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Acute monoblastic/monocytic leukemia (AMoL), previously defined as M5

according to FAB classification, is one of the most common subtypes of Acute

Myeloid Leukemia (AML) in children, representing ∼15–24% of all pediatric

AMLs. Currently, the characterization of monocytic-lineage neoplasia at

diagnosis includes cytomorphology, cytochemistry, immunophenotyping

by multiparametric flow cytometry, cytogenetics, and molecular biology.

Moreover, measurable residual disease (MRD) detection is critical in

recognizing residual blasts refractory to chemotherapy. Nonetheless,

diagnosis and MRD detection may still be challenging in pediatric AMoL

since the morphological and immunophenotypic features of leukemic cells

potentially overlap with those of normal mature monocytic compartment, as

well as di�erential diagnosis can be troublesome, particularly with Juvenile

Myelomonocytic Leukemia and reactive monocytosis in infants and young

children. A failure or delay in diagnosis and inaccuracy in MRD assessment may

worsen the AMoL prognosis. Therefore, improving diagnosis and monitoring

techniques is mandatory to stratify and tailor therapies to the risk profile. This

Mini Review aims to provide an updated revision of the scientific evidence on

pediatric AMoL diagnostic tools.
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Introduction

Acutemonoblastic/monocytic leukemia (AMoL) belongs to the heterogeneous group

of Acute Myeloid Leukemias (AMLs), accounting for about 15–24% of AMLs in

children (1–3).

The French-American-British (FAB) classification defines AMoL as AML-M5 in the

presence of at least 30% of blast cells in bone marrow (BM) or peripheral blood (PB)

specimens, 80% or more of those belonging to the monocytic lineage, generally evaluated

on Wright-Giemsa or May-Grünwald-Giemsa-stained smears (4–6). The 2016 Revision

of theWorld Health Organization (WHO) classification of myeloid neoplasms and acute

leukemias lowers the level of blast cells defining an AML to 20%, at least 80% of those
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being of monocytic derivation, and includes AMoL in the

category AML, not otherwise specified (NOS) (1). Regardless,

AMoL morphology has been described as associated with

specific genetic abnormalities not included in the WHO

classification yet, as well as genetic alterations belonging to

the category AML with recurrent genetic abnormalities, which

prevail on morphological and immunophenotypic features for

the final AML group assignment, as per WHO classification (1).

According to morphological features and maturation stage

of monocytic-lineage blast cells, AMoL may be further divided

into acute monoblastic leukemia (AML-M5a as per FAB

classification) when at least 80% of the monocytic cells are

monoblasts and acute monocytic leukemia (AML-M5b as per

FAB classification) when blasts at a more mature stage are

prevalent (predominantly promonocytes) (4–6).

From a clinical point of view, AMoL is characterized by high

leukocyte counts (7–10), major propensity for extramedullary

infiltrates as compared with other AMLs, involving skin, gum,

and central nervous system (11–18), and possible association

with disseminated intravascular coagulation along with other

bleeding disorders (19–21).

Since leukemic cells morphology and immunophenotypic

features may substantially overlap with those of normal

monocytic compartment, AMoL diagnosis and Measurable

Residual Disease (MRD) detection are challenging.

Nowadays, the main diagnostic tools for monocytic

cell compartment characterization include standard

cytomorphology and cytochemistry, immunophenotyping

by multiparametric flow cytometry (MFC), cytogenetics, and

molecular biology (22, 23).

This review highlights standard diagnostic tools in AMoL.

Standard cytomorphology

The morphological evaluation is the first step of the process

that leads to AMoL diagnosis.

Both PB and BM smears are traditionally stained with

May-Grünwald-Giemsa or Wright-Giemsa stains, allowing

proper cytosolic granules and nuclear chromatin discrimination.

Cytomorphology allows detecting monocytic lineage cells

at different maturation stages (monoblasts, promonocytes,

immature or abnormal monocytes, mature monocytes, and

reactive monocytes) as well as blast cells. Nevertheless, in clinical

practice, the discrimination of blast cells from normal precursors

or reactive monocytes is troublesome due to their relevant

morphological overlap.

In the presence of a morphological picture suggesting

AMoL, monoblasts and promonocytes should be considered

as blasts/blast equivalents in acute monoblastic (M5a) and

monocytic (M5b) leukemia.

In acute monoblastic leukemia (M5a), BM is usually

hypercellular, showing a predominant population of large (up to

30µm in diameter), poorly differentiated blasts with a rounded

to oval nucleus containing reticular and immature chromatin

pattern and one to four light-blue nucleoli. The cytoplasm is

usually abundant and basophilic, with rare scattered azurophilic

granules, fine vacuolizations, and the absence of Auer rods. The

presence of translucent pseudopod formation may erroneously

be misinterpreted as a double membrane (24–26).

In acute monocytic leukemia (M5b), promonocytes

predominate in BM specimens, whereas mature monocytes

are prevalent in PB samples. Extramedullary lesions can be

composed of both two cell types. Promonocytes have less

basophilic cytoplasm with a grayish ground-glass appearance

and occasional large azurophilic granules and vacuoles (27).

They have large, irregular-shaped, and folded nuclei, often

containing nucleoli, with nuclear segmentations. This aspect

allows differentiating them frommonoblasts (Table 1) (28). Auer

rods are rare. Associated hemophagocytes (erythrophagocytosis)

may be observed, sometimes in case of positivity for t (8; 16)

(p11.2; p13.3)/KAT6A-CREBBP translocation (1, 28, 29).

Mature monocytes are usually characterized by a large overall

size, deeply folded or convoluted nuclei with condensed,

mature-appearing chromatin, absence of prominent nucleoli,

and abundant gray-blue cytoplasm, often with a few vacuoles

and azurophilic granules (Table 1) (28).

Immature monocytes, also defined as “abnormal” or

“atypical” monocytes, can be found in normal BM smears as well

as in Chronic Myelomonocytic Leukemia (CMML) and Juvenile

Myelomonocytic Leukemia (JMML) (30). They are similar but

smaller and more basophilic than mature monocytes, showing

immature-appearing chromatin, prominent nuclear folds or

convolutions, and, rarely, small nucleoli (Table 1) (28).

Reactive monocytes, usually encountered in response

to inflammatory or infectious disorders [systemic lupus

erythematosus, rheumatoid arthritis, sarcoidosis, Epstein-Barr

virus (EBV), cytomegalovirus (CMV), human herpes virus-6

(HHV-6), histoplasma, mycobacteria, and toxoplasma] can

show a range of morphologic patterns, including variable

cell size (12–20µm), increased nuclear to cytoplasmic ratio,

less condensed or immature chromatin, small nucleoli,

and prominent cytoplasmic vacuolization, basophilia, and

granularity (Table 1) (28).

Therefore, morphological AMoL diagnosis requires expert

operators, constant inter- and intra-laboratory training,

updating, and confrontation, to minimize interobserver

variability and standardize the final interpretation of

blood smears.

Cytochemistry

Cytochemistry represents a helpful tool in discriminating

immature monocytic- from myeloid-lineage cells and

identifying monocytic cells at different maturation stages.

Frontiers in Pediatrics 02 frontiersin.org

https://doi.org/10.3389/fped.2022.911093
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


Varotto et al. 10.3389/fped.2022.911093

TABLE 1 Recommendations for monocyte evaluation in the blood or bone marrow smears by Goasguen et al. (28).

Nuclear shape Chromatin Cytoplasm Comments

Monoblast Round/oval Delicate/lace-like

Nucleolus prominent

Basophilic

Rare azurophilic

Granules

Large: 20–30 µm

Promonocyte Convoluted/indented Delicate/lace-like

Nucleolus prominent

Variably basophilic

Variable azurophilic

Granules

Except for nuclear shape, very

similar to monoblast

Immature monocyte Convoluted/indented More condensed

Rare nucleolus

Less basophilic than promonocyte or blast,

but more basophilic than mature monocyte

Resemble monocytes but less

mature and smaller

Monocyte Lobulated/indented Condensed

No visible nucleolus

Gray

Occasional azurophilic granules

Occasional vacuoles

Large: 20–25 µm

The myeloperoxidase (MPO) staining, a fundamental tool

of the diagnostic process, is usually negative in immature

monocytic cells (monoblasts) and mature monocytes, whereas

promonocytes may show slight and scattered positivity.

Conversely, granulocytic cells typically show strong MPO

positivity (1, 29).

Intense non-specific esterase activity (NSE) [naphthyl

acetate esterase, naphthol AS-D acetate esterase (CAE), and

alpha-naphthyl butyrate esterase] represents one of the most

specific hallmarks of cytochemical staining in monocytic lineage

leukemia, resulting strongly positive in both pathological

monoblasts and promonocytes, even if 10–20% of AMoL cases

show NSE negativity or weak positivity. Moreover, NSE is

negative or only weakly positive in myeloid-lineage cells and

allowing their discrimination from monocytic ones (1, 29).

Nevertheless, NSE requires a complex and time-consuming

multistep preparation and is associated with variability in

staining results and subsequent interpretation. Therefore, it

should be routinely performed only in laboratories with expert

morphologists to obtain accurate results.

The addition of sodium fluoride to NSE staining allows

further discriminating monocytic- from myeloid-lineage cells

since it inhibits NSE reaction only in the first group (1, 31).

Regarding other cytochemical stainings, used only

exceptionally in the clinical routine process, Sudan black and

naphthol AS-D chloroacetate esterase are typically negative

in monoblasts, whereas tartrate-sensitive acid phosphatase

is usually positive. Variable results are described with the

periodic acid-Schiff stain, 3-glucuronidase, and oil red O stain

(24–26, 32–35).

Immunophenotyping by multiparametric
flow cytometry

Immunophenotyping by MFC accurately detects and

characterizes any potential pathological cells in biological

samples. In the presence of an abnormal proliferation of

monocytic-lineage cells, at diagnosis MFC is critical in

discriminating reactive from dysplastic or leukemic origin.

Indeed, it allows overcoming the well-known overlap existing

betweenmonocytic-lineage blasts cells and normal counterparts,

identifying asynchronous monocytic marker combinations as

well as any aberrant expression of myeloid and lymphoid

markers (Figure 1). Immunophenotyping at diagnosis relies

on a careful selection of monoclonal antibodies (MoAb)

conjugated with specific fluorochromes to be used in multiple

combinations (36–38).

Several markers are useful to discriminate monocytic

precursors at different maturation stages and monocytic-

lineage blasts from myeloid counterpart, among those the

most significant are: CD45, CD11a, CD38, CD99 (pan-

leukocytic markers) (38–41); CD34 (hematopoietic stem cells

marker) (42, 43); CD64, CD13, CD33, CD123, cyMPO,

CD117 (early myelomonocytic-lineage markers) (43, 44);

CD11b, CD15, CD36 (maturing monocytic-lineage markers);

CD14, CD4, CD35, CD300e (mature monocytes markers);

HLA-DR (pan-monocytic lineage marker) (43, 45); cyLYZO

(pan-myelomonocytic lineage marker) (46); CD66b (47),

CD16 (maturing and mature granulocytic-lineage marker)

(48); CD371 (granulocyte-macrophage-lineage marker) (49).

Additionally, a complete immunophenotypic study requires

association with B- (CD19, CD10, cyCD79A, cyCD22) and

T-(CD7, CD3, CD2, CD56, CD4, CD8, CD45RA) lymphoid-

lineage markers (38, 43, 50, 51).

Regarding normal precursors, monoblasts are characterized

by strong positivity of CD34, CD117, and HLA-DR and

progressive upregulation of CD64 (Fc receptor/Fc gamma

receptor 1). Even if CD117 is a tyrosine kinase receptor

widely expressed on hematopoietic, endothelial, and immature

cardiomyocytes, its association with CD34 and CD64 accurately

identifies monoblasts precursors. Maturing promonocytes keep

strong positivity of CD64 and HLA-DR but show a progressive

downregulation of CD34 and CD117 and acquisition of CD14
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FIGURE 1

Morphological and immunophenotypic analysis of two pediatric acute monoblastic/monocytic leukemia cases at diagnosis (A,B) and after the

first induction course (C). In the first case (A), immunophenotyping at diagnosis on a bone marrow sample allows identifying a population of

(Continued)
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FIGURE 1 (Continued)

blast cells characterized by an asynchronous expression of early myelomonocytic-lineage markers CD33, CD117, and CD64 together with the

maturing monocytic-lineage marker CD15 and the mature monocytes marker CD14. The May-Grünwald-Giemsa (MGG)-stained bone marrow

smear (40× magnification) shows a population of large cells with abundant grayish ground-glass cytoplasm containing rare vacuoles and

irregular-shaped and folded nuclei with nucleoli. Two images of hematophagocytosis are also present. In the second case at diagnosis (B), blast

cells show an immunophenotype overlapping with immature monocytic-lineage cells (positivity of CD33 and CD15, negativity of CD14) in the

absence of CD34 expression. The MGG-stained smear shows a homogeneous population of large, poorly di�erentiated blasts with a rounded

nucleus, reticular chromatin pattern and one to multiple nucleoli, and basophilic cytoplasm, including several azurophilic granules (monoblasts).

After the first induction course (C), standard morphology identifies a population of immature monocytes not clearly discriminable from blast

cells. Conversely, MFC-MRD analysis is able to define them as regenerating cells and exclude the presence of residual blasts.

(40× magnification). Color legend: red (monoblasts), green (monocytes), orange (monocyte precursors).

(belonging to the family of leucine-rich repeat proteins), CD36

(fatty acid translocase/platelet glycoprotein 4/glycoprotein

IIIb/glycoprotein PAS-4/scavenger receptor class B member 3),

and CD35 (C3b-C4b receptor/complement receptor type 1).

Finally, mature monocytes present strong positivity of CD64,

CD14, and CD35, downregulation of HLA-DR, negativity of

CD34 and CD117, and acquisition of CD300c (CMRF35-like

molecule 6). Unlike CD64 and CD14, CD36, CD35, and CD300c

are not mainly committed to the monocytic lineage. Regardless,

they play a crucial role in identifying monocytic precursors in

the described associations (43).

At diagnosis, the knowledge of monocytic maturation

sequence of antigen expression critically helps detect AMoL

blast cells, potentially escaping from this schema. In acute

monoblastic leukemia, blasts may show a more immature

immunophenotype, presenting a heterogeneous positivity of

CD34, strong positivity of CD64 and HLA-DR, downregulation

of maturating monocytic-associated markers CD36 and

CD11b, and absence of mature monocytic-associated antigens

CD14, CD35, and CD300c, together with downregulation of

myelomonocytic markers cyMPO, CD13, CD123. Conversely,

acute monocytic leukemia may be associated with a more

mature immunophenotype, characterized by the expression

of mature monocytic-associated markers CD14, CD35, and

CD300c and the absence of CD34 (43).

AMoL blast cells may show aberrant expression of markers

like CD56, CD7, CD19, cyCD79a (lymphoid antigens), and NG2

(neural/glial antigen 2), the positivity of which is potentially

associated with the presence of KMT2A rearrangements.

Whether the expression of NG2, CD7, CD19, and cyCD79a

on monocytic lineage cells undoubtfully indicates the presence

of blast cells (43, 52–54), CD56 may be aberrantly positive on

reactive and normal monocytes (55–57).

An accurate definition of blast immunophenotype at

diagnosis is also critical for measurable residual disease

monitoring by MFC (MFC-MRD) during therapy. MFC-

MRD relies on the Leukemia-Associated Immunophenotype

(LAIP) approach, in which leukemic blasts immunophenotype

are characterized at diagnosis and tracked at re-evolution

points, and the Different-from-Normal (DfN) approach,

based on discrimination between cells with aberrant

immunophenotypes and normal counterpart during

follow-up (58).

In AMoL, MFC-MRD is usually more challenging than

in other AML subtypes. First, the blast population may

have an immunophenotypic heterogeneity at diagnosis

potentially hidden by a predominant LAIP. Second, blast

immunophenotype may change during therapy, hampering

the accuracy of the LAIP method. Third, in the absence of

aberrant lymphoid marker expression, AMoL blast LAIPs

frequently overlap the immunophenotype of monocytic-

lineage precursors in regenerating BM, making MFC-MRD

detection very challenging. Therefore, the DfN approach may

be more useful in these cases, even if more complex and

requires a deep knowledge of normal hematopoietic precursors

immunophenotypic maturation curves (58–66).

Consequently, it is critical to identify new markers specific

for monocytic-lineage blasts and possibly not expressed on

normal hematopoietic cells. In the last few years, several antigens

have been studied to detect AMoL blasts. In 2015, Pereira

and colleagues demonstrated the aberrant expression of B

lymphoid-lineage antigen CD37, a transmembrane protein of

the tetraspanin superfamily, in 15 different AML cell lines, 5

of those AMoL, and confirmed it in a cohort of 26 patients’-

derived AML samples (67). In 2019, Lo et al. showed the

positivity of antigen CD302, a type I transmembrane C-

type lectin receptor usually expressed on myeloid-lineage cells,

in all the 6 AMoL out of 33 analyzed AML samples (68).

CD157, a glycosylphosphatidylinositol-anchored glycoprotein,

is another marker associated with AMoL, but also with

normal myelomonocytic lineage cells (69). Additionally, in 2020

Churchill et al. described the coexpression of the two inhibitory

leukocyte Ig-like receptors, LILRB1 and LILRB4, belonging to a

family of immunoregulatory receptors, specific for AMoL (70).

To summarize, MFC is an essential step of AMoL diagnosis

in childhood, allowing blasts discrimination from normal

monocytic counterpart even when their cytomorphological

definition is challenging. In diagnostics practice, an accurate

MFC diagnosis of AMoL relies on the following steps: (i)

negativity of B- (at least 2 among CD19, CD10, cyCD22,

and cyCD79) or T-lineage (s/cyCD3 and CD7) acute

lymphoblastic leukemia criteria; (ii) blasts assignment to
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the myeloid/monocytic lineage (positivity of at least 2 among

MPO, CD13, CD33, CD64, CD65, CD117, cy-LYZO, CD14,

CD11c); (iii) investigation of specific monocytic-lineage

markers (CD11b, CD15, HLA-DR, CD371), (iv) hematopoietic

stem cell marker (CD34), and (v) potential aberrant expression

of CD7, CD56, CD19, cyCD79a, NG2 (1, 38, 71).

Cytogenetics and molecular studies

In the last few decades, genetic characterization has

shown to be critical in AML clinicopathological evaluation,

refining diagnosis, assigning patients to a risk class, predicting

prognosis, and promoting target therapy (72, 73). Genetic

characterization mainly relies on cytogenetic (conventional

karyotyping and FISH analysis) and molecular studies

[next-generation sequencing (NGS) and real-time reverse

transcriptase-polymerase chain reaction (RT-PCR)] (72).

Pediatric AMoL is a heterogeneous disease as concerns

genetics and is associated with different outcomes regarding

the displayed aberrations. At cytogenetic analyses, it presents

a normal karyotype in about 20% (74). Among somatic

cytogenetic aberrations, chromosomal translocations involving

the KMT2A gene on 11q23 are the most frequent, accounting

for about 20% of the genetic anomalies in AMoLs (74).

Previously known as MLL (Mixed Lineage Leukemia), the

KMT2A gene encodes an important histone-H3 lysine-4 (H3K4)

methyltransferase involved in the epigenetic regulation of

hematopoietic stem/progenitor cells development.

A total of 135 KMT2A rearrangements have been described

in leukemias, mostly resulting in KMT2A-fusion proteins

capable of transforming hematopoietic stem cells into

leukemic blasts with stem cell-like properties (72, 75–78).

The most frequent fusion partners in AMLs are AF9/MLLT3,

AF10/MLLT10, ELL, ENL/MLLT1, AF6/MLLT4, and MLL-

PTDs (77, 79). Nowadays, only AML with t (9; 11) (p21.3;

q23.3)/KMT2A-MLLT3 is included in the category AML with

recurrent genetic abnormalities of the WHO classification (1).

Of note, Balgobind et al. reported a significantly better

prognosis of t (9; 11) (p22; q23) positive AMLs in the presence

of M5 FAB rather than non-M5 FAB. Moreover, Balgobind et al.

described new risk subgroups related to KMT2A translocations:

t (1; 11) (q21; q23) showed favorable outcomes regardless of

other risk factors, whereas t (6; 11) (q27; q23), t (10; 11) (p12;

q23), and t (10; 11) (p11.2; q23) turned out to be an independent

risk factor of poor clinical outcome (80).

Another clinically relevant genetic aberration in AMoLs,

not detectable with cytogenetic studies, is the FMS-like tyrosine

kinase 3 (FLT3) gene mutation, described in about 5.5–

26.5% of AMoLs in different pediatric cohorts (71, 74, 81–

83). FLT3 belongs to the class III tyrosine kinase receptor

family expressed on hematopoietic progenitors and promotes

cell survival, proliferation, and differentiation being activated by

an extracellular ligand (FLT3 ligand) (71).

FLT3 mutations may be found in normal karyotype AMLs

and associated with additional cytogenetic lesions. They are

classified into two major groups: internal tandem duplications

(ITDs-about two-thirds of FLT3mutations) and pointmutations

in the tyrosine kinase domain (TKD-about one-third of FLT3

mutations), both leading to the constitutive activation of

the FLT3 kinase. The prognostic role of FLT3-TKD remains

unclear, whereas FLT3-ITDs have been associated with an

unfavorable prognosis, particularly in the presence of a high

allelic ratio (> 0.51) (1, 74, 84–91). Regardless, it was recently

demonstrated that the association with additional genetic

aberrations, like WT1 and NPM1 mutations and NUP98

translocations, modulates the outcome (91).

AMoL may be also rarely associated with Core Binding

Factor (CBF) mutations involving chromosome 16 [inv (16)

(p13.1q22) and t (16; 16) (p13.1; q22)/CBFB-MYH11], and t

(8; 21) (q22; q22.1); RUNX1-RUNX1T1, both included in the

category AML with recurrent genetic abnormalities according to

WHO classification (1, 3, 91, 92). To note, the presence of any

CBF abnormalities allows diagnosing an AML independently

from blast count (1).

AMoL could also be associated with somatic mutations

of the nucleophosmin gene 1 (NPM1), encoding a nuclear

pleiotropic protein that regulates cell growth and proliferation,

protein chaperoning, maintenance of genomic stability, and

activation of tumor suppressor p53. NPM1 mutations involve

about 6.5% of pediatric AMLs, may be associated with normal

karyotype and FLT3/ITD mutations, and show a wide range

of morphological subtypes, of those FAB-M4 and M5 are the

most frequent (93–95). NPM1 mutations seem to confer a

favorable outcome in childhood AML, in the absence of FLT3-

ITD mutations (91, 95).

Finally, AMoL may display activating mutations of NRAS

and KRAS genes, encoding two G-proteins involved in

proliferation and survival signals transmission among cells (96).

NRAS and KRAS mutations are detectable in about 18–20% and

28% of pediatric AMoLs, respectively, being more common in

younger patients (74, 96). RASmutationsmay be associated with

normal karyotype, as well as with other genetic aberrations, like

NPM1 mutation and MLL-PTD (91, 96). The prognostic role of

RASmutation is still unclear, being variable in different pediatric

and adult cohorts (96).

Immunophenotypic and molecular
targets for precision medicine

Beyond their critical role in pediatric AMoL diagnostics,

MFC and molecular biology allow identifying potential targets

for a precision medicine approach. Among MFC-detectable
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markers, CD33 is the target of the antibody-drug conjugated

gemtuzumab ozogamicin, approved by the FDA in 2018 for

the treatment of relapsed/refractory pediatric AMLs (97) and

adopted in several first- and additional-line pediatric therapeutic

trials (98–104). CD123-positive AMoLs may potentially benefit

from flotetuzumab, a CD123/CD3 bispecific antibody, and

antibody-drug conjugated IMGN632 and tagraxofusp-erzs,

all under investigation for pediatric relapsed/refractory

AMLs (105, 106). Additionally, CD33, together with

CD123 and CD371, is under investigation for generating

chimeric antigen-receptor T cells (CAR-T) directed against

AML (106–108).

Among molecular alterations, AMoL harboring FLT3-

ITD mutation may benefit from targeted therapy with

FLT3 inhibitors (sorafenib, midostaurin, sunitinib, lestaurtinib,

quizartinib, gilterinib) (109, 110). In the presence of KMT2A

rearrangements, AMoL may potentially benefit from targeted

therapy with DOT1L-inhibitor (pinometostat) and menin-

inhibitors (KO-539, SNDX-5613), actually under investigation

(109, 111, 112).

Conclusions

An accurate characterization of monocytic-lineage cells

in PB and BM samples is crucial to avoid misdiagnosis.

Indeed, AMoL needs to be differentiated from other

morphological AMLs subtypes (AML without maturation,

AML with minimal differentiation, acute megakaryoblastic

leukemia, acute myelomonocytic leukemia, microgranular acute

promyelocytic leukemia, CMML, JMML), and reactive causes

of monocytosis.

Moreover, several infections can result in

myelomonocytosis along with persistent fever, failure

to thrive, hepatosplenomegaly, skin lesions, anemia, and

thrombocytopenia, mimicking leukemia.

Developing new diagnostic markers is required to obtain

unequivocal discrimination between leukemic and reactive

monocytes. Particularly, the identification of new specific MFC

antigens may help recognize monocytic blasts even in the

absence of specific leukemia-related genetic markers.
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