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Abstract: Human exposure to air pollution is a major public health concern. Environmental
policymakers have been implementing various strategies to reduce exposure, including the
10th-day-no-driving system. To assess exposure of an entire population of a community in a
highly polluted area, pollutant concentrations in microenvironments and population time–activity
patterns are required. To date, population exposure to air pollutants has been assessed using air
monitoring data from fixed atmospheric monitoring stations, atmospheric dispersion modeling,
or spatial interpolation techniques for pollutant concentrations. This is coupled with census data,
administrative registers, and data on the patterns of the time-based activities at the individual
scale. Recent technologies such as sensors, the Internet of Things (IoT), communications technology,
and artificial intelligence enable the accurate evaluation of air pollution exposure for a population
in an environmental health context. In this study, the latest trends in published papers on the
assessment of population exposure to air pollution were reviewed. Subsequently, this study proposes
a methodology that will enable policymakers to develop an environmental health surveillance system
that evaluates the distribution of air pollution exposure for a population within a target area and
establish countermeasures based on advanced exposure assessment.

Keywords: air pollution; exposure assessment; population exposure; environmental health
surveillance system

1. Introduction

Air pollution poses a major environmental health problem and remains one of the biggest
challenges faced by many countries. The World Health Organization (WHO) has reported that more
than 80% of urban populations are exposed to air quality levels exceeding health guidelines [1].
Air pollutants originate from various sources, such as industry, transportation, and households. There
is evidence demonstrating that exposure to air pollutants may increase the risk of diseases such as
lung cancer and respiratory illnesses [2–4].

Previous research has largely focused on a range of air pollutants, including particulate matter
(PM), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), volatile organic compounds (VOCs),
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sulfur dioxide (SO2), carbon dioxide (CO2), and benzene (C6H6) [5,6]. Although most air pollutants
have been monitored, PM has been the most widely studied in terms of its environmental health risk
and health effects; health risks from exposure to PM (PM10 and PM2.5) are more serious than those
posed by other air pollutants [7]. Exposure to PM has been reported to have adverse respiratory and
cardiovascular health effects, including decreased lung function, asthma, cardiopulmonary disease,
and lung cancer [4,8,9].

Many studies on the health effects of air pollution exposure have used monitoring data from
fixed air monitoring stations. As such, they lack variabilities in terms of spatio-temporal distribution
and exposure within a population, leading to erroneous estimates [10]. Although the accuracy and
precision of air pollutant measurements are high, as fixed air monitoring stations mainly use expensive
international standard instruments, they are limited in their ability to assess exposure at the individual
and population scales [11].

Air pollution exposure assessments for a population are required to evaluate the effectiveness
of air quality control policies and implement effective interventions [12]. Exposure estimation for
an entire population is dependent on the specific objectives of a study. However, it is important to
integrate indoor and outdoor air pollution levels and individual time–activity patterns to generate
reliable exposure assessments [13]. Recent studies have used new methodologies to assess exposure
for the urban population based on alternative technologies and mobile monitoring approaches [14–16].
However, there is still a need to improve the air pollution exposure assessment for a population. For
example, the patterns of time-based activities at the individual scale were collected through census
data, administrative registers, time–activity surveys, and existing data. Further information on the
spatial distribution of a population in real time is required to improve exposure assessment [17].

An environmental health surveillance or tracking system may be defined as a system that performs
the continuous collection, integration, analysis, and interpretation of data on human health effects
relating to exposure to environmental hazards [18]. The potential for environmental health surveillance
has previously been evaluated for the European population [19]. Exposure surveillance systems
providing real-time exposure data may be developed based on air monitoring sensors and methods
that may be used to evaluate an entire population within a region of interest [20].

To reduce the environmental risks, an environmental health surveillance system using a meaningful
population exposure assessment methodology is required; this method can then evaluate the
effectiveness of alternative policies and risk mitigation efforts. The purpose of this study is to
present a methodology to assess air pollution exposure for an entire population by applying the latest
technology. This includes sensor-based monitoring devices and the Internet of Things (IoT). This study
also aims propose a plan to develop an environmental health surveillance system for human health
risk management.

2. Materials and Methods

This review evaluates the latest published research on the air pollution exposure assessment for a
population. Preference was given to reviewing recent studies presenting innovative approaches and new
perspectives, particularly for methodologies and outcomes. Keywords related to exposure assessment
were used as search criteria and their use in recent years was analyzed. The main search terms were
filtered into journal categories representing subject areas such as “air pollutant”, “environmental
health”, “exposure assessment”, “population exposure”, and “surveillance”. These terms were searched
for alone and in combination using a range of electronic databases including PubMed, EBSCOW,
ScienceDirect (Figure 1), Web of Science and Google Scholar. Among these articles, 102 were related
with the search term. The full texts of the acquired articles were reviewed and filtered according to the
inclusion and exclusion criteria. The exclusion criteria were as follows: studies written in a language
other than English and studies including personal exposure. The acquired articles were reviewed and
filtered according to the inclusion and exclusion criteria. The potentially eligible studies were selected
and retrieved as full texts.
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Figure 1. Flow diagram of the systematic review.

Exposure was conceptualized as the sum of the product of time spent by an individual or
population in different microenvironments and the time-weighted average concentrations of air
pollutants in those locations [9], as shown in the following equation [21].

E =

∫ t1

t0
C(t)dt (1)

where exposure (E) may be defined as a function of the air pollutant concentration (C) and time
intervals (t).

3. Results

Exposure was calculated based on the sum of the time spent by individuals in different
microenvironments and the average concentration of time-weighted pollutants at this specific
location [9]. The general structure of the model with the environmental health surveillance system and
the input dataset required to calculate exposure of the population and risk management is shown in
Figure 2. Outdoor air pollutant concentrations were measured using sensor-based monitoring devices
with a neighborhood spatial scale of 0.5 to 4.0 km [22]. Indoor air pollutant concentrations in houses,
buildings, and transportation systems were measured or modeled by accounting for indoor sources
and ventilation between the indoors and outdoors. The exposure scenario was generated by combining
indoor and outdoor concentrations with the time-based activity patterns using a smartphone [23,24].
Data mining was used to process the measured or modeled concentrations of air pollutants in various
microenvironments [25]. Then, these data were transported by wireless networks and web services,
to accumulate a database on a server, and then expressed as web-access data [26]. The air pollution
exposure for a population was analyzed in terms of the prevalence rate of access to the National Health
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Insurance Service. Based on this assessment, environmental health policies may be developed for
risk management.Toxics 2020, 8, x FOR PEER REVIEW 4 of 13 
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Figure 2. Overview of the development of an environmental health surveillance system for a population
through the advancement of air pollution exposure assessment.

3.1. Sensor-Based Air Monitoring and Internet of Things Technology

Fixed air monitoring stations are limited in their capacity to provide air pollutant levels and
the extent of exposure for the individual or population as they only provide data for a few locations
and are expensive to operate [27]. As such, they cannot provide an assessment of human exposure,
even if they supply accurate air pollutant concentrations [28,29]. Air quality in indoor and outdoor
environments varies on a relatively small scale as the concentration of air pollutants in a particular
location is largely dependent on local emission sources and air flow conditions [30]. Typically, air flow
in urban environments is turbulent and difficult to predict even with sophisticated numerical modeling.
This makes it difficult to assess the actual pollutant exposure levels for a population [31,32].

A means to assess pollutant exposure for a population based on air quality measurements may be
the application of low-cost monitoring devices across a wide range of areas for environmental health
surveillance. These methods are able to provide low-quality air pollutant concentration data, and may
be used concurrently across a wide range of areas, offering high-resolution exposure assessment
mapping in urban environments [11].

The need for mobile applications and a greater coverage of area is cost effective and may only be
achieved by reducing the size and cost of portable sensor monitoring devices [33]. Recent commercial
low-cost sensors represent an opportunity to establish an air pollutant measuring network that is able
to monitor large areas with high spatial resolution at a lower cost than reference measurement methods.
According to the Air Sensor Guidebook published by the United States Environmental Protection
Agency (USEPA), there are various studies that have been conducted using low-cost air monitoring
sensors that are currently being commercialized [34].

Recently, the combination of the IoT and environmental monitoring has become a new domain in
environmental health due to the advancement of information and communication technologies,
such as wireless fidelity (WiFi), long-term evolution (LTE), and other wireless communication
technologies [35–38]. Although the use of sensor-based monitoring devices in exposure assessment is
still controversial, the application of low-cost sensors has already shifted paradigms in air pollution
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monitoring and exposure assessment. As such, the application of these technologies will continue to
grow, including supplementing atmospheric surveillance networks and expanding communication
with the community [39,40].

3.2. Indoor Air Exposure

The measurement of outdoor air pollutants alone is insufficient to assess the exposure of a
population as most individuals spend the majority of their time indoors. Dias and Tchepel [41]
suggested that the spatio-temporal variability of urban air pollution, as well as indoor exposure and
time–activity patterns, should be measured to assess exposure at the individual scale. The indoor
environment is important, as it represents the environment in which individuals spend approximately
90% of their time [42–44]. Therefore, indoor air pollution may have a higher explanatory power than
its outdoor counterpart in the evaluation of air pollution exposure for a population [45]. Despite the
importance of indoor air exposure, the level of indoor air pollution measurement has been relatively
insufficient compared to outdoor air pollution measurements; this is because it is challenging to
measure air quality in private spaces.

The is major concern in terms of the reliability and accuracy of methods to estimate indoor air
pollution levels [46]. The increasing interest in indoor–outdoor air quality relationships has led to the
development of various techniques to study indoor source emissions, and the air exchange between
outdoor and indoor pollutants. Existing standardized methods are insufficient due to the complex
emission and dispersion of indoor air pollutants and site conditions [47]. As indoor air pollutants may
be affected by multiple factors such as indoor sources, ventilation, decay, building type, and human
activity, the limitations of small sample sizes usually produce inconsistent conclusions.

The impact of outdoor fine dust on the indoor environment is particularly important in many
developing countries where outdoor fine dust pollution has been increasing [48]. According to Ji
and Zhao [49], the contribution of outdoor PM2.5 concentrations to indoor PM2.5 concentrations
was estimated at 54–96% (n = 90). There was a significant correlation between indoor and outdoor
PM2.5 concentrations (p < 0.05) with a penetration factor of 0.21. Outdoor PM2.5 concentrations
contributed approximately 52% and 42% to indoor PM2.5 concentrations in the cool and hot seasons,
respectively [50].

Indoor air pollutant concentrations may be estimated using an indoor–outdoor (I/O) ratio, indoor
air quality model, a statistical model, and artificial intelligence such as machine learning [51,52]. The I/O
ratio may generally be used to estimate the concentration of indoor air pollutants [47]. However, the I/O
ratio for PM2.5 concentrations was 0.12–3.36 with significant variation, as it may be affected by multiple
factors [53]. According to Zuo et al. [49], the mean I/O ratio was estimated to be 0.73 ± 0.54, based on
sensor monitoring in 4403 indoor air monitoring locations in Beijing over one year. Indoor pollutant
concentrations in houses, buildings, and transportation systems may be measured or modeled through
deduction from outdoor concentrations by applying I/O ratios; however, this method does not account
for indoor air pollutant sources. To address this, other techniques have been proposed, such as indoor
sources, generation and ventilation-based modeling, and data-based artificial intelligence [54].

3.3. Exposure Scenario Using Time–Activity Patterns

The modeling of the exposure scenario of air pollutants is carried out using various factors,
such as air pollutant concentrations in microenvironments, geographical information of individuals
based on time–activity patterns, and building characteristics [55,56]. While Breen et al. used [10] an
exposure model (EMI) for individuals to conduct exposure assessments, the USEPA developed the
air pollutants exposure model (APEX) to estimate exposure to PM2.5 [57]. Valari et al. [9] proposed
exposure to atmospheric pollution modeling (EXPLUME), a local-scale individual exposure model
that includes spatial activity event sequences and the infiltration of outdoor air pollutants into the
indoor environment.
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The exposure scenario for a population may be estimated by assessing exposures from different
exposure scenarios for sub-populations [58]. The population may be classified into a subset of groups
based on socio-demographic characteristics and time–activity patterns that produce similar exposure
scenarios; this includes pre-school children, school students, housewives, office workers, and the
elderly. The pollutant level exposure of the population may be estimated by integrating their exposure
scenarios [42,44]. A new methodology was tested in Madrid, Spain to improve the estimation of
population dynamics. The population exposure to NO2 during working days was assessed, and the
results were compared with those obtained through census-based methodologies [59].

Tracking individual activity patterns is necessary to characterize the duration of exposure and
properties of pollutants, as well as their time and location [60]. Various tools have been used in research
to track the spatio-temporal mobilities of individuals in relation to activity tracking. These include the
Global Positioning System (GPS) [61], WiFi network [24], and accelerometers [62]. The most common
characteristic shared by activity tracking tools is the use of a mobile device, particularly smartphones.
A GPS-based microenvironment tracker, known as MicroTrac, was developed by the USEPA to estimate
the time spent in eight microenvironments using GPS data and geocoded building boundaries [63].

Many studies have reported on population activities and mobile patterns based on GPS and mobile
phone applications [23,64]. Although the main advantage of data produced in these studies is the
provision of high spatio-temporal resolution, their limitations are usually associated with small sample
sizes. The user-centered mobile model approach demonstrates the potential to integrate mobile phone
data in air quality management and epidemiological studies in order to classify a population in terms
of the type of activities at home, at work, for leisure, and for travel [65]. However, these studies did not
differentiate between individuals staying indoors and outdoors, flagging a potential to overestimate or
underestimate exposure, given that most individuals spend the majority of their time indoors.

3.4. Big Data Mining and Exposure Distribution

Due to the significant increase in data volume, the application of big data analysis has gained
global attention. Big data analytics is the process that assists organizations in developing more
informed policy by collecting, organizing, and analyzing large quantities of data to search for hidden
patterns, unknown correlations, trends, and other useful information [66]. As such, the integration
and application of big data analysis is the future for environmental health and an area that urgently
requires further development [67].

According to Zuo et al. [49], big data are able to provide a methodology to reduce heterogeneity
in indoor PM2.5 exposure. By using the machine learning approach, Zheng et al. [32] developed a
U-Air system that combines different types of heterogeneous big data to estimate air quality, such as
meteorology, traffic flow, human mobility, road network structure, and point of interest. Recently,
many researchers have begun to use the big data analysis approach because of the development of
big data applications and the availability of environmental detection networks and sensor data [68].
Air quality has been estimated by a deep learning and image-based model [69].

Atmospheric dispersion and community multiscale air quality (CMAQ) models generally
use computer-based simulations to calculate exposure distributions using the approximate spatial
distribution of atmospheric pollutant concentrations. However, these types of models are limited as
they must have accurate information on emissions, weather data, and the structure and geographical
data of the region; this creates challenges in providing an exposure distribution [35,70].

Some researchers have investigated the spatial distribution of air pollutant concentrations from the
geo-statistics perspective based on actual observations. This is due to the increasing number of fixed
air monitoring stations and the greater availability of low-cost sensors for continuous spatio-temporal
air quality monitoring [71–73]. For example, a novel application based on the optimal linear data
fusion method was applied in combination with the kriging interpolation technique for data fusion
between different types of PM2.5 sensors [35]. In recent studies, interpolation techniques such as land
use regression (LUR), the inverse distance weighted (IDW) method, and the geo-statistical kriging
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algorithm have been widely used [31,74]. According to Berrocal et al. [75], the down-scaler model and
universal kriging demonstrated better predictive performance than machine learning algorithms.

As a result, the average daily exposure distribution of air pollutants for a population has been
calculated by the time-weighted average using exposure concentrations and time spent in each
microenvironment to estimate population exposure [76]. That is, the total daily exposure (concentration
(ppm or µg/m3) × time (h) × number of people) of a population may be indicated by accounting for
the estimated concentration and the amount of real-time, dynamic population data based on mobile
phones within a standard grid, such as 500 × 500 m and 1 × 1 km [59].

3.5. Environmental Health Surveillance System

Environmental health surveillance includes the collection of systematic exposure information
on specific health effects that impact a population, the analysis and interpretation of such data,
and effective data delivery to public health professionals and policymakers [77]. The need for an
exposure surveillance system critical to prevent and control environmental diseases is increasing [18,78].
Given the importance of the environmental health surveillance system, the US Center for Disease
Control and Prevention introduced the National Environmental Public Health Tracking Network
System in 2010 [79]. The UK Health Protection Agency has been developing the Environmental Public
Health Surveillance System [80], whilst the European population was also inventoried and Europe has
evaluated the potential of environmental health surveillance [19].

Environmental health surveillance systems are able to illustrate the causal pathway from hazard
to exposure to disease. In particular, an exposure surveillance system that provides real-time exposure
data for air pollutants may be developed based on the characteristics of air monitoring sensors and
the assessment of an entire population [20]. Public health policymakers may use insights from an
environmental health surveillance system to promote public health, reduce exposure, and more
accurately prevent the occurrence of diseases in efficient and cost-effective ways. An environmental
health surveillance system for sustainable and healthy outcomes and an international network for
practitioners and researchers that are able to monitor and use these systems to support countries and
regions have been provided.

4. Discussion

As health effects caused by exposure to air pollution are a worldwide concern, public health
policymakers are trying to reduce the exposure to air pollutants. It is necessary to identify the exposure
distribution of air pollutants for an entire population [81,82]. Traditional methods are used to assess
the air pollutant exposure of a population by collecting data from outdoor fixed air monitoring stations,
and assign them to the home address of an individual using atmospheric dispersion models and
spatial interpolation techniques [40,41,83]. However, the determination of a population’s exposure to
air pollutants using measurements from fixed air monitoring stations may be insufficient in terms of
their spatio-temporal resolution [83]. With the development of modern industrial society, sources of
pollution and environmental change are becoming increasingly complex and the factors required to be
accommodated in the model are increasing; this has led to a rise in calculation costs, uncertainty, and a
decline in model accuracy [35].

This study aimed to improve the assessment of air pollution exposure for a population by
overcoming some of these limitations. It also proposed a novel methodology to assess population
exposure to air pollutants. According to Abelsohn et al. [84], using PM2.5 as an example, environmental
health surveillance is divided into four categories; hazard, exposure, health effects, and intervention
options. Among them, detailed information on individual exposure through the course of a human
life is generally insufficient and the weakest source of information; this is despite the fact that exposure
assessment is the most important link in describing the hazard–exposure–disease pathway [85].

Currently, measuring air pollutants using fixed air monitoring stations has limitations. However,
this paradigm is changing with the application of low-cost, easy-to-use portable air pollution monitors,
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such as sensors that provide real-time data. These properties provide an opportunity to improve
existing air pollution monitoring capabilities. It may also provide avenues to new air monitoring
applications for population exposure to air pollutants [86,87].

Air pollution monitoring has already changed the paradigm with the application of low-cost
sensor-based monitoring, and the application of these technologies will continue to grow. In particular,
current low-cost sensing technologies complement routine ambient air monitoring networks,
and expand the communication of risk to communities. This alone heralds a paradigm shift in
air quality monitoring, which was mostly implemented by the Ministry of Environment in the past.
An additional paradigm shift is the increased use of artificial intelligence or other advanced data
processing approaches to improve sensor-based monitoring in agreement with reference monitors [39].

Although individuals spend more time indoors, exposure assessment and the health effects of
indoor air pollution have not been studied as extensively as outdoor air pollution. One of the main
reasons is that the measurement of indoor air quality is not easy as indoor environments are typically
private; this means there is a lack of information on indoor air quality pollution [88]. As indoor air
quality varies from time to time due to changes in building conditions, human activity, and weather
conditions, short-term sampling cannot account for all types of variation. This highlights the need for
long-term monitoring, which may be resolved by sensor-based monitoring instruments [89].

Under the framework of the IoT and ICT, the air pollutant exposure of the population may be
analyzed systematically by continuously collecting device information and environmental big data
distributed from different time and space points. Data mining and spatio-temporal data analysis
techniques can be used to extract valuable information from environmental big data; this information
may be offered to governments for policymaking or further academic analysis [35,90].

Exposure estimation methods may be inadequate, as they do not address the spatio-temporal and
exposure variabilities inherent in a population. In addition, these estimation methods neglect indoor
air pollution; by far the largest source of exposure to air pollution for a population [61]. Exposure
may be defined as a function of concentration and time. As such, tracking the activity patterns at an
individual and sub-population scale should be considered. The total daily exposure of a population
with concentration, time, and the number of people may be generated by estimated concentrations and
dynamic population data using smartphones within a standard grid. Whether individuals stay indoors
or outdoors at that time should be evaluated [91]. The use of personal information may be a problem
for phone owners, telecom operators, researchers, and the public. However, dynamic population data
may be used for public purposes because personal information and identifying mobile data that may
directly be linked to individuals has been removed [92].

5. Conclusions

This study proposed a framework to evaluate population exposure to environmental pollutants and
the development of an environmental health surveillance system. Through the use of this framework,
the application of recent technologies to evaluate population exposure to air pollutants may allow
policymakers to formulate informed, evidence-based decisions on risk assessment. Population-based
exposure distribution is useful to understand population-specific differences in risk and identify
priorities for environmental health intervention. The exposure data for a population obtained from
this methodology may be used in air quality management, risk management, and environmental
health policy development. It may also be used in epidemiological research to study correlations with
specific diseases.
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