011). In the severe
form of bTBI (sbTBI), polytrauma, i.e., injuries to other parts
of the body, most frequently to the extremities, abdomen, and
lungs can significantly contribute to and modify the pathology
and outcome of brain injury. In addition to its comorbidity with
polytrauma, sbTBI is often the result of multiple types of brain
injury. Beyond the damage caused by the primary components of
blast, various objects, debris, and shrapnel may break through the
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FIGURE 1 | Summary of current classifications, injury mechanisms, clinical symptoms, and outcomes of bTBI spectrum disorder.
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Biomarker  Cell Speci!city  Origin/
Localization  

Function  bTBI Experimental  bTBI Clinical  TBI Experimental  TBI Clinical  

S100 β Glia, astrocytes, 

muscle  

Cytoplasm, also 

secreted extra-

cellularly  

  

Intracellular signaling, Ca2+ binding, 

regulating PKC phosphorylation  

Yes
1
 

  

  

  Yes
3, 4

 Yes
5-11

 

  

NSE  Neurons  Neuronal cyto-

plasm  

Glycolytic enzyme, regulation of 

intracellular chloride level  

Yes
2, 14, 15

   Yes
3, 16, 17,

 Yes
5, 8, 9, 11, 18

 

GFAP  Astroglia  Cytoskeleton  Structural !lament  Yes
1, 2, 15, 50

   Yes
17

 Yes
11, 20 - 22

 

MBP  Oligodendrocytes  White matter, 

axons  

Involved in myelination  Yes
1
   Yes

23
 Yes

2, 24
 

pNF -H  Neurons, neuroendo-

crine tissue  

Cytoskeleton, 

axons  

Structural !lament      Yes
25, 26

 Yes
11, 27, 28, 51

 

NF -H  Neurons, neuroendo-

crine tissue  

Cytoskeleton, 

axons  

Structural !lament  Yes
1, 15

     Yes
7
 

Hsp70  Ubiquitous  Nucleus, cyto-

plasm  

Transcribed upon cellular stress to 

protect cell  

      Yes
11, 29

 

Secretagogin  Neurons, neuroendo-

crine tissue  

Nucleus, cytosol  Ca2+ binding protein        Yes
11

 

IL -1β Glia, immune cells  Serum, cell 

receptors  

Released as part of in"ammatory 

response  

    Yes
30

 Yes
11, 31, 32

 

IL -6 Glia, immune cells  Serum, cell 

receptors  

Released as part of in"ammatory 

response  

      Yes
11, 31, 32

 

IL -8 Glia, immune cells  Serum, cell 

receptors  

Released as part of in"ammatory 

response  

  Yes
33

   Yes
11, 31, 32

 

TNF -α  Activated macro-

phages  

Serum, cell 

receptors  

Involved in in"ammatory response, 

apoptosis  

  Yes
33

 Yes
34

 Yes
31, 32

 

UCH -L1  Neurons, neuroendo-

crine tissue  

Cytoplasm  Ubiquitin hydrolysis  Yes
2
   Yes

35
 Yes

27, 36, 37
 

C -tau  Neurons, low level in 

astrocytes and oli-

godendrocytes  

Microtubules  Axoplasmic "ow, microtubule for-

mation 

    Yes
38, 39

 Yes
8, 11, 40

 

Alpha II -Spectrin  Neuron, axon  Cytoskeletal  

membrane  

Structural component of neuronal/

axonal cytoskeleton  

    Yes
41

 Yes
27

 

SBPs  Neuron, axon  Serum  Cleaved by calpain - and caspase -

derived proteases  

    Yes
42 -44

 Yes
27

 

Ceruloplasmin  Ubiquitous  Serum  Copper -carrier protein involved in 

copper and iron metabolism  

      Yes
45, 46

 

vWF  Mainly endothelial 

cells, other cell types  

Serum, cell 

receptors  

Glycoprotein involved in hemostasis  Yes
48

     Yes
47

 

VEGF  Ubiquitous  Serum, cell 

receptors  

Promotes angiogenesis  Yes
48

   Yes
15

   

Claudin -5 Mainly endothelial 

cells  

Cell membrane,  

tight junctions 

Involved in forming tight junctions, 

regulating paracellular transport  

Yes
48

       

AQP4  Mainly astrocytes  Cell membrane  Water channel      Yes
49

   

MMP9  Ubiquitous  Extracellular 

matrix 

Involved in breaking down the extra-

cellular matrix  

    Yes
49

   

HIF -1α  Ubiquitous  Nucleus, Cyto-

plasm  

Induced by hypoxia, activates cell 

protection response  

    Yes
49

   

FIGURE 2 | Candidate protein biomarkers for blood-based diagnostics
in traumatic brain injury. 1Gyorgy et al. (2011), 2Svetlov et al. (2010),
3Hardemark et al. (1989), 4Rothoerl et al. (2000), 5Bellander et al. (2011),
6Gonzclez-Mao et al. (2011), 7Haqqani et al. (2007), 8Begaz et al. (2006),
9Pleines et al. (2001), 10Townend et al. (2006), 11Zurek and Fedora (2012),
12Honda et al. (2010), 13Berger et al. (2005), 14Cheng et al. (2010), 15Kwon
et al. (2011), 16Pineda et al. (2004), 17Woertgen et al. (2002), 18Graham et al.
(2011), 19Hergenroeder et al. (2008), 20Papa et al. (2012), 21Vos et al. (2010),
22Pelinka et al. (2004), 23Liu et al. (2006), 24Berger (2006), 25Petzold (2005),

26Anderson et al. (2008), 27Siman et al. (2009), 28Sandler et al. (2010), 29da
Rocha et al. (2005), 30Kinoshita et al. (2002), 31Stein et al. (2011),
32Hayakata et al. (2004), 33Surbatovic et al. (2007), 34Vitarbo et al. (2004),
35Liu et al. (2010), 36Berger et al. (2012), 37Papa et al. (2010), 38Zemlan et al.
(2002), 39Gabbita et al. (2005), 40Bulut et al. (2006), 41Pike et al. (2001),
42Newcomb et al. (1997), 43Ringger et al. (2004), 44Saatman et al. (2010),
45Dash et al. (2010), 46Young et al. (1988), 47De Oliveira et al. (2007),
48Ahmed et al. (in preparation), 49Higashida et al. (2011), 50Garman et al.
(2011), 51Zurek et al. (2011), 52Brophy et al. (2009).

skull causing penetrating TBI. Also, it is not uncommon for the
victim to be physically thrown from the mechanical force of explo-
sion, causing further injury (acceleration-deceleration TBI). The
combined damage from blast,penetrating injury,and acceleration-
deceleration types of forces cause severe brain damage that leads
to complex and debilitating long-term neurological and neuropsy-
chiatric deficits, if not death (see Figures 2 and 3; Discussion
below; Ling and Marshall, 2008; Ling et al., 2009; Ling and Eck-
lund, 2011). With respect to biomarkers, measuring changes in
specific serum proteins indicative of the extent of neuronal and
glial cell loss, axonal, and vascular damage, and damage to other
organs can significantly add to the current diagnostic palette of
neurobehavioral tests (see also Figures 2 and 3 and discussion
below).

PATHOLOGICAL MECHANISMS AND ASSOCIATED SERUM
PROTEIN BIOMARKERS IN bTBI
The initial interactions between the physical forces of blast and
the brain trigger pathological responses called the primary injury
process or mechanism. The pathological components of the pri-
mary injury mechanism are largely influenced by whether the
insult results in open (penetrating) or closed head injury. Pen-
etrating head injury not only causes substantial direct tissue
damage, but also instantaneously breaks down existing biological
barriers, generating massive pathological responses to toxic mol-
ecules and cellular debris. In contrast, closed head injury typically
causes metabolic changes and axonal damage of various degrees.
In response to the typically short-lasting primary injury mecha-
nism, there is a second wave of long-lasting pathological changes
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Events Mechanism Candidate Serum Biomarkers 

  Mild TBI Moderate TBI Severe TBI 

Neuronal and 
Glial Cell Death 

Activation of factors triggering 
necrosis and/or apoptosis 

Neuronal: NSE, C-
tau, SBP, AII-
Spectrin 

Neuronal: NSE, pNF-H, 
NF-H, NMDAR, Hsp70, 
UCH-L1, C-tau, AII-
spectrin, SBP, 
Secretagogin 

Neuronal: NSE, pNF-H, NF-H, 
NMDAR, Hsp70, UCH-L1, C-
tau, AII-spectrin, SBP, 
Secretagogin 

Glial: S100β , 
GFAP, MBP, C-tau 

Glial: S100β, GFAP, 
MBP, NMDAR, Hsp70, 
IL-1β, IL-6, IL-8, TN- α, 

C-tau, AQP4 

Glial: S100β, GFAP, MBP, 
NMDAR, Hsp70, IL-1β, IL-6, 
IL-8, TN- α, C -tau, AQP4 

Vasospasm 
Dysregulation of vascular 
constriction and relaxation 

- 
Hsp70, TNF-α, VEGF, 

Claudin-5, vWF 
Hsp70, TNF-α, VEGF, 

Claudin-5, vWF 

Edema 
 

Vasogenic and cytotoxic events 
caused by toxic and 
inflammatory factors 

- 
Hsp70, IL-1β, IL -6, IL-
8, VEGF, Claudin-5, 
vWF, AQP4, MMP9 

Hsp70, IL-1β, IL -6, IL-8, 
VEGF, Claudin-5, vWF, 
AQP4, MMP9 

Axonal Injury 
Mechanical injury; Neuronal 
degeneration 

S100β, NSE, C-tau, 
MBP, SBP, AII-
Spectrin 

S100β, MBP, NSE, 
PNF-H, NMDAR, 
Hsp70, C-tau, AII-
spectrin, SBP 
 

S100β, MBP, NSE, PNF-H, 
NMDAR, Hsp70, C-tau, AII-
spectrin, SBP 
 

Inflammation 
Cytokine release and cellular 
stress 

IL-1β, IL -6, IL-8, 
TNF-α, IFN -γ 

Hsp70,IL-1β, IL-6, IL-8, 
TNF-α, IFN -γ 

Hsp70,IL-1β, IL -6, IL-8, TNF-
α, IFN -γ 

Metabolic 
Changes 

Hypoxia; altered energy 
demand, ion homeostasis and 
neurotransmission; increased 
repair processes 

- Ceruloplasmin, HIF-1α Ceruloplasmin, HIF-1α 

FIGURE 3 | Candidate serum protein biomarkers associated with injury severity and selected pathological mechanisms.

called the secondary injury mechanism. These pathologies include
metabolic changes, neuroinflammation, axonal injury, vascular
abnormalities, and neuronal and glial cell death (Ghirnikar et al.,
1998; Lenzlinger et al., 2001;Vink et al., 2001; Morganti-Kossmann
et al., 2002; Nortje and Menon, 2004; Warden et al., 2006; Cernak
and Noble-Haeusslein, 2010; Donkin and Vink, 2010). Metabolic
changes include abnormal levels of oxygenation (hypoxia), altered
cell metabolism (e.g., glucose utilization), disrupted energy levels
and utilization (leading to ionic imbalance, excitotoxicity, etc.),
systemic hormonal secretion, and an upregulation of inflamma-
tory activity (Cook et al., 2008; Feng et al., 2012). Inflammation is
almost always a result of injury, and occurs in response to damag-
ing stimuli, triggering the release and activation of cytokines and
chemokines and the activation and proliferation of microglia (and
astroglia) in the CNS. A propagating immune response may pro-
mote neurotoxicity and vascular changes (Morganti-Kossmann
et al., 2007; Ziebell and Morganti-Kossmann, 2010; Brown et al.,
2011). Vascular abnormalities are marked by aberrations in the
water content of the brain parenchyma, dysregulation of water
channels, and a compromised blood-brain barrier (BBB). Vascu-
lar abnormalities can be triggered by cyto- and vasogenic factors
leading to edema, vasospasm, and altered rates of perfusion. Dif-
fuse axonal injury is also common, and entails a loss of mem-
brane integrity, altered axonal architecture, Wallerian-type axonal
degeneration, metabolic disruption leading to degeneration, and
increased serum levels of axonal proteins and filaments (Meythaler
et al., 2001). Finally, neuronal and glial cell loss results from
necrotic and apoptotic cell death during primary and secondary
injury, and may lead to an increase in various neuron- and glia-
specific proteins in serum (Stoica and Faden, 2010). Compounded

together, these primary and secondary injury processes may lead to
a range of neuropsychiatric symptoms, including various forms of
memory and learning deficits, anxiety, and depression (Arciniegas,
2011).

According to our current understanding, the various forms
of TBI can share common pathological “components” during
both the primary and the secondary injury processes. What likely
distinguishes the various forms of TBIs are the onsets and rela-
tive contributions of these individual components to the overall
pathological cascades. Earlier works in different forms of TBI
have identified candidate biomarkers associated with the various
pathological changes (Figures 2 and 3). Many of these markers
are neuron- and glia-specific and reflect damage to the differ-
ent cellular components of the brain. Others are more ubiquitous
and may indicate generalized metabolic changes, inflammation,
etc. Changes in the serum levels of some of these markers have
also been found in bTBI. The onset, intensity, and temporal
patterns of the various pathological components likely depend
on the severity of the injury (Figure 4). For example, one of
the distinguishing features of sbTBI is the unusually early onset
(within hours after exposure) and extent (high severity) of edema,
whereas vasospasm is unusually delayed (up to 2 weeks post-
injury; Ling and Marshall, 2008; Ling et al., 2009; Ling and
Ecklund, 2011). It should also be noted that hemorrhage is not
associated with mibTBI, but is highly characteristic of sbTBI
(Ling and Marshall, 2008; Ling et al., 2009; Ling and Ecklund,
2011).

The temporal aspects of injury, like the onset of the various
pathologies, are especially important in dynamically changing dis-
eases like bTBI. An experimental study investigating the temporal
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Vasospasm 

Neuronal/Glial Loss  

Edema 

Metabolic Changes? 

Diffuse Axonal Injury? 
Mild 

Inflammation? 

Injury 

6 

hr 

12 

hr 

1 

wk. 

2 

wk. 

1 

mo. 

3 

mo. 

6-12 
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hr 
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1 

mo. 

3 

mo. 
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mo. 
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6-12 

mo. 

Neuropsychiatric Symptoms 

FIGURE 4 |The onset and the extent of selected pathological
mechanisms of bTBI by injury severity. Hypothetical model. The colored
horizontal bars intend to illustrate the approximate onset and extent of the
individual pathological changes following injury. The color intensities and bold

type reflect an increased severity and contribution of the individual
pathologies, whereas lighter colors, question marks, and strikethroughs
represent weaker, relatively transient, or nearly absent conditions.
Abbreviations: hr, hour(s); wk., week(s); mo., month(s).

pattern of changes in serum levels of four of the most commonly
used clinical and experimental biomarkers, S100β, NSE, MBP, and
NF-H showed that the temporal pattern of changes can reflect
injury severity. Using a swine model of explosive blast and moni-
toring changes in the serum levels of the four markers up to 2 weeks
post-injury, Gyorgy et al. (2011) found increases over time in the
serum levels of all four markers. Importantly, the temporal pat-
tern of changes in the serum levels of NF-H showed that in sbTBI,
serum NF-H levels peaked early (within 6 hours after injury). The
temporal pattern of changes of the other three markers showed no
correlation with injury severity. This study illustrates how mon-
itoring the temporal pattern of changes (e.g., “time to peak”) of
serum biomarkers can be useful for identifying injury severity and
outcome. This study also underlines the importance of monitoring
changes in serum levels of several markers as they can reflect the

dynamics of distinct but important pathologies, e.g., glial response
(GFAP and S100β) vs. axonal damage (NF-H).

Experimental data derived from a rodent model of bTBI has
shown that in addition to neuronal and glial cell damage, there
are also vascular abnormalities that occur in mibTBI (Kovesdi
et al., 2011; Kwon et al., 2011). Elevated serum levels of neuron-
or glia-specific proteins (NF-H, NSE, CK-BB; GFAP, MBP, S100β)
indicate increased permeability of the BBB (in addition to neu-
ronal and glial cell damage or loss). In the same study, the authors
found more direct evidence of vascular abnormalities. Serum lev-
els of VEGF, a protein associated with regulating complex vascular
functions including vascular permeability (Neufeld et al., 1999;
Croll et al., 2004; Rosenstein and Krum, 2004), were significantly
elevated. This study has the limitation of measuring serum lev-
els of the protein markers only at a single, terminal time point.
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However, the terminal time point of the elevated serum protein
markers was taken more than 2 months after injury. This find-
ing indicates that there may be long-lasting ongoing pathological
changes, even after a single exposure to mild blast. These findings
can have great clinical relevance if they can be repeated. Given
the large number of soldiers exposed to a single mild blast, and
our very limited knowledge about the long-term consequences of
blast, a longitudinal study focusing on a few protein biomarkers
should be considered. The data from such a study can be correlated
with long-term neurobehavioral assessments in order to identify
individuals with increased vulnerabilities and also result in a better
understanding of the pathobiology of mbTBI.

In addition to neuronal and glial damage, there is also exper-
imental evidence of neuroinflammation and vascular changes as
pathological responses to bTBI (Agoston et al., 2009; Kamnaksh
et al., 2011; Kovesdi et al., 2011; Kwon et al., 2011). Along with
elevated serum levels of VEGF, there is data showing increased
levels of Claudin-5 and vWF in rodents after repeated exposures
to mild blasts (Ahmed et al., in preparation). The temporal pattern
of changes in their serum levels and the correlation between injury
severity and the temporal patterns are currently being investigated
(Ahmed et al., in preparation).

Evidence from the study discussed above also showed that ani-
mals that were exposed to stressful conditions (in order to simulate
battlefield conditions and trigger PTSD) but were not injured had
no increase in the serum levels of the previously mentioned protein
biomarkers(Kwon et al., 2011). Despite this, they had increased
serum corticosterone (CORT) levels and displayed behavioral
pathologies like increased anxiety. These findings indicate that one
may be able to design objective, serum-based differential diagnos-
tics to distinguish between mibTBI and PTSD. Such a test would be
especially important because miBTBI is the most frequent form of
blast-induced neurotrauma, accounting for approximately 70%
of all bTBIs (Trudeau et al., 1998; Thompson et al., 2008; Elder
and Cristian, 2009; Elder et al., 2010; Rosenfeld and Ford, 2010).
Moreover, PTSD has emerged as one of the most frequent and
lasting consequences of recent military conflicts (Rosenfeld and
Ford, 2010; Belanger et al., 2011; Luethcke et al., 2011). Mild bTBI
and PTSD have overlapping neurobehavioral symptoms, clinically
as well as experimentally. Based on current knowledge, exposure
to blast can trigger cellular damage, thus requiring different ther-
apeutic interventions than those used for PTSD (Thompson et al.,
2008; Elder et al., 2010; Luethcke et al., 2011). Soldiers showing
no functional deficit based on current neurobehavioral assess-
ments (e.g., MACE) after exposure to mild levels of explosive blast
return to duty and often become re-exposed to additional blasts
(Hayes et al., 2012). As early studies implicate, additional expo-
sures can have severe consequences, including an increased risk of
developing long-term neuropsychiatric abnormalities (Okie, 2005;
Peota, 2005; Aarabi and Simard, 2009; Jaffee and Meyer, 2009; Cer-
nak et al., 2011; Plurad, 2011; Hayes et al., 2012). Serum protein
biomarkers that can indicate the extent of individual vulnerabil-
ity are of major value. For example, advanced “bio-dosimeters”
can be developed for soldiers by using a combination of serum-
based health information and physical parameters provided by
helmet-mounted sensors (accelerometers). Such a personalized
tool can indicate the real-time vulnerability of a soldier to any

additional blast. Similar personalized “dosimeters” can also be
developed for athletes with a high risk of repeated TBI, such as
NFL players.

There are several conceptual, logistical, and technical prob-
lems associated with developing serum biomarkers as a diagnostic
tool in neuronal insults like TBI. Technical problems include
selecting the best proteomics method for serum biomarker dis-
covery (Agoston et al., 2009). To facilitate the antibody-based
validation of serum protein biomarkers in bTBI, we listed poten-
tial markers as a function of their association with different
pathologies and severities of TBI (Figure 3). Some of the mark-
ers (“the usual suspects”) have been well studied, established,
and analyzed in bTBI (Bauman et al., 2009; Gyorgy et al., 2011;
Kovesdi et al., 2011; Kwon et al., 2011). Unfortunately, only a
few of the listed markers have been verified by clinical studies
to show changes in their serum levels specifically due to injury
to the brain (and not to other organs). Even fewer markers have
been evaluated in clinical settings and correlated with functional
and neurobehavioral changes (e.g., GCS and other neurobehav-
ioral tests) routinely used in clinical settings (Agoston et al.,
2012).

In addition to aiding in the diagnosis and assessment of injury
severity, serum protein biomarkers in mTBI can provide critical
information for designing individualized treatment and for mon-
itoring disease progression and treatment effectiveness. Simple
versions of such an approach are already in use at neurointensive
care units, where serum C-reactive Protein levels are monitored to
assess general inflammation and treatment effectiveness. However,
the current lack of clinical evidence about how changes in serum
levels of protein biomarkers correlate to pathomechanisms and
functional outcomes in TBI is a major hindrance. Concentrated,
large scale, and preferably international research efforts are needed
in order to generate reliable and clinically useful information for
aiding in the evidence-based treatment of TBI.

SUMMARY AND FUTURE DIRECTIONS
We would like to conclude this focused review by suggesting three
relatively easy and implementable measures that can speed up both
serum protein biomarker discovery and validation in bTBI. First:
blood should be obtained at multiple time points (serial sampling)
in both experimental and clinical studies in order to enable the lon-
gitudinal analysis of changes in serum levels of protein markers in
bTBI. This approach can reveal temporal patterns of changes that
may be of vital diagnostic and therapeutic value. Second: changes
in the serum levels of a whole panel of proteins rather than a single
protein need to be analyzed (at multiple time points). Multiplex
assays, already in use in cancer biology, can provide substan-
tially improved diagnostic precision, and especially so if combined
with a systems biology analysis. Third: changes in serum protein
biomarkers should be analyzed in relation to functional and neu-
robehavioral changes in both clinical and experimental settings.
Such a combined analysis would radically improve the diagnostic
and prognostic value of serum protein biomarkers by facilitating
a much more direct understanding of how serum changes relate
to functional deficits.

In addition to proteins, there are other potential biomarkers
such as microRNAs. While microRNAs have some advantages (e.g.,
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stability) compared to proteins, there is currently much less known
about their functions. However, as our knowledge increases about
their involvement in the various pathological processes their value
as serum biomarkers will also increase.

In summary, serum-based protein biomarkers have the enor-
mous potential to fundamentally change our understanding of
bTBI and ultimately can – and will – be of major help in designing

evidence-based treatments for individuals suffering from the
consequences of blast injury.
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