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Abstract: Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis
and cardiovascular calcification, are well documented. High levels of testosterone, the primary
male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen,
the primary female sex hormone, is considered cardioprotective. Current understanding of sexual
dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence
that the actions of sex hormones influence the development of cardiovascular calcification. We
address the current question of whether sex hormones could play a role in the sexual dimorphism
seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones
and evidence in pre-clinical research. More advanced investigations and understanding of sex
hormones in calcification could provide a better translational outcome for those suffering with
cardiovascular calcification.
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1. Clinical Consequences of Cardiovascular Calcification

Cardiovascular calcification describes the regulated deposition of mineral in blood
vessels (vascular calcification) and heart valves (valvular calcification). Calcification is
considered a predictor of risk associated with vascular disease [1], with more than 60%
of people over 65 years of age displaying calcification in their cardiovascular system [2].
If left untreated, calcification can lead to a number of significant clinical consequences,
including coronary insufficiency, aortic stenosis, and, in severe cases, heart failure. Vascular
calcification was previously considered the consequence of passive precipitation of calcium
and phosphate in the vascular system due to ageing. However, over the past decades, stud-
ies have revealed that cardiovascular calcification is indeed an actively regulated process
that shares many similarities with physiological bone formation [3]. Despite extensive
characterization of cardiovascular calcification in patients, the precise mechanisms that
initiate and regulate calcification are still unclear. There is also a distinct sex difference in
patients, with males having a tendency to acquire calcification earlier in life, and females
developing calcification post-menopause [4]. Although the mechanism(s) behind this
sex difference remain(s) to be fully elucidated, current evidence suggests a strong link
between the specific actions of individual sex hormones and cardiovascular calcification.
In this review, we seek to complement the recent excellent publication by Zhang et al. [5]
by discussing the current understanding of the underlying mechanisms through which
estrogens and androgens regulate calcification in blood vessels and valves, including a
focus on the role for pre-clinical models in this research.
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2. Types of Cardiovascular Calcification

According to its location, cardiovascular calcification can be divided into three major
types: atherosclerotic intimal vascular calcification, medial vascular calcification, and aortic
valve calcification. Within the scientific literature, cardiovascular and vascular calcification
terms are frequently used interchangeably, however it is important to recognize that these
are separate processes. The following section addresses these different types of calcification
in more detail (Figure 1).
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Figure 1. Comparison of types of cardiovascular calcification. The most common types of cardiovas-
cular calcification are medial, intimal and valve. This figure displays both the normal and disease
state for each of these diseases. Medial calcification occurs in the tunica media of the aorta, around
the smooth muscle cells. Intimal calcification occurs within an atherosclerotic plaque in the intima of
the artery. Valve interstitial cells, which could have a role in valve calcification, mostly accumulate in
the aortic side of the valve.

2.1. Atherosclerotic Intimal Calcification

There are two types of calcification—intimal or medial—that occur in large arteries.
Intimal calcification occurs as a result of atherosclerotic plaque development [6]. During
blood vessel calcification, vascular smooth muscle cells (VSMCs) lose their contractile
phenotype and become osteogenic, depositing matrix vesicles that enhance calcification [7].
Intimal calcification in atherosclerotic plaques can either stabilise or destabilise the plaque
depending on the pattern of deposition and plaque composition. There is evidence that
macrocalcification stabilises the fibrous cap covering the atherosclerotic plaque, whereas
microcalcification destabilises the plaque, provoking a pro-inflammatory response causing
increased susceptibility to plaque rupture [8]. Plaque rupture is considered a major cause
of blood vessel stenosis and ischemia in patients, directly leading to thrombus formation
and myocardial infarction [9]; although it has been suggested that superficial erosion of
plaques may be more significant than plaque rupture as a cause of thrombosis [10]. Within
blood vessels, VSMCs in the media, myofibroblasts in the adventitia and pericytes in the
micro vessels can also become calcified [11].
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2.2. Medial Calcification

Medial calcification is linked to altered bone and mineral metabolism and is a clinical
predictor of coronary artery disease [2]. Additionally, it is highly prevalent in patients with
end stage renal disease (ESRD) and diabetes [12]. Medial calcification occurs in vessels
without inflammatory or lipid cell infiltration into the vessel wall and occurs along the
elastic fibres of blood vessels causing vessel stiffening and decreased compliance [13].
Medial calcification can also occur in rare diseases such as Mönckeberg’s Arteriosclerosis
and Kawasaki disease [14]. The blood vessel stiffening (sclerosis) associated with medial
calcification can result in increased blood pressure, local ischaemia and a high risk of
vascular mortality [15,16]. Furthermore, medial calcification can lead to heart failure due
to loss of aortic elasticity [17].

2.3. Valvular Calcification

Calcific aortic valve disease (CAVD) is the most common valve disease in the western
world, affects up to 25% of the older population, and currently has no pharmaceutical
interventions [18]. The pathogenesis of valve disease is not completely understood and
there is a debate as to whether it is a feature of atherosclerosis or is independent of
traditional CV risk factors. Endothelial cell disruption and basement membrane damage
are evident in early-stage valve disease; one theory proposes that this could be caused by
mechanical injury as a result of valve movement [19].

Clinically, progression of valve disease is well-characterised. Initial stages involve
endothelial cell damage, infiltration of lipids and macrophages, as well as lipid oxidis-
ation [20]. In later stages fibrosis and calcification cause obstruction of the aortic valve
opening [20]. Valve interstitial cells (VICs) have been proposed to play a role in valve
calcification. Quiescent VICs (qVICs) are the main cell type in a normal valve and function
to maintain physiological valve structure and inhibit angiogenesis. If VICs are injured
these cells can become activated. These activated VICs (aVICs) have the capacity to adapt
to a dynamic environment through their activation and secretion of proteolytic enzymes
mediating extracellular matrix remodelling followed by a normalization of phenotype [19].
When VICs are cultured in osteoblastic culture medium, they differentiate to osteoblastic
cells (obVICs). Proteins associated with osteogenesis (including osteopontin, bone sialo-
protein, alkaline phosphatase and bone morphogenetic protein (BMP)-2 and -4) have been
identified by in vitro studies [21]. ObVICs also produce matrix vesicles which deposit
calcium in the valves in the form of hydroxyapatite (HA) crystals. Development of macro-
calcification and large calcium nodules is extremely damaging in valves. These nodules
appear on the aortic side of the valve and restrict valve movement, causing stenosis and
aortic regurgitation [22].

2.4. Pharmaceutical Strategies

Numerous pharmaceutical interventions against medial and intimal vascular calci-
fication have been interrogated, ranging from statins to phosphate binders, with little
therapeutic effect [15]. Vascular calcification is difficult to treat due to calcification having
multiple causes, some of which are idiopathic. Furthermore, common diseases such as
hypertension, chronic kidney disease, osteoporosis and hyperlipidaemia accelerate the
progression of vascular calcification (reviewed in Lu et al. [23]). Therefore, future treat-
ment approaches may need to be personalized, and reflect the other co-morbidities of the
patient [24].

There are currently no pharmaceutical interventions for valve calcification. Clini-
cally, severe stenosis can only be treated with either a mechanical or bioprosthetic valve
replacement. Without surgery patient prognosis is between 2–3 years [25]. Synthetic valves
characteristically have a 20-year lifespan, bringing increased mortality risks for patients
requiring subsequent valve replacements [26,27]. Following surgery, patients are typically
prescribed anticoagulants and/or immunosuppressants although their effectiveness on
clinical outcomes and patient haemodynamic is debated [28].
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3. Current Understanding of Cardiovascular Calcification
3.1. Calcification Is Similar to Physiological Bone Formation

Accumulating evidence shows that cardiovascular calcification is an active, cell-
mediated process that shares many similarities with physiological bone formation [29]
(Figure 2). Indeed, mature, lamellar bone, with hematopoietic elements and active bone
remodelling, has been identified in up to 15% of calcified arteries [16]. Consistent with these
findings, bone specific genes (including alkaline phosphatase (ALP), osteocalcin (OCN),
runt-related transcription factor 2 (RUNX2), msh homeobox 2 (MSX2), and SRY-box tran-
scription factor 9 (SOX9)) are significantly induced in calcified human arteries [30]. VSMCs,
the predominant cell type in blood vessels, can undergo osteochondrogenic/osteocytic
differentiation in the presence of calcifying conditions [31,32]. In vitro studies have demon-
strated that high phosphate conditions mimicking the hyperphosphataemia seen in ESRD
patients induces VSMC calcification and osteochondrogenic transition [31,33], in which
the sodium-dependent phosphate cotransporter PiT1 plays a role. Knockdown of PiT1
expression in VSMCs in vitro significantly reduces phosphate uptake, expression of the
osteogenic marker RUNX2, and calcium deposition [33].
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Figure 2. Vascular calcification mechanisms. In individuals with chronic kidney disease (CKD)
high serum phosphate induces osteogenic transition and calcification of vascular smooth muscle
cells (VSMCs) through the sodium-dependent phosphate cotransporter, Pit-1. In addition, nor-
mal blood vessels express a number of calcification inhibitors including ectonucleotide pyrophos-
phatase/phosphodiesterase 1 (ENPP1) and matrix Gla protein (MGP). Loss of these inhibitors
promotes osteogenic transition and calcification of VSMCs. RUNX2, ALP and BMP2 become elevated
which promotes osteoblast-like redifferentiation in SMCs. Matrix vesicles and apoptotic bodies
also play a role in vascular calcification. Pi-phosphate RUNX2- runt-related transcription factor 2,
ALP-alkaline phosphatase Bmp2-bone morphogenic protein 2.

Bone morphogenic proteins (BMPs) are regulators of physiological bone formation
and have also been proposed to regulate vascular calcification. Previous reports, including
studies from our laboratory, have shown that serum levels of BMP2 and BMP9 are elevated
in patients with ESRD [34,35]. BMP2 enhances high phosphate-induced VSMC calcification
in vitro and osteochondrogenic differentiation through up-regulation of RUNX2 [36]. Sup-
pression of phosphate uptake using a sodium-dependent phosphate cotransporter inhibitor,
phosphonoformic acid (PFA), attenuates BMP2-induced VSMC calcification in vitro [36].
To note, there is also evidence that PFA can inhibit calcium phosphate deposition indepen-
dently of phosphate transport, potentially through a physicochemical mechanism [37].

BMP9 induces VSMC osteogenic differentiation and calcification through the orphan
activin receptor-like kinase 1 (ALK1)-mediated pSmad1/5/8 signalling pathway [35].
The Wnt/β-catenin pathway is also involved in BMP9-induced VSMC calcification [38].
Consistent with these observations, pharmacological inhibition of BMP signalling reduces
vascular calcification in a murine atherosclerotic model [39]. In contrast, BMP7 treatment
efficiently reduces arterial calcification in murine models of atherosclerosis and ESRD [40].
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3.2. Loss of Endogenous Inhibitors Induces Vascular Calcification

VSMCs within normal arteries have been shown to express a number of inhibitors, in-
cluding matrix Gla protein (MGP) and ectonucleotide pyrophosphatase/phosphodiesterase
1 (ENPP1), which protect against ectopic calcification [19]. MGP is a secreted carboxyg-
lutamic acid modified protein [41]. Mice that lack Mgp show arterial calcification [42].
Homozygous loss-of-function of MGP in humans is associated with Keutel’s syndrome, in
which patients exhibit excessive calcification of cartilaginous tissues and diffuse arterial
calcification [43]. A possible mechanism through which MGP abrogates vascular calcifica-
tion is by antagonism of BMP signalling. MGP can directly bind to BMP2 and BMP4, thus
inhibiting their downstream signalling [44,45]. In accordance with these data, inhibition
of BMP signalling using LDN-193189 or ALK3-Fc reduces vascular calcification in Mgp
null mice [46]. MGP undergoes γ-glutamate carboxylation, in a vitamin-k dependent
mechanism, to fully exert its protective effect on arterial calcification [47]. The vitamin K
antagonist warfarin rapidly induces arterial calcification through inactivation of MGP in
rodents, which can be rescued by a vitamin K-enriched diet [48].

ENPP1 is an ecto-enzyme that hydrolyzes ATP to generate pyrophosphate (PPi),
which acts as a calcium phosphate crystallization inhibitor when high levels of PPi are
produced. ENPP1 is widely expressed in various cells including chondrocytes, osteoblasts
and VSMCs [49,50]. Tiptoe-walking (ttw/ttw) mice with a natural occurring nonsense
truncation mutation in Enpp1, or Enpp1 null mice, develop extensive peri-articular and
arterial calcifications, and progressive ectopic ossification of the spinal ligaments [51,52].
Loss-of-function ENPP1 mutations in humans have been associated with Generalized
Arterial Calcification of Infancy (GACI) [53,54]. Functional characterization of these ENPP1
mutations demonstrates a complete loss or partial reduction of its enzymatic activity,
thereby reducing the generation of PPi [55]. Beyond the regulation of vascular calcification,
ENPP1 also plays a role in the pathogenesis of osteoarthritis, atherosclerosis, insulin
resistance and diabetes through mechanisms including the production of high levels of
PPi [56–58].

3.3. Matrix Vesicles and Apoptotic Bodies Promote Cardiovascular Calcification

Matrix vesicles (MVs) are extracellular membrane-derived microparticles (approxi-
mately 100 nm in diameter). MVs have been implicated in bone mineralization, where they
serve as the initial nucleation sites for hydroxyapatite formation [59]. Over recent years,
the role of MVs in the regulation of cardiovascular calcification has attracted extensive
attention. Previous work, including data from our laboratory, has reported the accumula-
tion of MVs in calcified human aortic valves [60], aortic medial tissue, and atherosclerotic
plaques [61]. These MVs are released by VSMCs, macrophages and valve interstitial cells,
which play a role in initiating vascular calcification [60,62,63]. Proteomic analysis demon-
strates that MVs released by cardiovascular cells during calcification show up-regulation of
the calcium-binding Annexins but reduced expression of calcification inhibitors, including
MGP and fetuin A [60,64]. Of note, vascular cell-secreted MVs contain a large amount of
microRNAs, which also play a role in regulating vascular calcification [65]. A number of
microRNAs identified in MVs released by vascular cells are involved in osteogenic differ-
entiation. For example, miR-30 identified in MVs regulates the expression of osteogenic
genes including RUNX2 and SMAD1, and VSMC calcification [66]. In addition, MVs can be
taken up by recipient VSMCs, leading to altered MAPK signalling and calcium metabolism
that further drives vascular calcification [67].

Apoptosis, also termed programmed cell death, is a tightly regulated, energy depen-
dent process which is mainly regulated by caspases [68]. Apoptotic cells exhibit bleb-
bing, cell shrinkage, and nuclear and DNA fragmentation. Previous studies have shown
apoptosis to increase during VSMC [69] and VIC calcification [70] in vitro. Induction of
apoptosis using anti-Fas IgM and cycloheximide enhances VSMC calcification, while inhi-
bition of apoptosis using the caspase inhibitor z-VAD-FMK attenuates VSMC calcification
in vitro [69]. Furthermore, activation of the Gas6/Axl/Akt survival pathway reduces
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VSMC calcification [71]. PiT1 is required for high phosphate-induced apoptosis in both
VICs [72] and VSMCs [73]. Mechanistically, apoptotic bodies may expose phosphatidylser-
ine on the outer membranes and generate a potential calcium-binding site suitable for
HA deposition [69]. In this review we have focused on activation of calcification but it is
important to note that calcification is a balance of both continuous activation and lack of
resolution of calcification (reviewed in Carracedo et al. [74]).

4. The Role of Sex and Sex Hormones in Cardiovascular Calcification
4.1. Sex difference Exists in Cardiovascular Calcification

Sex differences and effects of sex hormones have been associated with cardiovascular
calcification. Men have a 2-fold increased risk, compared with women, of developing
CAVD [75]. Clinical studies of CAVD have demonstrated that for the same degree of
stenosis, male patients have more calcification than females, whereas female patients have
more fibrosis [76,77]. Furthermore, studies have shown that valve disease does not develop
until after menopause in women [4].

Males also develop vascular disease, including atherosclerosis, earlier than females [78].
Circulating levels of testosterone, the predominant sex hormone in men, are positively asso-
ciated with vascular calcification [79]. In elderly male patients with stable coronary artery
disease, serum testosterone levels are inversely associated with vascular calcification [80].
Additionally, females with polycystic ovary disease (PCD) develop elevated levels of testos-
terone and have an increased risk of cardiovascular disease [81]. Over the past decades, it
has become accepted that women are protected against cardiovascular disease; however,
these protective effects are lost post-menopause. The most established hormonal change in
postmenopausal women is the decline of estrogen levels [82], which is considered a causal
factor for the increased incidence of vascular disease [83]. Serum levels of estrogen are
negatively associated with vascular calcification [84]. Whilst established dogma highlights
testosterone as a risk factor for calcification and estrogen as cardioprotective, the specific
pathways underpinning how these sex hormones induce calcification have yet to be fully
elucidated. Our current knowledge on the mechanisms through which sex hormones and
their receptors interact with calcification, is summarised below.

4.2. Estrogen and Activation of the Estrogen Receptor Prevents Calcification

Clinical studies have demonstrated that estrogen replacement therapy (ERT) reduces
cardiovascular disease in postmenopausal women [85] and that the effectiveness of ERT
may be dependent on the “timing” of estrogen delivery relative to the age of menopause
onset (within 6 years of menopause onset) [86]. Recently, the controlled Women’s Health
Initiative Study reported that long-term estrogen therapy reduced vascular calcification
in postmenopausal women aged 50 to 59 years [87], consistent with a protective role.
Studies employing estrogen replacement in ovariectomy-induced vascular calcification
and osteoporosis in Apoe−/− mice further corroborate these data [88].

In VSMCs, the expression of estrogen receptor α (ERα) is greater than that of estrogen
receptor β (ERβ). Estrogen mainly acts through ERα (Figure 3) to inhibit RANKL signalling,
thereby reducing the osteogenic differentiation and calcification of VSMCs by upregulating
BMP and downregulating MGP [88]. In addition, estrogen can inhibit vascular calcification
through regulation of a range of molecular and cellular events, including hypoxia-induced
factor-1α signalling [89], autophagy [90] and estrogen receptor α-dependent growth arrest-
specific gene 6 transactivation [91]. Conversely, exogenous estrogen application has been
reported to enhance vascular calcification in bovine aortic medial cells (in vitro) [92] and
in aged male and female ApoE−/− mice (in vivo) [93]. These studies suggest a complex
role of estrogen in vascular calcification. Estrogen can be generated in blood vessels by
aromatase-mediated conversion of testosterone [94] and therefore, the activity of aromatase
in blood vessels may also have a role in mediating the effects of estrogen on vascular
calcification and warrants future investigation.
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containing estrogen response elements (ERE). In addition, estrogen also rapidly induces phosphoinositide 3-kinase (PI3K)
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4.3. Testosterone Is a Risk Factor for Cardiovascular Calcification

Low levels of circulating testosterone have been associated with increased coronary
artery calcification in non-obese Korean men [95]. However, the recent Framingham Heart
Study reports no significant association between testosterone and vascular calcification
after model adjustment for other vascular risk factors in community-dwelling men [96].
In post-menopausal women, higher free serum testosterone is associated with coronary
artery calcium progression [97]. Experimental studies show conflicting results on the effect
of testosterone in calcification. In both male and female Apoe−/− mice, testosterone ad-
ministration increases atherosclerotic calcification, which involves both androgen receptor-
and estrogen receptor-mediated pathways [98]. Consistent with these results, our lab-
oratory has previously shown that deletion of androgen receptor in VSMCs prevents
testosterone-induced VSMC calcification in vitro [99]. Contrasting studies report an in-
hibitory effect of testosterone on VSMC calcification, which is mediated through androgen
receptor-dependent transactivation of growth arrest-specific gene 6 signalling [100]. This
discrepancy may reflect the complex actions of testosterone within different in vitro mod-
els. Clinical studies have shown that, in men, low endogenous testosterone levels are
associated with cardiovascular disease [101] but also that high testosterone (for example
with anabolic steroid use) has adverse cardiovascular effects [102]. This type of U-shaped
relationship has been recognized with other hormones: for example, with corticosteroids
where insufficiency causes Addison’s disease but excess causes Cushing’s syndrome [103].

5. Sex Hormones Mediate Cellular Signalling Pathways in the Cardiovascular System
5.1. Estrogen Signalling and Cardiovascular Function

Estrogen regulates cardiovascular function through several ERs, including ERα, ERβ
and the orphan G-protein-coupled receptor (GPR30) (Figure 3) [104,105]. Upon binding to
estrogen, ERs undergo conformational change, leading to ER dimerization and binding
to consensus (5′GGTCAnnnTGACC 3′) estrogen response element (ERE) sites on nuclear
DNA. Co-regulators are then recruited to the estrogen-ER complex to activate or inhibit
gene expression [106]. Estrogen also has the capacity to regulate gene expression indirectly
by altering the activity of other transcription factors (such as AP1 and Sp1) [107,108]. In
the absence of estrogen, ER at specific serine sites can be phosphorylated by Epidermal
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Growth Factor (EGF), thereby mediating the stimulatory effects of EGF [109]. In addition to
its genomic action, estrogen also induces acute non-genomic signalling pathways. Estrogen
can bind to cell membranes to rapidly induce PI3K signalling. Furthermore, estrogen
activates PI3K and MAPK through binding to GPR30 [110]. Functional classical ERs
and non-classical GPR30 are widely expressed by vascular cells, including endothelial
cells, VSMCs and cardiomyocytes [111]. Through estrogen’s genomic and non-genomic
mechanisms, regulation of a wide range of cardiovascular processes has been reported,
such as: cardiac hypertrophy and failure, ischemic heart diseases, vascular injury and
atherosclerosis [112,113].

5.2. Testosterone Signalling and Cardiovascular Function

Testosterone can regulate a range of cardiovascular functions and phenotypes, in-
cluding vasodilation and vasoconstriction and intima-media thickness [114]. Similar to
estrogen, testosterone induces both genomic and non-genomic actions. Testosterone binds
to the androgen receptor (AR) to regulate gene expression through binding with the an-
drogen response element (ARE) [115]. It also induces rapid non-genomic effects through
binding to membrane androgen receptors or sensors, leading to the activation of a range of
intracellular signalling molecules including calcium (Ca2+), nitric oxide (NO), PKA, PKC,
and MAPK [116]. The AR is expressed in several vascular cell types, including VSMCs
and endothelial cells [117], and has been shown to be by expressed within the aortic valve
(although the identity of valve cells expressing AR remains unclear). Testosterone can also
be converted to 5α-dihydrotestosterone (DHT; which has a higher binding activity to the
AR) by the cytochrome P-450 enzyme, 5α-reductase [118]. As testosterone can be converted
into estrogen through aromatase, AR activation is also regulated by the cell-specific pro-
file of metabolic products of testosterone [94]. Aromatase has been observed in vascular
endothelial cells and 5α-reductase has been shown to be expressed in VSMCs [119,120].
Aromatase expression has been observed in the aortic sinus of mice, but the cell-type
expressing the enzyme is unknown [98].

6. Animal Models Offer Insights into Sex Differences in Cardiovascular Calcification

Females are typically under-represented in pre-clinical studies. Indeed, there is con-
cerning evidence that within biological and medical research, 80% of studies that specified
sex used only male subjects [121]. This lack of inclusion of female models likely contributes
to the poorer treatment outcomes for women and a reduced understanding of sex differ-
ences in the calcification process [122]. In this section we discuss the use of both male and
female in vivo models in calcification research.

6.1. Rodent Models

The human cardiovascular system comprises a complex arrangement of specialized
structures with distinct functions. The current use of small rodents as the main model
of human diseases is widespread. They are relatively cost effective and easy to maintain.
Furthermore, rodent models offer opportunities for genetic manipulation and pre-clinical
imaging techniques, making them indispensable for elucidating the mechanisms under-
pinning cardiovascular disease [123]. Nonetheless, limitations do exist, and significant
vascular differences are apparent between humans and rodents.

Rodent models are highly resistant to vascular calcification. In order to investigate
cardiovascular calcification in rodents, the pathological process has to be artificially in-
duced, typically through diet, genetic manipulation or mechanical injury [124]. The most
commonly used model of vascular and valvular calcification is the Apoe−/− mouse model
fed a “western” diet [125]. However, calcification does not present uniformly across all ani-
mals within a cohort. Additional genetic models of calcification include mice lacking low
density lipoprotein receptor (Ldlr) (intimal calcification) [126], Enpp1(medial) [127], Mgp
(medial) [42] and ATP binding cassette subfamily C Member 6 (Abcc6) (medial) [128,129].
These models primarily display aortic calcification but valvular calcification has also been
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observed in the Ldlr−/− and Apoe−/− mice [130]. Vascular calcification is a clinical conse-
quence of ESRD, therefore it is reassuring that many models of this condition (including
dietary addition of adenine, vitamin D administration and surgical induction of kidney in-
sufficiency through 5/6 nephrectomy) have also been developed to interrogate the process
of vascular calcification [131].

Exposure of rats to warfarin also produces calcification in the aorta and aortic valves [132].
However, inconsistent levels of calcification are typically observed in these rodent models,
highlighting the requirement for more refined options [133].

A number of approaches can be employed to investigate the sex hormone effect on
cardiovascular calcification in vivo. Sex hormone receptors can be ablated; the Ar−/−

mouse has been utilized to investigate the effect of testosterone in vascular calcification [99].
Furthermore, studies involving mice lacking ERα and ERβ, have elucidated that these re-
ceptors are necessary for estrogen-mediated inhibition of the vascular injury response [134].
A physiological approach to investigating the effects of sex hormone involves the surgical
removal (ovariectomy or castration) of sexual organs. Indeed, ovariectomised mice have
been used to investigate bone calcification and show impaired bone formation [135].

Interestingly, sex differences in the atherosclerotic phenotype observed in Apoe−/−

mice have been well-defined, whereby females tend to have larger plaques and increased
calcification in those plaques [136]. Conversely, in human patients, females typically have
smaller plaques and less calcification within the plaques [137]. Whilst investigations are
frequently limited by the focus on a single sex, those rodent studies that have employed
males and females to interrogate cardiovascular calcification pathways (Table 1), have
produced divergent findings; highlighting the constraints of these animal models, and the
importance of investigating both sexes in pre-clinical studies.

Table 1. Sex differences in rodent cardiovascular calcification studies. This table summarises key findings of cardiovascular
calcification studies that have investigated both sexes, including the model and sex difference. In mice, increased calcification
has typically been reported in females compared to males whereas in rats lower calcification has been observed in females.
ApoE—Apolipoprotein E, DHT—Dihydrotestosterone, ↑—increased.

Model
Method of

Calcification
Induction

Type of
Calcification

Sex Differences in
Calcification Treatment Ref

Mouse

ApoE−/− Aged to 36 weeks Vascular and
valvular

↑ calcification in females
(aortic sinus) 17β-estradiol [93]

ApoE−/− Crossed with Itga8−/− Vascular ↑ calcification in females [93]

Klotho−/− Vascular None MicroRNA-145 and
microRNA-378a [138]

Klotho−/− Vascular None None [139]

ApoE−/− Vascular, aortic
sinus ↑ calcification in females Testosterone and DHT [98]

ApoE−/− 18 months Vascular More vascular calcification
in males [140]

ApoE−/− Uraemia Vascular ↑ calcification in females [141]
C57BL/6J Vascular None [141]
ApoA-II Vascular None [141]

ApoE−/− Vascular ↑ calcification in females [141]

ApoE−/− Hyperlipidaemic diet Vascular ↑ calcification in females
(medial arteries) [142]

Rat

Fisher 1α-Hydroxyvitamin
D3 Vascular ↑ calcification in males [143]

Wistar Vascular ↑ calcification in males [144]
Lewis Polycystic

Kidney Vascular None Perindopril [145]
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6.2. Large Animal Models

An inherent resistance to the development of cardiovascular calcification offers a
crucial limitation to the employment of small animal models to investigate pathways
underpinning this pathological process [146,147]. Subsequently novel therapeutic inter-
ventions for vascular or valvular calcification require pre-clinical testing in both small and
large animal models to assess their suitability for clinical application.

Rabbits are a frequently employed, and highly appropriate, animal model of valvular
calcification, due to the tri-layered composition of their valve leaflets (similar composition
to humans) [148]. Methods of inducing calcification in rabbits include diet (e.g., vitamin D
and long-term cholesterol treatment), genetic manipulation (e.g., LDLR mutated Watanabe
rabbits), and surgical intervention (e.g., aortic balloon injury) [149–152]. However, studies
have typically focused on male rabbits, with an extremely limited number of calcifica-
tion studies including female animals. A recent study assessing both sexes in a matrix
metallopeptidase 9 (MMP-9) overexpression model of atherosclerosis, revealed that both
male and female rabbits developed calcified lesions in the aortic arch, with qualitative
assessment suggesting greater calcification in males [153].

Porcine and ovine models are commonly used in investigations of aortic stenosis,
with the majority of these studies examining synthetic or bioprosthetic valve replacements.
An advantage of these larger animal models is the relative size of the vascular structures
compared to humans, which permits the implementation of surgical procedures routinely
employed in the clinic. Indeed, porcine valves have been an established option for human
valve replacement for over 20 years [154]. Porcine models are highly appropriate due
to the closely comparable valve anatomy, haemodynamic profiles and lipid composition
to human patients [155]. They also show age-dependent insulin resistance [155] and
are susceptible to the development of calcified plaques through exposure to a high fat
diet [156]. The fibrosa layer in porcine aortic valves has similar features to the human
fibrosa, including regions rich in collagen, elastin and proteoglycans [157]. As in humans,
porcine aortic valves are more vulnerable to calcification on the aortic side, with molecular
investigations confirming that valve endothelial cells (VECs) derived from the aortic side
express osteogenic regulators including BMP4 [158]. Indeed, porcine VICs have been used
to elucidate genetic sexual dimorphism, with recent microarray analysis of bovine cells
highlighting the over-representation of cell pathways including cell death, proliferation,
cell-to-cell signalling and movement in male-derived VICs compared to female-derived
VICs [159,160]. Future aortic calcification studies are, however, required to confirm these
findings in vivo. Due to their size and husbandry needs, when compared to smaller
models, employing large animals will involve higher costs. Despite this, their importance
in the field of human diseases is evident and will undoubtedly illuminate new biological
pathways and mechanisms to facilitate the refinement of therapeutic strategies against
cardiovascular calcification.

7. Future Perspectives

Despite testosterone being an established risk factor for cardiovascular calcification
(and many other vascular diseases) its clinical impact is unclear and its mechanism of action
in cardiovascular calcification remains to be fully understood. Whilst females are believed
to be ‘cardio-protected’, pre-menopausal patients are severely under-represented in pre-
clinical studies, which may contribute to our lack of understanding of the mechanisms
underpinning the cardioprotective role of estrogens. Whether these sex hormones directly
contribute to the increased vascular calcification observed in postmenopausal women
remains to be investigated. Furthermore, elucidating these mechanisms is hampered not
only by the limitations of pre-clinical models, but also by the severe under-representation of
the female sex in pre-clinical research. Further research is essential to bridge the knowledge
gap between the cellular mechanisms of calcification and the clinical sex risk factors, in
order to ensure equitable treatment approaches for patients of both sexes.
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