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Protein microarrays are versatile tools for high throughput study of the human proteome, but systematic
and non-systematic sources of bias constrain optimal interpretation and the ultimate utility of the data.
Published guidelines to limit technical variability whilst maintaining important biological variation
favour DNA-based microarrays that often differ fundamentally in their experimental design. Rigorous
tools to guide background correction, the quantification of within-sample variation, normalisation, and
batch correction specifically for protein microarrays are limited, require extensive investigation and
are not centrally accessible.
Here, we develop a generic one-stop-shop pre-processing suite for protein microarrays that is compat-

ible with data from the major protein microarray scanners. Our graphical and tabular interfaces facilitate
a detailed inspection of data and are coupled with supporting guidelines that enable users to select the
most appropriate algorithms to systematically address bias arising in customized experiments. The local-
ization and distribution of background signal intensities determine the optimal correction strategy. A
novel function overcomes the limitations in the interpretation of the coefficient of variation when signal
intensities are at the lower end of the detection threshold. We demonstrate essential considerations in
the experimental design and their impact on a range of algorithms for normalization and minimization
of batch effects.
Our user-friendly interactive web-based platform eliminates the need for prowess in programming.

The open-source R interface includes illustrative examples, generates an auditable record, enables repro-
ducibility, and can incorporate additional custom scripts through its online repository. This versatility
will enhance its broad uptake in the infectious disease and vaccine development community.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Protein microarray technology is increasingly utilised for vac-
cine candidate discovery among other range of applications in
the ‘omics era’ with hundreds to thousands of antigen-specific
antibodies analysed simultaneously [1–5]. Antibody data are corre-
lated with infection or disease outcomes in experimental models
and observational studies [6]. The platform is also useful for the
dissection of variant-specific antibodies induced by polymorphic
proteins [7].

Although multiple pipelines of the analysis of DNA microarrays
are published [8,9], they are not always suitable for proteins
because of fundamental differences in the underlying experimental
design. In the former, gene expression levels are typically com-
pared by mixing test and control samples that are labelled with a
pair of distinct fluorescent dyes. The emission signal at a defined
locus in a test sample is expressed as a ratio, relative to its counter-
part in the control. Normalization in this context factors in intrinsic
differences between dyes and the relative efficiency of their incor-
poration into the samples under investigation. In contrast, stan-
dard protein microarrays (the reverse and forward phase
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microarrays) quantify the absolute fluorescent emission detected
following antibody binding to a single protein, therefore other con-
siderations for normalization become more important.

Similarly, although the concordance between replicates rises
with increasing signal intensity (mean–variance dependence) for
both DNA and protein microarrays, the respective normalization
algorithms differ. An expectation of minimal variation in the
majority of genes with the exception of the one(s) under investiga-
tion is the norm in standard DNAmicroarray experiments [10]. The
exact opposite is true for experimental designs where important
differences in antibody binding between individuals and proteins
underpin the hypothesis [3]. Consequently, while scaling down
variation for DNA microarrays serves the correct purpose, some
algorithms may mask important biological variation in responses
to proteins [10].

Tools to guide the rigorous processing of protein microarray
data are limited [11–14], some are time-consuming to optimize
and not centralized [15]. Some of the available tools are Protein
array web explorer (PAWER) [12], Protein Microarray Database
(PMD) [14], Protein Microarray Analyser (PMA) [15], Prospector,
Protein Array Analyser (PAA) [11]. Here, we provide a one-stop
data-processing suite that empowers users to determine the most
appropriate method for each data-handling step by comparing the
different data handling techniques. A detailed comparison of the
tools is documented in Supplementary-D. We systematically
address background correction [16] within-sample variation [10],
normalisation [17] and batch correction [18]. Our easy-to-use
interactive web-based R interface [19] and illustrative examples
enable wide utility.
2. Methods

The data processing suite incorporates a range of sequential sta-
tistical functions organized into an R package with accompanying
guidance notes (Fig. 1).

We examine the performance of protGear using data from KIL-
chip v1.0, a protein microarray chip designed to enable the simul-
taneous detection of antibodies against > 100 proteins in large
cohort studies. Plasmodium falciparum proteins were printed in
triplicate on a slide divided into mini-arrays, defined as the region
Fig. 1. protGear data processing scheme. Dotted lines indicate optional steps. Tag subtrac
when multiple samples from the same sample set are processed in more than one expe
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allocated to a discrete sample and can be further divided into
blocks [3].

2.1. Data extraction

Microarray image analysis software captures multiple parame-
ters in relation to antibody intensity in a pre-prepared template
mostly referred to as a ‘‘.gal” file. [Supplementary A]. Quantifica-
tion softwares for estimating pixel intensities for example Prosca-
narray Express software (PerkinElmer) [1], QuantArray software
(GSI Lumonics) and GenePix� Pro software (Molecular Devices)
[20] generate data with similar parameters. Pixel intensities for
each spot are typically reported as means or medians with respec-
tive standard deviations. We recommend the median as it is rela-
tively insensitive to outliers. We created a versatile tool that can
be adapted to load data output format from different quantification
softwares mentioned above and this is highlighted in Supplemen-
tary A.

2.2. Background correction

Background intensity is the signal emitted by sources other
than the sample under investigation [16,21]. In microarrays, it
arises either from the glass slide and/or from the non-specific bind-
ing of analytes and can vary within and between slides [10,16,21].
The foreground is the total spot intensity and includes the
background.

The background is typically calculated using a circular region
around the spot (Fig. 2). In GenePix� for example, this is estimated
using a diameter three times that of the corresponding spot indica-
tor [20]. We adapted subtraction and model-based functions for
background correction using a combination of the GenePix� Pro
[20] and Linear Models for and Microarray Data (Limma) [8)] with
minor modifications respectively. When the background exceeds
the foreground, we implement functions to enable mathematical
computation as explained under moving minimum background
and half moving minimum background correction [16,22]. Prior
to background correction, it is important to visually inspect the
protein microarray data for any spatial biases. protGear provides
two functionalities to visually inspect the slides, however, we
tion is applied for antigens containing purification tags. Batch correction is relevant
riment.
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Fig. 2. Background correction: artefacts add noise to the signal intensity A) A microarray slide with 21 mini arrays and a barcode. Each mini array has a specific number of
features represented by a spot. B) Artefacts [spots surrounded with yellow boxes] Kamuyu 2018. C) The total foreground intensity associated with feature spot typically
includes the local background. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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recommend inspection of the scanned images [Fig. 2] since the
data file might not record all the spatial artefacts. The dashboard
includes a function to visualize the printing buffer spots which
are used to monitor any background reactivity and detection of
any potential protein carry over during printing [3].

protGear provides a range of background subtraction methods
based on understanding the distribution of the artefacts in specific
experiments and supported with graphical outputs. The local back-
ground is the signal detected in the immediate vicinity of a spot.
Subtracting the median local background pixel intensities from
the foreground is thought to give an unbiased estimator of the true
signal intensity for that specific spot [16]. However, uneven varia-
tion in the local background across an entire slide may skew the
data [23] and can be minimized by implementing a global back-
ground subtraction. This subtracts the median of all the local back-
ground intensities for a given slide from each spot on that slide.
When artefacts are localized to a specific region of a slide often
referred to as a block or mini-array, the moving minimum back-
ground or half moving minimum background correction options can
be adopted [8]. The former restricts the subtraction of local back-
grounds to the block within the slide. Since many spots may be
affected within a block, it utilizes the minimum rather than the
median local background. Zero or negative values are subsequently
set to half the minimum of the positive corrected background
intensities different from limma implementation that sets any
intensity which is <0.5 after background subtraction to be equal
to 0.5.

The normal and exponential model (normexp) method is recom-
mended when the distribution of background intensities is normal,
but that of the background-corrected data is exponential [24]. The
background intensities are fitted as covariates in a convolution
model and the expected signal given the observed foreground
2520
becomes the corrected intensity. This yields a smooth monotonic
function of positive background-corrected intensities and replaces
negative values on the entire slide with a single positive co-
efficient [25].

The log-linear background correction method utilizes the range
of positive background-corrected values on the slide to compute
a log-linear smooth monotonic function from which negative val-
ues are interpolated [22]. It can be considered for data that do
not fit the above distributions.

2.3. Coefficient of variation.

Technical replicates assess within-sample variability and help
to quantify the reliability of the experimental procedures. They
can minimize data loss when for example a single spot performs
poorly, and others succeed. They are also utilized to detect
sample-specific experimental variability linked to outliers or
caused by specific reagents. Although many replicates are advanta-
geous, this comes at a cost and may reduce experimental
throughput.

A function to evaluate the extent of within-sample variability is
implemented using the Coefficient of Variation (CV). This is a mea-

sure of accuracy expressed defined as; CV% ¼ r
x
�

� �
� 100, where r

is the standard deviation divided by the mean x
�
, and expressed

as a percentage [10]. Users can define a threshold (cut-off) for
the CV using n-replicates and visualize those that do not meet this
criterion. Replicate spots that are acceptable are averaged [26].
Additional functions enable the visualization and subtraction of
signal intensities from purification tags, where applicable. Protein
purification tags refer to specific amino acids or polypeptides fused
to target proteins to facilitate their subsequent affinity purification.
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In the case of the datasets used here, the tags include the CD4 hexa-
histidine, Maltose binding protein (MBP) and Glutathione S-
transferase (GST) tags [3]. Purification-tag is specific to different
experiments and designs, purification-tag subtraction step is
optional as shown in Fig. 1.
2.4. Normalisation.

Data normalization minimizes the mean–variance dependence
(MVD) that is common in microarray experiments and may mask
true biological variability, Fig. 5A [9,27]. Normalisation transforms
the intensities to a scale where the variance, Var MFIð Þ is indepen-
dent of the mean, E MFIð Þ where MFI is the (Mean Fluorescent
Intensity). Although many normalisation strategies have been pro-
posed [28] we focus on five techniques applicable to protein
microarrays.
2.4.1. Log2 normalisation
Log transformations reduce the bias in variance between high

and low values by converting the data from a multiplicative to
an additive distribution. Wider variance is typically observed for
higher signal intensities. Log2 transformation is readily compatible
with the doubling sample dilutions typically employed on the

bench. The background-corrected values y
_

ijkr
¼ yijkr � a

_
; where a

_
is

the estimate of the median background level and yijkr is the esti-
mated intensity for a spot r of protein feature k in the mini-array

j on the ith slide. The transformation is defined as

log2 y
_

ijkr

 !
¼ log2ðyijkr � a

_Þ. However,log2 y
_

ijkr

 !
is not defined for

yijkr � a
_

or for intensities where yijkr � a
_
< 0. Additionally, the

asymptotic variance of log y
_

ijkr

 !
is approximately constant for

large yijkr but approaches infinity as yijkr ! 0. Log transformations
are unsuitable for negative values, tend to be inflated for low val-
ues that are in the range of the background [17], and are not sen-
sitive to other sources of MVD.
2.4.2. Cyclic loess normalization
This stabilizes the MVD between slides by applying a pairwise

non-linear local regression (LOESS). It utilizes a pseudo Bland-
Altman (MA) plot defined as the average [A] versus the difference
[M] between the intensities on two independent slides, repeated
for N number of slides [29]. It yields an ‘average’ array that is used
as a reference to adjust the MVD across all slides. It can be applied
to both raw and log-transformed data [30]. Cyclic loess performs a
pairwise normalization on all distinct pairs of slides utilising the
MA plot and LOESS smoothing. The MA plot in single-colour
microarrays for a pair of arrays is the scatter plot of average the
intensity values [A] from both arrays vs. difference in expression
values [M] of the same arrays The intensity-dependent differences
are first estimated and the differences subsequently regulated by
centering the LOESS line to zero [26,29].

Given y
_

ijkr
for a given slide i ¼ 1;2;3; :::::;n,Mr ¼ log2 y

_

1jkr
= y

_

2jkr

 !

and Ar ¼ 1
2 log2 y

_

1jkr
� y

_

2jkr

 !
where r ¼ 1;2;3; :::; p are the spot inten-

sities for a specific protein. A LOESS curve is then fitted for the MA
differences andM0

r a normalised value forMr is generated. The spot
for each specific protein intensities is normalized as follows

ŷ01jkr ¼ 2Arþ
M0
r
2 and ŷ02jkr ¼ 2Ar�

M0
r
2 or the logarithm transformed equiv-
2521
alents [29,31]. Here we use the LOESS method of Ballman et al.
[8,29].

The underlying assumption in cyclic loess is that there is mini-
mal variation between individual arrays under the conditions
being studied. Its application for protein microarray experiments
designed to detect high levels of variation in different arrays may
thus be limited. We recommend the randomization of samples
during the design of the study to ensure there is minimal variation
between the arrays.

2.4.3. Robust linear normalization (RLM).
This method stabilizes the mean–variance dependence (MVD)

by using standardized control spots on each slide to adjust intensi-
ties across the entire experiment [10]. It assumes that the signal
detected from control spots remains constant with the exception
of technical differences within or between slides. It is the method
of choice when a significant amount of variation between samples
is anticipated.

Data from control spots are fitted to a robust statistical model
using an iteratively reweighted least-squares procedure with a
robust ‘‘sandwich estimator”, like the median. Fixed effects for
each array or slide and positive control proteins are estimated from
the statistical model. Sboner et al. recommended using a linear
model applied to log-transformed intensities [10]. The model

log2 y
_

ijkr

 !
¼ a � Slidei þ b � Blockj þ s � Proteink þ eijkr , y

_

ijkr
is the

background-corrected intensity for the spot r of protein feature k

in the block j on the ith slide. a is the slide effect of the slide i, b
is the block j effect and sis the effect of protein feature k ; this helps
account for the spotted protein amount and binding affinity of dif-
ferent protein features and eijkr ¼ Norm 0;r2

� �
is the error term.

After estimating the best parameters, the transformed values are

estimated as log2 ŷ0ijkr
� �

¼ log2 ŷ0ijkr
� �

� ai þ bj

� �
[10]. We recom-

mend that the control antigens used for normalization are opti-
mized to avoid saturation to facilitate the identification of true
technical variation. We used human Ig (IgG and IgM) as controls
in our experiments.

As with other logarithm transformations, RLM is not suitable for
negative signals values. These are consequently replaced using the
moving minimum positive approach (above).

2.4.4. Variance stabilization normalization (VSN)
The VSN method overcomes the limitations of log transforma-

tions by accommodating negative values and minimizing the
inflated variance around low signal intensities. It calibrates
between-feature variation through shifting and scaling mechanism
in which all the data are adjusted.

Huber et al. and Durbin et al. independently proposed the VSN
approach which is a variant of the log-transform (glog2). A two-
component model to explain the proportional increase in the vari-
ance with the mean intensity of the proteins was proposed

[9,17,27]; yijkr ¼ a
_

ijkr
þlijkre

g þ eijkr , where a
_

ijkr
is the background sig-

nal and lijkr ¼ y
_

ijkr
is the actual signal. g ¼ Norm 0;rg

� �
and

eijkr ¼ Norm 0;r2
� �

are the proportional error and background error
respectively. However, with background corrected data this can be
modelled as yijkr � lijkre

g. A transformation h is used to produce

values such that Var h yijkr
� �� �

is approximately independent of
the mean, E h yijkr

� �� �
. In general, for a matrix, lijkr the function

implemented fits a normalisation transformation

lijkr ! h lijkr

� �
¼ glog2

lijkr�ai
bi

� �
where bi is the scaling parameter

for array i which is always ensured to be positive with a parameter
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transformation f ðbÞ ¼ expðbÞ, ai is the background offset included
if the data is not background corrected and
glog2 uð Þ ¼ log2 uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p� � ¼ arsinh uð Þ=log 2ð Þ is the generalised

transformation h. A robust variant of the maximum likelihood esti-
mator for the 2 parameters is utilised [1]. Each slide is treated inde-
pendently and slide to slide variation is not considered [10].

2.5. Batch Correction.

The processing of samples on separate days introduces batch-
to-batch variations due to non-specific day to day differences in
laboratory conditions or operators [18].

We implement a selection of tools to identify and visualize
batch effects such as coloured scatter plots, hierarchical clustering
or principal component analysis (PCA). Subsequent analyses can be
adjusted to account for batch effects, but the majority are designed
for large experiments of at least 25 batches [32]. We utilise the
Empirical Bayes approach as it accommodates all batch sizes and
can utilize both parametric and non-parametric data [18].

2.5.1. Empirical Bayes (EB) batch correction using ComBat
This uses the EB approach to estimate and correct batch effects.

It can be applied to high-dimensional data even when the sample
size is small. Suppose we have b batches in the data containing ns

samples within a batch w for w ¼ 1;2; ::::; b and a protein
k ¼ 1; ::::;K then a location and scale (L/S) adjustment model is
assumed;Ywsk ¼ ak þ Xbk þ cwk þ dwkewsk. Then, the EB batch
adjusted data c�wsk is then calculated as follows

c�wsk ¼ d̂k
d̂
�
wk

Zwsk � ĉ�wk

� �þ âk þ Xb̂k[18] [Supplementary B for details].

To perform this, we utilise a wrapper to SVA’s function ComBat() for
the batch adjustment that has both the parametric and non-
parametric approaches [18].

3. Results

3.1. Implementation

protGear is an R based suite with a range of functions to facili-
tate protein microarray data pre-processing. It has a built-in user-
friendly Shiny� dashboard [Supplementary C1 Fig. 1 and Supple-
mentary C2] to assist in real-time processing, visualization and
downstream analysis using heatmaps and Principal Component
Analysis (PCA). It provides five sequential steps for handling a data
table of fluorescent intensities. Importantly, the package enables
the inclusion of additional functions that may be deemed useful.
A detailed workflow is included in the protGear_vignette document
in the supplementary or https://keniajin.github.io/protGear/.

3.2. Background correction

The protGear background_correct function implements five dif-
ferent techniques for background correction that are comple-
mented by diagnostic plots. Fig. 3 shows the example of a
background diagnostic plot produced by protGear. As shown in
Fig. 3 similar local background values were observed across the dif-
ferent blocks. The correlation between the foreground and back-
ground intensities (medians) on the same array was also low.
Therefore, a local background correction approach was selected
and applied.

3.3. Within sample variation and purification tag subtraction

protGear provides a cv_estimation function that is applied to
technical repeats to calculate and visualize within-sample variabil-
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ity utilizing a user-defined CV. A filtering algorithm identifies tech-
nical repeat spots meeting user-defined criteria e.g. CV < 20%. The
function generates a flag variable to enable further scrutiny of non-
performing spots. Fig. 4 illustrates graphics to monitor the CV
before and after filtering. A folder is created to store the CV-
corrected data in the working directory or the package function,
respectively. An average of the replicates is calculated before the
subtraction of the intensity measured against the purification tag
(optional). Here, we kept 2 of 3 technical replicates with
CVs<20% and excluded the outlier value.
3.4. Normalisation and batch correction

We tested four functions for normalization to identify the one
that optimally reduced the MVD. We formally assessed this using
the mean versus standard deviation plots (meanSdPlots) and cou-
pled this to automatically derived Spearman correlation estimates
(Rho) and Cox–Stuart or the Mann–Kendall trend tests. The latter
quantifies the performance of the normalization. In the example
below, we illustrate the versatility of the tool across four Methods
for normalization. Using these approaches, the MVD reduction led
to a drop in the Rho estimate from 0.93 to between 0.2 and 0.3 in
this dataset as shown in Fig. 5 below. Implementation of the log2
approach led to an inflation of variance for the low MFI (Mean Flu-
orescent Intensity) values. The cyclic loess and

RLMwere not optimal for the experimental design (discussed in
the methods). Consequently, the VSN normalization approach was
adopted (Fig. 5). We then proceeded to investigate batch effects
using ComBat from the SVA package. The day-to-day dependence
was noticeably reduced by ComBat batch correction [Supplemen-
tary B Fig. 1] for day m1 and m2.
4. Discussion

protGear is an open-source one-stop integrated data pre-
processing suite specifically tailored to address the systematic
and non-systematic sources of bias in high throughput protein
microarray experiments. It can be adapted to a range of design for-
mats and is compatible with the majority of commercial protein
microarray platforms. It provides a choice of functions to address
each major source of bias, outlines the theoretical background nec-
essary to guide selection and generates custom graphical and tab-
ular outputs to support data interrogation and interpretation. It is
coupled with a user-friendly interactive web platform that elimi-
nates the need for specialized programming skills. In line with
other open-source platforms, protGear can be adapted to incorpo-
rate new functions either by adding custom scripts or contributing
to its online repository.

The localization and distribution of background signal intensi-
ties guide the selection of the appropriate correction strategy
[16,21,22]. Our experimental design comprised multiple mini-
arrays and slides. We did not detect any significant background
pattern within the mini-arrays or block and consequently selected
the local background correction method. Although unmodified
background intensities are subtracted from the foreground result-
ing in unbiased estimates [16], negative values are often generated,
and the consistency of the results across different mini-arrays and
slides needs to be assured. Additional methods including the novel
half moving minimum we developed that overcome these limita-
tions have been included [8].

The inclusion of two or more technical replicates is vital for the
robust analysis of within-sample variability [15]. Caution in inter-
preting the CV is recommended as small differences in signal
intensities between replicates at the lower end of the detection
threshold can yield misleadingly high CVs. To overcome this, we

https://keniajin.github.io/protGear/


Fig. 3. Example of background diagnostic plots produced by protGear. (A) is the background MFI vs foreground MFI plot that is useful to assist in selecting the appropriate
background correction method. (B) is a boxplot of the blocks/mini arrays categorised into the technical repeats. This plot is important to check whether there is a block
artefact in the background MFI values.

Fig. 4. The visualization of the CV A) Correlation of the technical replicates, B) Proportion of CV by the CV cut off, C) Proportion of CV after ‘‘cv_based_filtering”, D) A static
image of an Interactive table to inspect the CV cut off values. The table shows the specific slide id (.id), the serum sample identifier (sampleID), count of CV’s < 20% (CV<=20), %
of CV’s < 20%, count of CV’s > 20% (CV > 20), % of CV’s > 20% and out of range CVs on the 1st to 8th columns, respectively.
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implemented a novel function that enables users to set signal
intensity thresholds below which high CVs can be ignored.

The importance of adopting an appropriate strategy for normal-
ization is critical and requires the coupling of the experimental
hypothesis with the mathematical assumptions underpinning the
methods [33]. Key design issues to consider are the extent of sam-
ple biological variation anticipated under the conditions being
investigated and technical considerations in the array design such
as the inclusion of appropriate controls. Adopting the wrong
method increases the probability of detecting false-negative and
false positives.
2523
The RLM normalisation approach that was specifically devel-
oped for protein microarrays [10] requires that the secondary con-
trol normalisation proteins yield constant signals across and
within slides. These control proteins are expected to have a low
CV and can be used for both normalizations and evaluating the
slide variability [10]. Although the MVD was significantly reduced
with all methods tested, the VSN method was optimal. protGear
provides a novel powerful single platform that empowers users
to sequentially interrogate all these options to determine the opti-
mal solution for the data in question. The easy-to-use interface
accommodates multiple data formats, saves enormous amounts



Fig. 5. Standard deviation vs mean plots (meanSdPlot) of A) Non normalised data B) log2 normalisation C) Cyclic loess normalisation D) Robust Linear Model normalisation
and E) VSN normalisation.
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of time and generates high-quality visual outputs that facilitate
rapid decision making.

Batch effects create an additional unwelcome source of varia-
tion that could further reduce statistical power. These must be con-
sidered when data are processed at different times, by different
users and on different instruments, among others [34]. An impor-
tant consideration that particularly applies to large cohort studies
is the random processing of samples to ensure that batch effects do
not exaggerate pre-existing genuine biological variation. For exam-
ple, in the context of malaria seroepidemiology, age and geograph-
ical location are critical determinants of antibody levels [35]. The
processing of samples of young children at one time-point, and
those of older children at another, could inadvertently lead to
enhanced differences in either group that were unrelated to the
true underlying biological variation. A similar effect could occur
when samples from settings with differing malaria transmission
intensity are analysed in the same experiment but at separate
times.

A limited number of batch correction approaches have been
proposed and these typically accommodate experimental designs
with a minimum of 25 batches. We adopted the ComBat batch cor-
rection function from the ‘‘sva” package in R since it has been
reported to be robust to outliers in small batch sizes [18].

protGear provides a state-of-the-art, one-stop adaptable work-
flow for protein microarray data pre-processing. It can be coupled
to software such as Sweave or knitr [36] for report generation and
sharing along with the raw data to promote data reproducibility.
The user-friendly, interactive, web-based and graphical interface
requires limited R-experience and will enhance broad uptake in
the infectious disease and vaccine development community.
5. Availability and implementation

The protGear R package is publicly available in the GitHub
repository (https://github.com/Keniajin/protGear).
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