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A B S T R A C T

In this paper, we provide an extensive overview of machine learning techniques applied to structural magnetic
resonance imaging (MRI) data to obtain clinical classifiers. We specifically address practical problems commonly
encountered in the literature, with the aim of helping researchers improve the application of these techniques in
future works. Additionally, we survey how these algorithms are applied to a wide range of diseases and disorders
(e.g. Alzheimer's disease (AD), Parkinson's disease (PD), autism, multiple sclerosis, traumatic brain injury, etc.)
in order to provide a comprehensive view of the state of the art in different fields.

1. Introduction

Machine learning (ML) algorithms (Kotsiantis et al., 2007, 2006) are
currently employed in an extensive range of fields, from e-mail filtering
(Guzella and Caminhas, 2009), movie recommendations (Park et al.,
2012) and energy grid maintenance (Rudin et al., 2012), to cite a few.
In general, supervised ML consists of algorithms capable of generalizing
rules or patterns from a labeled set of input data, and using that
knowledge to generate predictions or classifications on data not seen
before (Kotsiantis et al., 2007). The field of neuroscience has also
greatly benefited from ML. For years, ML algorithms have been widely
used to build classifiers or predictors for a wide range of diseases using
magnetic resonance imaging (MRI) information as input features. These
inputs can be structural gray matter (GM) readings, obtained from
cortical thickness (CT) (Ad-Dab'bagh et al., 2006; Fischl and Dale,
2000) or GM density (GMd) values from voxel-based morphometry
(VBM) (Ashburner and Friston, 2000), microstructural changes in the
white matter (WM) from diffusion-weighted imaging (DWI) (fractional
anisotropy (FA)) (Mandl et al., 2008), connectivity matrices (Iturria-
Medina et al., 2007), or parameters derived from network analyses
(Iturria-Medina, 2013; Rubinov and Sporns, 2010; Zeighami et al.,
2015), and resting/task state fMRI information (Pereira et al., 2009).

These values can be obtained per voxel or averaged over anatomical
regions using atlases to reduce feature dimensionality. Once the ima-
ging features have been computed, they are fed into the ML algorithm
of choice in order to learn disease patterns.

Here, we present a review of publications that use structural MRI
data, including DWI techniques, to build classifiers aimed both at a)
predicting a given clinical state and b) extracting brain regions related
to the disease of interest. As certain generalizations can be made across
modalities, in some cases we refer to fMRI studies, though they will not
be the main subject of this work. Readers interested in the intersection
between ML and fMRI should refer to (Haynes, 2015; Pereira et al.,
2009; Schrouff, 2013). While other modalities (PET, EEG, MEG) can
also be used either in isolation or in conjunction with MRI data, we only
focus on structural MRI, as it already offers considerable morphological
findings.

While there are many studies devoted to finding group level dif-
ferences, they do not necessarily imply accurate predictions and may
not be very informative when it comes to predicting the clinical out-
come of individual subjects (Davatzikos, 2004; Iturria-Medina, 2013; Lo
et al., 2015). Furthermore, the clinical utility of imaging metrics should
be assessed by their predictive power on new data samples (Gabrieli
et al., 2015; Libero et al., 2015). As we want to center this review on
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studies that provide predictive classification, we do not include papers
that only provide correlational analyses. Following the three different
definitions of the term prediction detailed on Gabrieli et al. (2015)
(section Analytic Approaches: From Correlation to Individualized Pre-
diction) (Gabrieli et al., 2015), we focus on the third, in which the
goodness of the method is tested on out-of-sample predictions (i.e. data
that has not been used for training the model). This definition also
includes cross-validation techniques, where the reported accuracy rates
are more likely to generalize to out-of-sample data. In addition, this
review focuses on ML techniques that work with relatively small feature
sets (compared to the number of image voxels) which require feature
extraction. We acknowledge that there are ML approaches that do not
necessarily need this feature extraction step such as deep learning
classifiers (Deng et al., 2014; LeCun et al., 2015) in which both feature
extraction and classifier learning are incorporated into a unified fra-
mework (Betechuoh et al., 2006; F. Li et al., 2014a, 2014b; Liu et al.,
2014; Payan and Montana, 2015; Suk et al., 2014, 2015; Suk and Shen,
2013; Vincent et al., 2008). However, such techniques generally require
much larger datasets and more computational power, and present in-
terpretability challenges such that they are typically regarded as black
boxes, and for these reasons, won't be included in this review.

On a last note for the introduction, we would like to warn that it is
outside the scope of this paper to provide a detailed explanation of
different ML algorithms. Support vector machines (SVMs) and linear
discriminants have been explained in detail in existing reviews (Lemm
et al., 2011; Pereira et al., 2009). For other algorithms such as logistic
regression or random forests, and for ML techniques in general, refer to
Hastie et al. (2009) (https://web.stanford.edu/~hastie/ElemStatLearn/
). A more introductory version of that text (James et al., 2013) is also
available at http://www-bcf.usc.edu/~gareth/ISL/.

2. From imaging to prediction: an overview

This section provides a brief summary of the steps involved in the
development of a predictive ML model using raw imaging data as input
features.

2.1. Image processing

Data coming from imaging studies needs be processed in order to be
used as input for ML systems. This step, here referred to as feature
extraction, typically takes place in three steps (see Fig. 1 for a schematic
diagram):

1. Raw images are processed to extract quantitative information.
Structural T1 images can be used as the input for CIVET (Ad-
Dab'bagh et al., 2006), FreeSurfer (Fischl, 2012), MINC (Aubert-
Broche et al., 2013), or SPM (Penny et al., 2011) software packages,
in order to extract CT per surface vertex (CIVET and FreeSurfer) or
GMd per image voxel (SPM). Such processing steps generally in-
clude denoising (Manjón et al., 2010; Power et al., 2014; Wink and
Roerdink, 2004), intensity inhomogeneity correction (Sled et al.,
1998; Tustison et al., 2010; Vovk et al., 2007), and image intensity
normalization. The images are then registered to an average brain
atlas (e.g. MNI-ICBM152) (Fonov et al., 2011, 2009). Tissue or
structure segmentation or cortical surface extractions are then per-
formed using these preprocessed and normalized images in the
standardized space. DWI sequences (Iturria-Medina et al., 2007;
Smith et al., 2004) can also be processed using available toolboxes
to extract measurements of WM microstructural changes, such as
FA, mean diffusivity, radial diffusivity, connectivity matrices, and
network metrics (Bullmore and Sporns, 2012). In this step, a regis-
tration procedure is also typically performed. This registration in-
volves obtaining a series of mathematical mappings to transform the
images into the same spatial domain. In other words, regardless of
individual morphological differences, registration ensures that

region R for a given subject corresponds to the same voxels or
vertices (i.e. same spatial locations) as region R for the rest of the
population (Hill et al., 2001; Maintz and Viergever, 1998).

2. The computed results (e.g. 3D volumetric matrices, 2D connectivity
matrices, 1D vectors of network metrics, etc.) are then flattened in
order to obtain a single feature vector per subject by removing
spatial information (x, y, z locations per data point) and extracting
the numerical values. For instance, if CT values are computed for
40,000 vertex points, a 40,000×1 vector is generated, regardless of
the position of the vertices within the computed surface. The ne-
cessary information to revert the values to their original spatial lo-
cations can be stored.

3. Feature vectors from all subjects are then aggregated into a N×M
matrix, where N is the number of subjects in the study and M is the
length of the feature vector, which can also include information
from sources other than imaging (demographics, behavioral, etc.).
Finally, the output label containing the clinical states of the subjects
is used as the target variable.

2.2. Building a predictive model

This subsection provides a summary on how to apply ML algorithms
to processed data, such as the data matrix obtained in the previous step,
as well as brief comments on potential pitfalls/aspects that might prove
useful in practice. For more extensive reviews, see (Lemm et al., 2011).
A ML classification algorithm is an a priori unknown function that re-
lates a set of inputs with an output label (in this case, the clinical status
of the subjects that form the sample). That function is then trained on a
set of known data to obtain the parameters that relate the input vectors
to categorical output values, therefore producing a classification
output. This process is not sufficient by itself, as the classifier needs to
be tested in a dataset not used during the training phase. Since imaging
data is generally scarce, it is not common to have testing data reserved.
Instead, cross-validation (Duda et al., 2001; Hastie et al., 2009) is ty-
pically used: the full dataset is split into N different folds: N− 1 are
assigned for training and the remaining one for testing. The algorithm is
trained and an accuracy score (e.g. percent of correctly classified sub-
jects, sensitivity, specificity or other suitable metrics) is reported on the
test set. The process is repeated until each fold has been assigned once
to the test set to obtain an overall accuracy score. If the number of folds
is the equal to the number of subjects in the sample, this process is
called leave-one-out cross-validation, as each subject is tested in-
dividually.

2.3. Model ensembling and stacking

Ensembling and stacking techniques allow to combine different
models (and even several instances of the same model, with different
initialization parameters) in order to achieve higher accuracies and, at
the same time, reduce the probability of overfitting (Hastie et al.,
2009). Ensembling refers to the combination of predictions by
(weighted) averaging their results, or using a voting schema (Caruana
et al., 2004). On the other hand, model stacking uses the output from
different classifiers as the input of another algorithm which yields the
final classification score (Džeroski and Ženko, 2004). This last algo-
rithm can be any of the ML algorithms whose results are being merged,
or a completely different one.

While these approaches may yield better and more robust results
than any of the best models individually, it has to be taken into account
that the interpretability of the resulting classifier might not be as
straightforward as it would normally be with a single model. As men-
tioned previously, in this field, accuracy rates are important, but so is
the interpretability of the biological causes of the different diseases or
disorders, such as which regions are particularly relevant for a given
classification task. As a result, one might opt for a single model with
slightly lower accuracy in favor of higher interpretability. In some
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cases, an ensemble approach may also provide feature importance as
the output. For instance, random forests are by themselves an en-
sembling approach (a combination of individual decision trees).

3. Practical issues

Missteps in performing cross-validation commonly lead to overly
optimistic error rates (i.e. the classifier is reported to do better than it
actually does). Thus, this step should be implemented with extensive
care. In the following section, we comment on details that need to be
taken into consideration when implementing cross-validation loops in
ML pipelines. The optimal workflow for building a robust ML classifier
is depicted in Fig. 2 (Gabrieli et al., 2015). For more information, see
Appendix A from (Plitt et al., 2015).

3.1. Feature preprocessing

Once the data matrix has been formed, it can be beneficial to per-
form an initial feature preprocessing before proceeding with the main
ML pipeline. As certain algorithms expect the features to represent data
in the same scale and with a certain distribution, it is common to per-
form a centering and scaling operation: each continuous variable is
replaced by new values, obtained from subtracting the original mean
and dividing by the original standard deviation (i.e. creating variables
with mean= 0 and standard deviation=1). During this phase, di-
mensionality reduction algorithms can be used, such as principal
component analysis (PCA) or independent component analysis (ICA)
(Duda et al., 2001; Hastie et al., 2009). While ICA is frequently used in
fMRI data analysis, few studies use these techniques in the literature
included in this review. This may be due to the fact that PCA and si-
milar methods yield new variables which are linear combinations of the
original ones, and hence come at the cost of reduced interpretability of
the features. Other more complex feature selection techniques such as
sparse feature selection can also be used in this step, depending on the
specific application and dataset (Ahsen et al., 2017; Z. Li et al., 2014a,
2014b; Tan et al., 2010).

Depending on the application, more specific preprocessing steps
may be performed, specially when a large confounding effect is

encountered. Building classifiers to differentiate AD versus healthy
controls, Dukart et al. found that misclassified patients were younger
than misclassified control subjects (Dukart et al., 2011). Removing age-
related effects from the input VBM data improved accuracy by ap-
proximately 2%. A slightly larger effect (5%) was later observed using
the same technique applied to mild cognitive impairment (MCI) sub-
jects when predicting their conversion status to AD (Moradi et al.,
2015).

3.2. Feature selection and hyperparameter tuning

The result of the image processing step typically consists of data
matrices of relatively small numbers of rows (corresponding to sub-
jects) with significantly larger numbers of columns (corresponding to
different variables), sometimes several orders of magnitude higher (e.g.
several hundreds of subjects, at best, and thousands or tens of thou-
sands of variables). These variables can be CT, GMd, or VBM measures
for each voxel, or FA values in the WM. For instance, CT values ex-
tracted using the CIVET software (Ad-Dab'bagh et al., 2006) consist of
more than 160,000 vertices per subject if high-resolution surfaces are
used. In order to initially reduce the number of features, from thou-
sands to just a few hundreds, it is common to use ROI-based ap-
proaches: voxels or surfaces are averaged over regions defined by a
brain atlas, such as AAL (Tzourio-Mazoyer et al., 2002) or DKT (Klein
and Tourville, 2012). Note that this averaging might result in losing
potential differences in cases where the defined regions are too large
(Dyrba et al., 2015).

As it is known, not all diseases affect every brain region, and not
always in the same way. Therefore, some of the input variables might
not be related to the output labels and some of them may contain in-
formation already conveyed by other features. Reducing the number of
irrelevant and redundant variables both reduces the computational
time and improves generalization (Dash and Liu, 1997; Guyon and
Elisseeff, 2003; Moradi et al., 2015). In the field of neuroscience, fea-
ture selection is relevant not only because it helps to achieve higher
accuracy rates (Ad-Dab'bagh et al., 2006), but also, and mainly, because
it allows to investigate which features are relevant for the specific
classification problem of interest, offering an insight to the underlying

Fig. 1. Image processing workflow, from the raw datasets to final input matrix for the ML system. This example assumes two different MRI modalities are used:
structural T1 and DTI. The complete pipeline, from image to data input matrix, involves 3 steps: a) image processing to obtain quantitative information (e.g. CT
surfaces, FA volumes, or connectivity matrices); b) removal of spatial information (flattening) to obtain single feature vectors per subject; and c) aggregation of all
feature vectors into a single data matrix. A corresponding label output vector contains the classification target (e.g. the clinical state) for each subject. This process
can involve more modalities such as PET, CSF, rs-fMRI, EEG, genetic, and behavioral information, but the final aggregated product would be similar.
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brain regions that account for group differences (Plitt et al., 2015). This
interpretation can make ML results complementary to those obtained
by more classical inferential approaches. From this point of view, it is
also important to note that some ML algorithms (e.g. linear SVMs and
random forests) assign to each variable, a weight which is directly re-
lated to their importance within the model. Said weights can then be
used to rank the input variables and create maps of brain regions re-
levant for the classification task, even when no feature selection is
performed a priori. Storing the spatial information for the features, it is
possible to report this feature importance using a parametric map
(Fig. 3). In that sense, certain ML algorithms can also be used as feature
selection methods (Rakotomamonjy, 2003) in combination with tech-
niques such as Recursive Feature Extraction (RFE) (Kuncheva and
Rodríguez, 2010). While SVMs are capable of dealing with multiple
irrelevant features (Lemm et al., 2011; Zarogianni et al., 2013), their
accuracy is nonetheless diminished compared to an optimal situation in
which only relevant features are used (Liu et al., 2012).

Within the same family of classifiers, the number of features used
may also have an impact. Song et al. found that Gaussian SVMs behaved
better than linear SVMs in lower dimensionality problems (fewer fea-
tures) (Song et al., 2011). Non-linear SVMs can be more prone to
overfitting (finding noisy patterns that do not improve generalization)
(Wottschel et al., 2015). In such cases, they may behave better (i.e.
higher validation accuracy) if the dimensionality of the problem is re-
duced.

3.2.1. Leakage in cross-validation techniques
Leakage (Johnston et al., 2013; Kuncheva and Rodríguez, 2010;

Pereira et al., 2009) is the creation and usage, commonly by accident, of

variables that carry information about the outcome of the problem (the
classification labels, in our case). Leakage generally occurs during
feature selection if the entire dataset is used to identify potentially in-
formative variables outside of the cross-validation loop.

A rule of thumb can be established to detect leakage. Consider the
case of leave-one-out cross-validation, in which the ith case, denoted Xi,
(intuitively, the ith row in the input matrix from Fig. 1) is kept as the
test set and the rest is used as the training set for that case. In that
schema, involving the label for the test case (yi) in any step during
training would be leakage; yi should only be used when evaluating the
accuracy of the model (Lemm et al., 2011). This includes somewhat
common procedures such as performing t-tests, correlations or more
advanced feature selection techniques on the entire sample in order to
identify features strongly related to the output label before proceeding
with the cross-validation. Selecting variables with the highest variance
from the whole sample, on the other hand, would not be considered as
leakage since output labels are not used. Sections 7.10 of Hastie et al.
(Cross-Validation) and 7.10.2 (The Wrong and Right Way to Do Cross-
validation) (Hastie et al., 2009) provide an overview on cross-valida-
tion. (Ambroise and McLachlan, 2002) also provides extensive com-
ments on feature selection for microarray gene-expression data, a
quintessential example in which the number of samples is much lower
than the number of features. This dimensionality problem is not dif-
ferent from the one encountered in neuroimaging field where similar
precautions may be applied.

It is not rare to detect leakage, as we will explore in the following
sections. While this does not invalidate the reported findings, it makes
comparison of the results difficult, as the reported accuracies will likely
be overly optimistic.

Fig. 2. Optimal workflow for constructing a classifier or predictor. Splitting the data into N folds using a cross-validation approach is not the only step required to
ensure generalizability. Internal cross-validation loops are necessary to obtain a subset of relevant features (if feature selection is needed) and to tune model
hyperparameters (e.g. C in Gaussian SVMs, number of neurons in neural networks, or number of trees in random forests). Performing these steps on the full sample
will result in an excessively optimistic classifier. Additionally, the cross-validation evaluation could be enhanced by performing permutation tests (Golland and
Fischl, 2003; Ojala and Garriga, 2010). Figure reproduced with permission from the original (Gabrieli et al., 2015).
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Similar considerations should also be applied for hyperparameter
tuning (i.e. the inherent parameters of ML algorithms, such as C in
Gaussian SVMs, number of neurons in neural networks, or number of
trees in random forests). To avoid synthetically increasing the accuracy,
this procedure also has to be done in an inner loop within each cross-
validation fold, or the model selection would be done based on the
entire sample. As in the case of feature selection, it is also possible to
report summary statistics about optimal hyperparameter values
(Cuingnet et al., 2011).

3.2.2. Bias-variance trade-off
The relationship between the sample size (i.e. the number of sub-

jects) and the dimensionality of the problem (i.e. the number of fea-
tures) has been extensively studied in the literature (Hastie et al., 2009;
Hughes, 1968; Kanal and Chandrasekaran, 1971; McKnight et al.,
2002). As was mentioned previously, the number of features that are
extracted from MR images are generally much larger than the sample
size. In such high-dimensional cases, if the model parameters are esti-
mated to fit the data without any form of regularization (e.g. PCA),
there will be a high likelihood of overfitting to the training data, and
consequently a poor generalization to out-of-sample test data (Hastie
et al., 2009). On the other hand, too much regularization (e.g. using a

very small number of features) might also lead to underfitting; not using
all the available information from data. Determining the optimal
amount of regularization is a bias-variance problem based on the
sample size and specific task of interest; a high variance leads to
overfitting, while a high bias leads to underfitting (Raudys and Jain,
1991). For more information of model selection, see Varoquaux et al.
(2017).

4. Machine learning applied to structural neuroimaging

In the following subsections, we will discuss in more depth works
that report classifiers built for specific diseases or disorders. In a few
cases, publications that deal with non-categorical output variables
(such as ADOS scores in autism) have also been included, but they are
the exception. Classification accuracy is defined as the percentage of
correct predictions; i.e. the sum of true positive and true negative
predictions divided by the total number of predictions. For consistency,
all accuracy scores are reported as a number between 0 and 1 (e.g.
0.67) instead of a percentage.

Fig. 3. A) Using a SVM multi-kernel approach, Zhang et al. (2011) found 11 relevant cortical regions for AD classification: left and right amygdala, left and right
hippocampal formations, left and right uncus, left entorhinal cortex, left middle temporal gyrus, left temporal lobe, left perirhinal cortex and left parahippocampal
gyrus. This assessment of the importance of different features supports the usage of ML techniques in order to understand the biological bases of diseases. B) It is also
possible to report variable importance without using the spatial distribution. Figure reproduced with permission from the original (Westman et al., 2012; Zhang et al.,
2011).
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4.1. Alzheimer's disease/ mild cognitive impairment

Alzheimer's disease (AD) is a progressive neurodegenerative dis-
order leading to mild cognitive impairment (MCI) and dementia. The
increased knowledge of the clinical manifestations and the complex
biology of AD has led to the redefinition of the different disease stages
in 2011 (Albert et al., 2011; McKhann et al., 2011).

Although MCI was traditionally considered as a risk factor for de-
veloping AD (Boyle et al., 2006), now it has been proposed that MCI
patients who progress to AD should be reclassified as prodromal AD. On
the contrary, patients who do not progress to dementia and do not show
common biomarkers of AD should be considered as MCI patients
(Dubois et al., 2010). Here, in order to be consistent with the termi-
nology used in the reviewed publications, we maintain the traditional
terminology, referring as MCI converted (MCI-c) to those that progress
to AD dementia, and MCI non-converted (MCI-nc) to those that do not.
Also, only classificatory studies of sporadic AD have been reviewed.

Typically, works on this topic have been focused on three different
classification targets: a) AD patients vs. healthy controls; b) AD or
controls vs. patients with MCI; and c) identification of MCI patients that
will progress to AD within a certain time period (MCI-nc vs. MCI-c). The
first two classification tasks address disease diagnosis, whereas the
third addresses prognosis of the likely course of the disease. AD vs. MCI
classification is by itself a more difficult problem than AD vs. controls
(see Fig. 2 from (Zhang et al., 2011)), as MCI diagnosis sometimes sits
in a gray area (Iturria-Medina, 2013) and can be easily confounded with
either mild AD or healthy controls. It is even more challenging to
predict which MCI patients will progress to AD within a certain time
window (typically ranging between 6months and 3 years) and which
will remain stable (Wee et al., 2012; Westman et al., 2012). Table 1
provides a summary of these papers, including input data modality, the
algorithm used and achieved accuracies. In the following, relevant as-
pects from some of the listed works are discussed.

Dyrba et al. used a multimodal approach, with T1, DTI and rs-fMRI
as inputs for SVM classifiers (Dyrba et al., 2015). Using only structural
T1 information, an accuracy of 0.82 was obtained. The addition of DTI
increased the AUC (0.89 vs. 0.86), but no improvement was observed
by using all three modalities (accuracy 0.79, AUC 0.82). Authors dis-
cuss that this could be due to high levels of noise in the rs-fMRI data,
which caused SVMs to overfit during training. This provides an example
where more features do not necessarily imply more validation accuracy.
The authors also comment on the hypothetical existence of a ceiling
effect which makes it impossible to obtain diagnostic accuracies sig-
nificantly higher than 0.90. This observation follows the same direction
as the increasingly accepted idea that AD can have a combined etiology
(vascular and neuronal) which increases the variability in the burden of
vascular or neuronal damage in patients with identical dementia rat-
ings. This theoretical upper limit is well in line with the values obtained
for all the other papers analyzed in this review.

Klöppel et al. obtained high accuracy rates (0.811–0.964) when
comparing controls to AD patients, using training and testing datasets
from different databases (Klöppel et al., 2008). As mixing images from
different sites can potentially have a confounding effect (Auzias et al.,
2016), this implies robustness of the selected approach and that SVMs
are able to generalize well. The same approach was used in Desikan
et al. (2009) for controls vs. MCI classification: 49 controls and 48 MCI
patients (training) were obtained from the OASIS database (Marcus
et al., 2007), and 94 controls and 57 MCI patients (test) came from
ADNI (http://adni.loni.usc.edu/). They also obtained high accuracy
scores on the test dataset (AUC=0.95, sensitivity= 0.73, specifi-
city= 0.94).

Changing the SVM kernels (linear vs. Gaussian) in Klöppel et al. had
no effect on the outcome (Klöppel et al., 2008), whereas in Wee et al., a
linear kernel obtained significantly lower accuracy than a Gaussian
kernel (0.67 vs. 0.89) (Wee et al., 2011). However, Wee et al. (2011)
suffers from leakage, as they selected features based on the entire

dataset, as opposed to Klöppel et al. (2008). Similar leakage problems
are also present in other studies, such as Haller et al. (2010) and Plant
et al. (2010).

Another measure of robustness is mixing images obtained with
different field strengths. Schmitter et al. mixed structural T1 images
acquired at 1.5 T and 3 T and compared a wide range of conditions
(controls vs. AD, controls vs. MCI, MCI vs. AD, MCI-nc vs. MCI-c at
2 years, MCI-nc vs. MCI-c at 3 years) (Schmitter et al., 2015). In line
with the rest of the literature, they report the highest accuracy for
controls vs. AD classification (0.883), and the lowest for MCI vs. AD
(0.687). Similar accuracies were obtained for the MCI prognosis tasks
(0.688 at 2 years, 0.698 at 3 years). Authors report that using 1.5 T and
3 T datasets independently yielded similar accuracy scores.

Westman et al. (not reported in Table 1) assessed whether conver-
sion of MCI-c patients to AD could be predicted, depending on the time
window. For 12, 18, 24 and 36months, 82.9%, 86.4%, 75.4% and 68%
of MCI subjects were identified as AD patients, respectively (Westman
et al., 2012).

As mentioned in the Introduction, application of ML in neuroima-
ging involves extracting features from the raw images. Cuingnet et al.
explored the changes in accuracy when using different image proces-
sing tools for a variety of binary classification problems: AD vs. con-
trols, controls vs. MCI-c, and controls vs. MCI-nc within an 18-month
time frame (Cuingnet et al., 2011). They report a sensitivity difference
of up to 0.3 in some cases due exclusively to the imaging processing
technique employed.

Moradi et al. report that feature selection can improve accuracy
rates up to 5%. They also identify relevant features using a controls vs.
AD classification task and then use those features for classifying MCI-nc
vs. MCI-c, reaching accuracy scores of up to 0.745 (AUC=0.766)
(Moradi et al., 2015), effectively showing that regions affected by AD
can be useful in MCI-nc vs. MCI-c classification. Similarly, Davatzikos
et al. extract regions of importance from a cohort of AD and healthy
controls (Fan et al., 2008b) and applies the obtained patterns to MCI-nc
vs. MCI-c classification task, also obtaining high accuracy scores
(ACC=0.734) (Davatzikos et al., 2011). This overlap in regions of
importance has also been reported elsewhere (Aguilar et al., 2013;
Cuingnet et al., 2011; Desikan et al., 2009; Westman et al., 2012).

Sørensen won the CADD Dementia challenge by building a multi-
class LDA classifier to differentiate control, MCI, and AD simulta-
neously. They trained the classifier using data from more than 600
subjects from a combination of different datasets to obtain a multi-class
accuracy of 0.63 on the unobserved CaDD Dementia test dataset
(Sørensen et al., 2017). They further report on the effect of the size of
the training dataset as well as complexity of the classifier on the per-
formance of the classifier (Sørensen et al., 2017).

In the papers reviewed here, we found few examples of stacking/
ensembling techniques. For instance, Moradi et al. first created a clas-
sifier with the imaging data and then used its output, along with age
and behavioral data, as inputs to a random forest (Moradi et al., 2015).
Zhang et al. combined different data sources with different SVM kernels
(Zhang et al., 2011). Liu et al. also used multiple weak classifiers and
combined their answers to produce a final result (Liu et al., 2012).
Ingalhalikar et al. used this technique for a different application: to
cope with missing data; different classifiers were created per subject,
depending on the subset of data missing, and their outputs were merged
afterwards (Ingalhalikar et al., 2014).

Table 2 summarizes the relevant GM and WM regions reported for
the classification tasks in the reviewed literature. Note that different
studies have followed different methodologies, some of which include
selecting features based on the entire dataset, therefore creating vari-
ables that are informative at the group level, but not necessarily at the
individual level. Having said that, this table paints a clear picture of AD:
hippocampus, temporal lobes, amygdala, parahippocampal gyrus,
middle temporal gyrus, entorhinal cortex and insula are the most im-
portant GM regions for the classification task. While fewer studies have
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used DTI, recent findings report microstructural WM changes and im-
paired connectivity as key factors leading to cognitive failure in AD.
Changes in FA and mean diffusivity (MD) appear early in the disease
and seem to be independent of GM changes in the medial temporal lobe
(Fletcher et al., 2014; Lacalle-Aurioles et al., 2016). Decreased FA and
increased MD have been described in preclinical phases of AD, when
individuals are still cognitively normal; however, they have not been
used in ML classification tasks at these stages (Fletcher et al., 2013).

4.2. Autism

Autism spectrum disorders (ASD) are a series of developmental
brain disorders defined by impairment in social interaction, verbal and
non-verbal communication and repetitive behavior (Lewis et al., 2013).
A few of the works reviewed here use the autism diagnostic observation
schedule (ADOS) as a continuous clinical score instead of a binary label
(autistic/control). Table 3 shows a summary of the papers reviewed in
this section.

Zhou et al. used T1 metrics and network measurements from func-
tional connectivity (rs-fMRI studies) and achieved an accuracy of 0.70.

The methodology suffers from leakage (the features have been ex-
tracted using the full dataset and not in the cross-validation loop) (Zhou
et al., 2014). Ecker et al. report accuracy rates of up to 0.9 when using
CT metrics for the left hemisphere. This accuracy drops to 0.6 for the
right hemisphere (Ecker et al., 2010a). This significant lateralization is
also seen in (Sato et al., 2013), where CT values in the left hemisphere
are better predictors of ADOS scores than those of the right hemisphere
(rLeft=0.29 vs. rRight=0.072, rBoth=0.362). A similar effect is also
reported in (Uddin et al., 2011), where analyses were made per in-
dividual region. In another related work by the same group, patients
with higher ADOS scores were found to be further from the optimal
hyperplane when a linear-kernel SVM was used for binary classification
(Ecker et al., 2010a).

As ASD is a heterogeneous disorder, it has been attempted to fine-
tune the definition of the labels to include some of the most relevant
symptoms, such as language impairment (ADS/LI+) (Ingalhalikar
et al., 2014). However, similar to the case of MCI classification in AD,
this task is much more challenging. They obtained an accuracy rate of
0.83 for ASD vs. controls, and 0.7 for ASD/LI vs. ASD/LI+. Ad-
ditionally, they use model ensemble methods to compensate for missing

Table 2
Informative regions (GM and WM) the classification tasks in AD. This table does not make any distinction regarding the cohorts involved in the classification (AD,
MCI, controls), as it has been shown that affected regions are similar for AD and MCI.

Region References N

Gray Matter
Hippocampus (Aguilar et al., 2013; Beheshti and Demirel, 2015; Cuingnet et al., 2011; Davatzikos et al., 2011, 2008; Desikan et al., 2009; Dukart et al., 2011;

Dyrba et al., 2015; Fan et al., 2008b, 2008a; Gray et al., 2013; Moradi et al., 2015; Schmitter et al., 2015; Westman et al., 2012, 2011)
18

Temporal lobes (Davatzikos et al., 2011; Desikan et al., 2009; Dukart et al., 2011; Fan et al., 2008b; Moradi et al., 2015; Schmitter et al., 2015; Wee et al., 2012;
Westman et al., 2012, 2011; Zhang et al., 2011)

10

Amygdala (Aguilar et al., 2013; Cuingnet et al., 2011; Davatzikos et al., 2011; Desikan et al., 2009; Dyrba et al., 2015; Gray et al., 2013; Moradi et al., 2015;
Wee et al., 2012; Westman et al., 2012; Zhang et al., 2011)

11

Parahippocampal gyrus (Aguilar et al., 2013; Cuingnet et al., 2011; Desikan et al., 2009; Klöppel et al., 2008; Moradi et al., 2015; Oliveira et al., 2010; Wee et al., 2012;
Westman et al., 2012; Zhang et al., 2011)

9

Middle temporal (Aguilar et al., 2013; Cuingnet et al., 2011; Desikan et al., 2009; Dukart et al., 2011; Gray et al., 2013; Oliveira et al., 2010; Westman et al., 2012;
Zhang et al., 2011)

8

Entorhinal cortex (Aguilar et al., 2013; Cuingnet et al., 2011; Davatzikos et al., 2011; Desikan et al., 2009; Fan et al., 2008b; Oliveira et al., 2010; Westman et al.,
2012; Zhang et al., 2011)

8

Insula (Aguilar et al., 2013; Davatzikos et al., 2011; Fan et al., 2008b; Moradi et al., 2015; Wee et al., 2012, 2011) 6
Inferior temporal (Cuingnet et al., 2011; Desikan et al., 2009; Dukart et al., 2011; Fan et al., 2008a, 2008b; Westman et al., 2012) 6
Posterior cingulate (Cuingnet et al., 2011; Davatzikos et al., 2011; Dukart et al., 2011; Fan et al., 2008b, 2008a; Wee et al., 2012) 7
Frontal lobes (Dukart et al., 2011; Moradi et al., 2015; Wee et al., 2012) 3
Inferior parietal (Beheshti and Demirel, 2015; Cuingnet et al., 2011; Desikan et al., 2009) 3
Anterior cingulate (Beheshti and Demirel, 2015; Dukart et al., 2011; Wee et al., 2012) 3
Supramarginal gyrus (Cuingnet et al., 2011; Desikan et al., 2009) 2
Middle cingulate (Cuingnet et al., 2011; Dukart et al., 2011) 2
Thalamus (Cuingnet et al., 2011; Dukart et al., 2011; Wee et al., 2012) 3
Uncus (Fan et al., 2008a; Zhang et al., 2011) 2
Superior frontal lobe (Oliveira et al., 2010) 1
Parietal cortex (Klöppel et al., 2008; Sørensen et al., 2017) 2
Cerebellar areas (Moradi et al., 2015) 1
Posterior middle frontal (Cuingnet et al., 2011) 1
Fusiform gyrus (Cuingnet et al., 2011) 1
Lingual (Desikan et al., 2009) 1
Precuneus (Davatzikos et al., 2008; Desikan et al., 2009; Wee et al., 2012, 2011) 6
Superior temporal (Aguilar et al., 2013; Davatzikos et al., 2011; Desikan et al., 2009; Dukart et al., 2011; Fan et al., 2008a; Oliveira et al., 2010) 6
Perirhinal cortex (Zhang et al., 2011) 1
Rectus gyrus (Wee et al., 2011) 1
Inferior lateral ventricle (Aguilar et al., 2013) 1
Isthmus cingulate gyrus (Oliveira et al., 2010) 1
Orbitofrontal cortex (Fan et al., 2008b; Wee et al., 2012) 2
White Matter
Fornix (WM) (Dyrba et al., 2015; Westman et al., 2011) 2
Temporal lobes (WM) (Davatzikos et al., 2011; Westman et al., 2011) 2
Ventral cingulum (WM) (Dyrba et al., 2015) 1
Caudate nucleus (Dyrba et al., 2015; Sørensen et al., 2017) 2
Corpus callosum (WM) (Dyrba et al., 2015) 1
Periventricular WM (Davatzikos et al., 2011; Sørensen et al., 2017) 2
Parietal WM (Westman et al., 2011) 1
Frontal WM (Westman et al., 2011) 1
Occipital WM (Westman et al., 2011) 1
Inferior temporal WM (Fan et al., 2008a) 1
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data.
We have not included a table of relevant regions for this classifi-

cation problem, since these effects seem to be very broadly spread
through the brain in ASD. In addition to the lateralization effect, Wee
et al. found that GM values in subcortical regions achieve higher ac-
curacies than cortical regions (Wee et al., 2014).

4.3. Multiple sclerosis

As with AD, there is a distinction between healthy controls, clini-
cally isolated syndrome (CIS) (Miller et al., 2012) and fully developed
multiple sclerosis (MS). Similarly, classification tasks involving CIS are
more challenging. Furthermore, CIS patients have a certain probability
of developing MS within a given time window, which is another ele-
ment to consider. Few papers (summarized in Table 4) have used
structural differences for classification in MS. Instead, ML applications
have been more heavily focused on the automatic segmentation of WM
lesions. This is probably due to the fact that MS diagnosis can be easily
made by detecting WM lesions directly from images, and the automatic
labeling of those regions is the most challenging part of the problem
(García-Lorenzo et al., 2013; Lladó et al., 2012).

Weygandt et al. used T1 and T2 images to segment the brain into
three different regions (lesions and normal-appearing GM and WM) and
obtained accuracy rates of up to 0.96 when using lesion information,
but also of 0.84 and 0.91 when using normal-appearing regions (GM
and WM, respectively) (Weygandt et al., 2011). In a later work, they
also obtained high accuracy rates (0.87) when classifying healthy

controls vs. early and late-onset pediatric MS (Weygandt et al., 2015).
The classification accuracy when comparing the two MS groups was
lower (0.807).

Bendfeldt et al. explored classifiers that distinguish between MS
subgroups (early or late MS, low WM-lesion load or high WM-lesion
load, and benign or non-benign MS) using T1 and T2 data as inputs for
linear SVMs. They obtained accuracy rates of 0.85, 0.83, and 0.77,
respectively, using GM information alone (Bendfeldt et al., 2012).

Wottschel et al. used 74 subjects at onset of CIS to predict which
subjects would develop MS at 1 and 3 years using lesion metrics (count,
load, intensity, …), imaging data and clinical and demographic features
(Wottschel et al., 2015). Their results (accuracy scores of 0.714 and
0.68 for 1 and 3 years, respectively), show that the further the time
horizon, the harder the classification problem. Also, the optimal feature
combinations at 1 year (lesion load, type of presentation, gender) were
completely different from the optimal features for the 3-year prediction
task (lesion count, average lesion intensity on PD images, average
distance of lesions from the center of the brain, shortest horizontal
distance of a lesion from the vertical axis, age and Expanded Disability
Status Scale (EDSS) at onset).

In terms of region importance, middle frontal gyrus was the most
informative in Weygandt et al. (2015), whereas Bendfeldt et al. (2012)
found relevant regions in cortical areas of all the cerebral lobes, as well
as thalamus and caudate.

Table 3
Summary of the classification papers in autism. Unless otherwise noted, reported accuracy rates are the highest found in the paper for different groups, methods and
input modalities.

Ref Groups (N) Method Input Modalities Accuracy Comments

(Zhou et al., 2014) Controls (153)-Autism (127) Multiple T1, rs-fMRI 0.7 Leakage: features selected on the full dataset. Uses 67 different
classifiers from the WEKA toolbox.

(Ecker et al., 2010a) Controls (20)-Autism (20) SVM (linear) T1 0.9 No hyperparameter search (fixed C=1).
(Sato et al., 2013) Controls (84)-Autism (82) SVR (Gaussian) T1 r=0.362 Predict ADOS scores instead of clinical state as a binary class

problem. No hyperparameter search (fixed γ).
(Uddin et al., 2011) Controls (24) - Autism (24) SVM (Gaussian) T1 0.92 Analysis is done per individual region
(Libero et al., 2015) Controls (18) - Autism (19) Decision tree T1, DTI,

spectroscopy
0.919 Possible leakage: […] data points included were the significant

resulting values of the statistical analyses of separate neuroimaging
modalities

(Ingalhalikar et al.,
2014)

Controls (42)-Autism (93) LDA ensemble MEG, DTI 0.83 Final accuracy rates are the result of ensembling LDA classifiers that
use different combinations of input data.ASD/LI+ (36)-ASD/LI- (57) 0.7

(Wee et al., 2014) Controls (59)-Autism (58) SVM (multi-
kernel)

T1 0.963

(Ecker et al., 2010b) Controls (22)-Autism (22) SVM (linear) T1 0.81 No hyperparameter search (fixed C=1).
(Lange et al., 2010) Control (30+7)-Autism

(30+ 12)
QDA DTI 0.916 Independent test set

Table 4
Summary of the classification papers in MS. Unless otherwise noted, reported accuracy rates are the highest found in each paper for different groups, method and
input modalities.

Reference Groups (N) Method Input Modalities Accuracy Comments

(Wottschel et al.,
2015)

CIS (74) - longitudinal (1 year) SVM (polynomial) T2, PD, clinical,
demographic

0.714
CIS (74) - longitudinal (3 years) 0.680

(Bendfeldt et al.,
2012)

Early MS (17) - late MS (17) SVM (linear) T1, T2 0.85
Low lesion load MS (20)-High lesion
load MS (20)

0.83

Benign MS (13)-Non-benign MS
(13)

0.77

(Weygandt et al.,
2011)

Controls (26) – MS (41) SVM (linear) T1, T2 0.96

(Weygandt et al.,
2015)

Controls (15+ 15)-EOPMS
(15+16)

Logistic regression T2 0.867* Each voxel individually tested. 2 groups of subjects
matched differently (lesion load, gender, & disease
duration or age).Controls (15+ 15)-LOPMS (16+

17)
0.871*

EOPMS (15+ 16)-LOPMS
(16+17)

0.807*
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4.4. Parkinson's disease and related disorders

As in some of the previous cases, what initially looks like a binary
problem can be further complicated by the introduction of intermediate
states or other conditions that are commonly mistaken with the prin-
cipal disease or disorder. In the case of idiopathic Parkinson's Disease
(IPD, or PD), Progressive Supranuclear Palsy (PSP) and Multiple System
Atrophy (MSA) have similar motor symptoms, but they also progress
faster and are less responsive to treatment (Filippone et al., 2012;
Salvatore et al., 2014). Collectively, these are referred to as Parkinso-
nian disorders or Parkinsonian Plus Syndromes (Duchesne et al., 2009).
A Parkinsonian (MSA-P) and a cerebellar variant of MSA (MSA-C) are
distinguished based on clinical presentations (Schulz et al., 1994;
Wenning et al., 1994). Recently, another group referred to as SWEDD
(Scans Without Evidence of Dopaminergic Deficit) has been added.
SWEDD subjects show PD symptoms, but without any dopamine defi-
ciency in their PET scan. Classification tasks in PD therefore include all
these disorders as well as the possible combinations including healthy
controls. Here we also review papers that use a multiclass approach (i.e.
instead of binary classifications, more than two different labels are
learned simultaneously) (Filippone et al., 2012; Marquand et al., 2013).
Table 5 shows a summary of the relevant findings.

Focke et al. obtained high accuracy rates for controls vs. PSP and PD
vs. PSP classifications by using WM voxel values (processed with SPM)
as input features (Focke et al., 2011). GM values yielded much lower
accuracies. Similarly, in Cherubini et al., WM values alone achieved a
perfect classification score (accuracy= 1) (Cherubini et al., 2014).
However, it is important to note that in both cases, F-contrast values
were applied as weights for the input voxels out of the cross-validation
loop. This could be considered leakage, as this importance metric was
computed using the whole sample. Also, the reported WM areas were
mainly in the brainstem, where the GM appears as small nuclei sur-
rounded by WM (e.g. substantia nigra pars compacta). When using VBM
smoothing kernels, these nuclei can appear inside the WM probabilistic
mask since the WM signal includes information from both WM and

these nuclei.
Both Filippone et al. (2012) and Marquand et al. (2013) directly

build multiclass classifiers. Filippone et al. applied a multinomial logit
classifier to a cohort of 62 subjects (14 healthy controls, 14 PDs, 16
PSPs, 18 MSAs) (Filippone et al., 2012). Marquand et al., from the same
research group, applied it to a different population and with two var-
iations: a) either healthy controls were included or not in the given
classifiers; and b) the MSA cohort was further divided into MSA-P and
MSA-C (Marquand et al., 2013). Including healthy controls in the
multiclass environment lowered the overall accuracy scores (Marquand
et al., 2013). Focke et al. attribute this to inconsistencies in VBM pro-
cessing (Focke et al., 2011).

In summary, the reviewed results imply that PD, PSP and MSA affect
different brain regions, even if their symptoms are similar. Relevant
regions are summarized on Table 6.

4.5. Other

Here we have included diseases or disorders for which we have not
found a high number of publications, or in some cases those for which
monographic reviews have been published recently.

4.5.1. Attention deficit hyperactivity disorder
Iannaccone et al. used both functional and structural imaging to

study differences in a cohort of 20 attention deficit hyperactivity dis-
order (ADHD) patients and 20 healthy controls (Iannaccone et al.,
2015). Using only T1 data processed with SPM and a linear SVM (fixed
C=1) they did not obtain a statistically significant accuracy rate
(0.611). Lim et al. also used GM information from T1 images (processed
with SPM) and a Gaussian process classifier (GPC) and obtained an
accuracy of 0.793 for a cohort of 29 ADHD patients and 29 healthy
controls (Lim et al., 2013). Finally, Peng et al. achieved up to 0.902
accuracy rates using extreme learning (a neural network variant) using
cortical features from T1 data (thickness, surface, folding, curvature,
volume) in a cohort of 55 ADHD subjects and 55 healthy controls.

Table 5
Summary of the classification papers in PD.

Ref Groups (N) Method Input
Modalities

Accuracy Comments

(Focke et al., 2011) Controls (22) - PD (21) SVM (linear) T1 0.42 Default C hyperparameter (C=1). F-contrast computed using
the whole sample applied as weight.Controls (22) - PSP (10) 0.937

Controls (22) - MSA (11) 0.788
MSA (11) - PD (21) 0.719
MSA (11) - PSP (10) 0.762
PD (21) - PSP (10) 0.968

(Cherubini et al.,
2014)

PD (57) - PSP (21) SVM (kernel not
specified)

T1, T2, DTI 1 F-contrast computed using the whole sample applied as
weight.

(Skidmore et al.,
2015)

Controls (22) - PD (20) Bootstrap DTI 0.901

(Marquand et al.,
2013)

PSP (17), PD (14), MSA (19) Multinomial logit T1 0.917
Controls (19), PSP (17), PD
(14), MSA (19)

0.736

PSP (17), PD (14), MSA-C (7),
MSA-P (12)

0.845

Controls (19), PSP (17), PD
(14), MSA-C (7), MSA-P (12)

0.662

(Filippone et al.,
2012)

Controls (14), PD (14), PSP Multinomial logit T1, T2, DTI Brier= 0.753 Highest multiclass error score (Brier) obtained using GM only.
(16), MSA (18)

(Salvatore et al.,
2014)

Controls (28) - PD (28) SVM (linear kernel) T1 0.927 Not mentioned how hyperparameters were tuned.
Controls (28) - PSP (28) 0.970
PD (28) - PSP (28) 0.982

(Duchesne et al.,
2009)

PD (16) - PSP (8)+MSA (8) SVM T1 0.906 PCA transformation applied on 149 healthy controls. No
mention on the type of kernel or how hyperparameters were
tuned.

(Haller et al., 2012) PD (17) - Other (23) SVM (Gaussian
kernel)

DTI 0.975 Heterogeneous “Other” containing patients with different
diseases, including MSA and PSP.

(Haller et al., 2013) PD (16) - Other (20) SVM (Gaussian
kernel)

SWI 0.869 Same considerations as for (Haller et al., 2012).
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However, their feature selection was performed outside of the cross-
validation loop (Peng et al., 2013). See also Eloyan et al. for a similar
work on same dataset (Eloyan et al., 2012) (for more information, see
Section 6 in this paper).

4.5.2. Depression
Johnston et al. studied 20 subjects with treatment-refractory de-

pression (TRD) and 21 healthy controls (Johnston et al., 2015). A
binary SVM (Gaussian kernel) classifier was able to obtain accuracy
rates of 0.85 using T1 images as input. However, it was not possible to
produce predictive systems for the level of resistance to treatment.
Foland-Ross et al. also used GM information (CT) to separate healthy
adolescent girls (n=15) from those who suffered an initial onset of
depression (n=18) within a 5-year window using linear SVM and
obtained an accuracy of 0.7 (Foland-Ross et al., 2015).

As for WM information, using DTI studies, Qin et al. studied net-
work architecture from 29 depressive patients and 30 healthy controls
(Qin et al., 2014). Nodal strength, local clustering coefficient, nodal
betweenness centrality and nodal global efficiency, for nodes defined in
the AAL atlas, were used as input features. Maximum relevance features
selection (mRMR) was used to select relevant features in the whole
sample (leakage). Under these conditions, a Gaussian SVM obtained a
highest accuracy of 0.831. Using a similar approach, Sacchet et al. also
used graph theory-related features (assortativity, global flow coeffi-
cient, global total flow, global efficiency, characteristic path length,
transitivity and small-worldness) as inputs for a linear SVM to distin-
guish between 14 women with major depressive disorder and 18
healthy controls, obtaining an accuracy of 0.712 (Sacchet et al., 2015).

4.5.3. Schizophrenia
For schizophrenia, we refer to recently published reviews that

analyze the use of ML algorithms in the context of this disorder in de-
tail. Similar to AD, there are 3 prediction problems of interest in the
context of schizophrenia: i) classifying schizophrenia patients versus
healthy controls, ii) diagnosing schizophrenia in populations at high
risk from baseline scan information, iii) prediction of disease progres-
sion, transition to schizophrenia, or response to treatment. Zarogianni
et al. provide an extensive review on predictive classifiers for schizo-
phrenia based on either structural or functional MRI, not only focusing
on binary predictions, but also devoting a section to disease progression
and treatment response (Zarogianni et al., 2013). They report ac-
curacies in the range of 81–91.8% for classifying schizophrenia patients
versus healthy controls using sMRI, with the majority of the studies

using SVMs for classification. For diagnosing schizophrenia, the re-
viewed studies have used fMRI as well as sMRI, initially using ICA for
dimensionality reduction and mostly SVM and Random Forests for
classification, reporting accuracies in the range of 61.8–95%. Fewer
studies have attempted to predict transition to schizophrenia and re-
sponse to treatment, with one study reporting an accuracy of 85% in
classifying responders using EEG data and a kernel partial least squares
regression technique, and three studies reporting accuracies of
82–84.2% in differentiating transition to schizophrenia, all using SVMs.
They conclude that the higher classification accuracy in the first pro-
blem (i.e. diagnosing schizophrenia versus healthy controls) is due to
the more distinct differences in their neuroanatomical and functional
patterns, which is not the case in within group predictions in subjects
that do or do not show an specific outcome of interest (Zarogianni et al.,
2013). In a more general review, Dazzan also includes a small section
on how to use brain structure at illness onset to produce predictions at
the individual level (Dazzan, 2014).

4.5.4. Traumatic brain injury
We found two studies that build predictive models for traumatic

brain injury (TBI), both (Fagerholm et al., 2015; Lui et al., 2014) em-
ploying mRMR for feature selection on the entire sample prior to any
cross-validation loop (leakage). Lui et al. used T1, DTI and rs-fMRI data
for 23 TBI patients and 25 healthy controls, and tested several different
classifying algorithms; they obtained an accuracy of 0.86 with a mul-
tilayer perceptron (neural network) using only relevant variables, and
0.80 with a Bayesian network using all variables (Lui et al., 2014).
Fagerholm et al. used only DTI information, obtaining 24 different
graph metrics and an accuracy of 0.934 with a linear SVM (Fagerholm
et al., 2015).

4.5.5. Stroke
In the context of stroke, machine learning has been used to classify

stroke patients versus normal controls, or predict post-stroke functional
impairment or treatment outcome. Rehme et al. used DTI and resting
state fMRI data information and a linear SVM to classify stroke patients
vs. normal controls (accuracy=0.826), and predict motor impairment
after stroke (accuracy=0.876). They also used information from DWI
lesion maps to differentiate stroke patients with or without hand motor
impairment, but with a relatively low sensitivity (accuracy=0.738,
sensitivity= 0.50), concluding that resting state fMRI is more useful in
predicting behavioral deficits than DTI (Rehme et al., 2014). Bently
et al. used CT information in combination with clinical variables and an
SVM with a multi-layer perceptron kernel to predict whether or not to
administer thrombolysis, a treatment that can result in better recovery
or deterioration due to intracranial haemorrhage (AUC=0.744)
(Bentley et al., 2014).

4.5.6. Miscellanea
4.5.6.1. Anorexia nervosa (AN). Lavagnino et al. used a LASSO
regression to classify 15 patients with AN and 15 healthy controls
using T1 information (processed with FreeSurfer), obtaining a accuracy
of 0.833 (Lavagnino et al., 2015).

4.5.6.2. Bipolar disorder (BD). Hajek et al. obtained an accuracy of
0.689 with a linear SVM (fixed C=1) when differentiating 45 healthy
subjects from 45 high-risk offsprings from subjects with BD (Hajek
et al., 2015). Only using WM intensities (T1 scans, processed with SPM)
yielded significant accuracies. Similarly, 36 healthy controls were
distinguished from 36 BD patients with an accuracy of 0.597. In all
experiments, subjects were matched by age and sex.

Lastly, we reference Sabuncu and Konukoglu, an empirical review
that applies several ML algorithms to different data sets for a variety of
diseases and disorders in a standardized way to build a gold standard
that can be used to compare the accuracy of future new approaches
(Sabuncu et al., 2015).

Table 6
Informative regions (GM and WM) for PD classification tasks.

Region References Number

Gray Matter
Rectal gyrus (Skidmore et al., 2015) 1
Middle cingulate (Skidmore et al., 2015) 1
Left Putamen (Skidmore et al., 2015) 1
Right Putamen (Skidmore et al., 2015) 1
Thalamus (Haller et al., 2013; Salvatore et al., 2014;

Skidmore et al., 2015)
3

Pons (Salvatore et al., 2014) 1
Midbrain (Marquand et al., 2013; Salvatore et al., 2014) 2
Brainstem (Filippone et al., 2012; Marquand et al., 2013) 2
Caudate (Filippone et al., 2012; Haller et al., 2013) 2
Putamen (Filippone et al., 2012) 1
Precuneus (Focke et al., 2011) 1
Basal ganglia (Marquand et al., 2013) 1
Cerebellum (Marquand et al., 2013) 1
White Matter
Corpus callosum (Salvatore et al., 2014) 1
Brainstem (Cherubini et al., 2014; Focke et al., 2011) 2
Mesoencephalon (Focke et al., 2011) 1
Right frontal WM (Haller et al., 2012) 1
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5. Discussion

In this review, we compile an extensive summary on ML techniques
in the field of neuroimaging, from cross-validation analyses to specific
applications in different diseases or disorders using structural mod-
alities. We have attempted to include a wide-reaching sample that will
help the reader get a precise grasp of the current state of the art. ML
applications in this field are different from applications in other areas
such as spam (or credit card fraud) detection. In the clinical case,
practical application of ML does not simply aim to achieve the highest
accuracy scores possible, as is the case when filtering spam e-mails, for
instance. While it is undoubtedly preferable to obtain higher accuracy
rates, in neuroscience, it is more relevant to study which features are
informative for the classification task of interest as well as their cor-
responding biological interpretations (see for instance (Carbonell et al.,
2015)).

A common pattern seen in the literature is that classification tasks
are almost never purely binary in nature. While two-class approxima-
tions are still relevant (AD vs. controls, MS vs. controls, PD vs. controls,
etc.), including intermediate (MCI, CIS, etc.) or related (PSP, MSA, etc.)
states can add another level of complexity. In practical terms, the
common solution is to opt for multiple binary comparisons (AD vs.
controls, controls vs. MCI, AD vs. MCI), each of which can be solved by
developing a separate classifier whose performance is assessed in-
dividually. Only in a few cases (e.g. (Filippone et al., 2012; Marquand
et al., 2013)) has a multiclass approach been used. While binary ap-
proaches provide useful information about underlying biological me-
chanisms, from a clinical point of view, multiclass approaches might be
more insightful, as a binary classifier would require to eliminate a priori
all potential clinical labels but two, a process that is not always prac-
tical. This is further complicated by the fact that many disorders are
spectrum disorders, and therefore a binary variable may not completely
capture their underlying subtleties.

The best classification performances were obtained when differ-
entiating between normal controls versus patients in various diseases
(e.g. AD, autism, MS, PD) with accuracies higher than 0.9, suggesting
the existence of brain patterns and structures identifiable on MRI that
are significantly different between the diseased population and normal
controls and can be reliably used for differentiating these groups
(Table 7). Unfortunately, the accuracies were much lower (generally
around 0.7) when attempting to differentiate between progressive and
stable patients (e.g. MCI-c and MCI-nc in AD), although these problems
are of higher clinical interest. While the reviewed studies provide va-
luable benchmarks for classification accuracy, in practice, there's still a
need for double-blind experiments. Clinical trials in which the predic-
tions are made before the actual outcome (e.g. conversion to AD) has
been observed can provide confirmatory evidence for the clinical use of
the prognosis models. Additionally, challenges that are administered by
a different research group and provide only the necessary MRI and
clinical data without the outcomes of interest on a preserved test da-
taset (e.g. MICCAI conference TADPOLE challenge: https://tadpole.
grand-challenge.org/) would also ensure that the results are not influ-
enced by leakage or overfitting the models.

Table 7 compares the results of the studies that classify normal
controls versus patients. While generalizations made based on such
small sample sizes and numbers of studies should be taken into con-
sideration with care, the number of the studies in each field seem to
reflect the current view on the structural nature of diseases (as can be
detected on MRIs). The neurodegeneration pattern that is characteristic
of AD seems to be a very good indicative for clinical diagnosis. On the
other hand, most studies that attempt to make diagnosis for Schizo-
phrenia use functional modalities, which might hint at the insufficiency
of structural MRI for such predictions. Another factor that needs to be
considered is the very different sample sizes across studies in different
diseases, e.g. AD studies generally have much larger sample sizes. While
this is influenced by the disease prevalence as well as financial funding
allocations, the amount of available data on AD can considerably fa-
cilitate studies in this field.

Sometimes, certain processing techniques can be tuned for a specific
disease or disorder in order to take into account some aspect that could
improve the overall accuracy. Take for example Dukart et al., who re-
moved age effects when noticing an age difference in misclassified in-
dividuals depending on the cohort (AD or healthy subjects) (Dukart
et al., 2011).

We acknowledge there are limitations to the present study. First,
this review focuses on analyses that employ only structural MRI data
(T1, T2, and DWI), while we have also included works that have used
other imaging modalities, either in isolation or in combination with
structural MRI. However, in practice, other imaging modalities as well
as a battery of clinical tests and measurements are acquired which can
provide informative features that might significantly improve the
classifications. For example, in the case of converter versus non-con-
verter MCI subjects in the context of AD prediction, using the baseline
clinical information significantly improves the prediction accuracy
(Moradi et al., 2015). Since different studies acquire different MRI
modalities and clinical information, we were not able to compare them
across all modalities and measures. However, we have reported the
other modalities and measures that have been used (e.g. fMRI, PET,
clinical measures, etc.) for each study. Additionally, it has to be noted
that in some cases (e.g. (Dyrba et al., 2015)), the inclusion of additional
modalities does not increase accuracy. More features can result in more
information, but also in more noise and confounding factors (Duda
et al., 2001).

It should be taken into account that the output labels (the clinical
state for each subject) may be an approximation, as there may not be a
precise one-to-one correspondence between a given metric (e.g. ADOS)
and a binary clinical outcome. Also, the clinical diagnosis might contain
errors (Cherubini et al., 2014), and therefore it would impossible to
obtain a perfect classification.

In some cases, diseases or disorders encapsulate a gradient of
symptoms and causes. Additionally, the outcome of interest might be
the amount or rate of change in a given metric (e.g. cognitive or motor
function) rather than simply whether the subject declines or not. Such
problems would be better studied using continuous regression techni-
ques and not discrete classifications. A number of regression techniques
have been used for estimating continuous clinical variables using

Table 7
Summary of the studies differentiating between normal control and patients.

Disease Methods Input Modalities Accuracy Number of Studies

Mean Min - Max

Alzheimer's Disease SVM, OPLS, Random Forests T1, PET, DTI, CSF 0.897 0.82–0.965 19
Autism SVM, Decision Tree, LDA, QDA T1, DTI, Spectroscopy 0.867 0.70–0.963 8
Multiple Sclerosis SVM, Logistic Regression T1, T2 0.915 0.871–0.96 2
Parkinson's Disease SVM, Bootstrap, Multinomial Logit T1, T2, DTI 0.7472 0.42–0.927 5
Attention Deficit Hyperactivity Disorder SVM, Gaussian Process Classifier T1 0.8475 0.793–0.902 2
Depression SVM T1, DTI 0.7477 0.70–0.831 3
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neuroimaging data, such as linear regression and support vector re-
gression (Duchesne et al., 2009, 2005; Hope et al., 2013; Rondina et al.,
2016; Stonnington et al., 2010; Wang et al., 2010; Zhang et al., 2011).
However, this review focuses on predictions that can be formulated as a
binary classification task.

Another point that is worthwhile mentioning is the outcome of in-
terest, which can be different for different prediction problems and in
different populations in the clinical setting. For example, positive pre-
dictive value (the percentage of correct positive predictions over all
positive predictions) or negative predictive value (the percentage of
correct negative predictions over all negative predictions) might have
more clinical relevance in specific cases. For the purpose of consistency
and since it is the most commonly used measure across papers, here we
report classification accuracy which reflects the percentage of both
negative and positive correct predictions over all predictions.

While there are hundreds of different ML algorithms (Fernández-
Delgado et al., 2014), there is undoubtedly a preponderance of SVMs in
the neuroimaging literature (Table 7) (Liu et al., 2012). This goes so far
as some reviews (e.g. (Salvatore et al., 2014; Veronese et al., 2013)) are
centered exclusively on using SVMs for predictive purposes. While this
can be attributed to the fact that previous experience greatly influences
the choice of a certain algorithm, it is also true that SVMs behave ro-
bustly in the typical conditions of a neuroimaging problem: i.e. many
more variables than available subjects (in some cases, these differences
are of several orders of magnitude) (Lemm et al., 2011; Zarogianni
et al., 2013). It has to be also taken into account, however, that other
techniques have also been employed with comparable results (see
Table 1, for instance) and that feature selection techniques, when cor-
rectly applied to avoid leakage, are extremely useful in reducing the
dimensionality of the problem.

A fraction of the works included in this review report potentially
overly-optimistic results (leakage), due to the fact that informative
variables were selected outside of the cross-validation loop. This feature
selection step was performed using statistical techniques that assess
group differences in the entire sample, for instance, or used other types
of filtering procedures that relied on the class labels of the test set to
perform dimensionality reduction. As discussed before (Section 3.2.1),
this should be avoided, as it might produce biased results.

Leakage effect is especially important when the population size is
small and diminishes as the sample size grows. Kohavi and John re-
ported this effect to be less concerning when the dataset contains more
than 250 instances (Kohavi and John, 1997). However, this number is
also dependent on the choice of classifier and the number of features
used. Almost all the studies reviewed here have sample sizes smaller
than 250, which makes the leakage issue more prominent. It would be
interesting to compare different studies in the same domain to assess
whether the reported accuracies are significantly different in cases
where leakage occurs. However, since different studies are based on
different populations and features, drawing meaningful comparisons is
not feasible in practice.

Another challenge that can reduce the generalizability of classifi-
cation models to new data and consequently their applicability to
clinical practice is the inherent heterogeneity in neuroimaging datasets.
Imaging data from different scanners and acquisition protocols can
sometimes have very different contrasts and parameters. As a result, the
estimated performances and classifier accuracies may only be reliable
when applied to data from similar scanners and with similar acquisition
parameters as the training dataset. Several preprocessing pipelines have
been developed to deal with such variabilities, such as the SPM, FSL,
and MINC tools (Aubert-Broche et al., 2013; Jenkinson et al., 2012;
Penny et al., 2011). In addition, to increase the generalizability of the
results, models are generally trained on multi-site and multi-scanner
datasets (such as ADNI, PPMI, etc.).

Throughout this article, we have reviewed papers typically written
in research institutions by domain experts: either scientists that have a
close contact with clinical environments or more technically-oriented

individuals who, also in a clinical or biomedical context, find in these
datasets the opportunity to apply and improve their current algorithms.
In recent years, non-domain experts (pure ML engineers, mathemati-
cians, etc.) have also had access to datasets already processed, and have
attempted to solve these classification challenges. From this point of
view, websites such as Kaggle (https://www.kaggle.com) do a great job
in gathering ML experts around a very heterogeneous set of problems.
This has been the case, for instance, with the IEEE International
Workshop on Machine Learning for Signal Processing (MLSP) 2014
Schizophrenia Classification Challenge (https://www.kaggle.com/c/
mlsp-2014-mri), the American Epilepsy Society Seizure Prediction
Challenge (https://www.kaggle.com/c/seizure-prediction), or the
Predict HIV progression Challenge (https://www.kaggle.com/c/
hivprogression). These challenges typically work in the following
way: datasets are provided for both a training set and a test set. The
output labels (clinical classifications) are also provided for the training
set, and the competitors have to produce their predictions for the test
set, with any technique they wish; the only common restriction is to use
technologies with open-source licenses. Submissions are evaluated ac-
cording to a certain metric (for instance, the AUC score) and the dif-
ferent teams are ranked in a classification table (leaderboard). To
prevent competitors from training their predictors to simply increase
the final scores in the leaderboard, these scores are computed on an
unknown portion of the test set. These competitions normally take
several months to complete and some have associated monetary prizes
for the highest ranked teams.

Iannaccone et al. present a similar application in their Introduction:
The ADHD-200 Global Competition (http://fcon_1000.projects.nitrc.
org/indi/adhd200/results.html) (Iannaccone et al., 2015). In this
challenge, functional and structural imaging and demographic and
behavioral data was provided with the aim of producing individual
clinical predictions for ADHD subjects. Interestingly, the highest accu-
racy (0.625) was obtained by one of the competing teams using only
age, sex, handedness, and IQ, and no imaging information. Other recent
examples include the Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2014 Machine Learning Challenge: Predicting
Binary and Continuous Phenotypes from Structural Brain MRI Data
(https://competitions.codalab.org/competitions/1471) and its sister
challenge CADDementia (Bron et al., 2015).

ML algorithms are powerful tools that can be used to solve many
different problems. In the field of neuroscience, these powerful tools
can not only help us build predictive systems for diagnosis and prog-
nosis, but can also be used to advance and deepen our knowledge about
the underlying biological mechanisms of diseases and disorders.
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